1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 #include <linux/math64.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_actions_slpc_abi.h" 19 #include "abi/guc_klvs_abi.h" 20 #include "regs/xe_lrc_layout.h" 21 #include "xe_assert.h" 22 #include "xe_devcoredump.h" 23 #include "xe_device.h" 24 #include "xe_exec_queue.h" 25 #include "xe_force_wake.h" 26 #include "xe_gpu_scheduler.h" 27 #include "xe_gt.h" 28 #include "xe_gt_clock.h" 29 #include "xe_gt_printk.h" 30 #include "xe_guc.h" 31 #include "xe_guc_capture.h" 32 #include "xe_guc_ct.h" 33 #include "xe_guc_exec_queue_types.h" 34 #include "xe_guc_id_mgr.h" 35 #include "xe_guc_klv_helpers.h" 36 #include "xe_guc_submit_types.h" 37 #include "xe_hw_engine.h" 38 #include "xe_hw_fence.h" 39 #include "xe_lrc.h" 40 #include "xe_macros.h" 41 #include "xe_map.h" 42 #include "xe_mocs.h" 43 #include "xe_pm.h" 44 #include "xe_ring_ops_types.h" 45 #include "xe_sched_job.h" 46 #include "xe_trace.h" 47 #include "xe_vm.h" 48 49 static struct xe_guc * 50 exec_queue_to_guc(struct xe_exec_queue *q) 51 { 52 return &q->gt->uc.guc; 53 } 54 55 /* 56 * Helpers for engine state, using an atomic as some of the bits can transition 57 * as the same time (e.g. a suspend can be happning at the same time as schedule 58 * engine done being processed). 59 */ 60 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 61 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 62 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 63 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 64 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 65 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 66 #define EXEC_QUEUE_STATE_RESET (1 << 6) 67 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 68 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 69 #define EXEC_QUEUE_STATE_BANNED (1 << 9) 70 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10) 71 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11) 72 73 static bool exec_queue_registered(struct xe_exec_queue *q) 74 { 75 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 76 } 77 78 static void set_exec_queue_registered(struct xe_exec_queue *q) 79 { 80 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 81 } 82 83 static void clear_exec_queue_registered(struct xe_exec_queue *q) 84 { 85 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 86 } 87 88 static bool exec_queue_enabled(struct xe_exec_queue *q) 89 { 90 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 91 } 92 93 static void set_exec_queue_enabled(struct xe_exec_queue *q) 94 { 95 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 96 } 97 98 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 99 { 100 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 101 } 102 103 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 104 { 105 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 106 } 107 108 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 109 { 110 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 111 } 112 113 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 114 { 115 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 116 } 117 118 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 119 { 120 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 121 } 122 123 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 124 { 125 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 126 } 127 128 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 129 { 130 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 131 } 132 133 static bool exec_queue_destroyed(struct xe_exec_queue *q) 134 { 135 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 136 } 137 138 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 139 { 140 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 141 } 142 143 static bool exec_queue_banned(struct xe_exec_queue *q) 144 { 145 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED; 146 } 147 148 static void set_exec_queue_banned(struct xe_exec_queue *q) 149 { 150 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state); 151 } 152 153 static bool exec_queue_suspended(struct xe_exec_queue *q) 154 { 155 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 156 } 157 158 static void set_exec_queue_suspended(struct xe_exec_queue *q) 159 { 160 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 161 } 162 163 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 164 { 165 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 166 } 167 168 static bool exec_queue_reset(struct xe_exec_queue *q) 169 { 170 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 171 } 172 173 static void set_exec_queue_reset(struct xe_exec_queue *q) 174 { 175 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 176 } 177 178 static bool exec_queue_killed(struct xe_exec_queue *q) 179 { 180 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 181 } 182 183 static void set_exec_queue_killed(struct xe_exec_queue *q) 184 { 185 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 186 } 187 188 static bool exec_queue_wedged(struct xe_exec_queue *q) 189 { 190 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 191 } 192 193 static void set_exec_queue_wedged(struct xe_exec_queue *q) 194 { 195 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 196 } 197 198 static bool exec_queue_check_timeout(struct xe_exec_queue *q) 199 { 200 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT; 201 } 202 203 static void set_exec_queue_check_timeout(struct xe_exec_queue *q) 204 { 205 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 206 } 207 208 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q) 209 { 210 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 211 } 212 213 static bool exec_queue_extra_ref(struct xe_exec_queue *q) 214 { 215 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF; 216 } 217 218 static void set_exec_queue_extra_ref(struct xe_exec_queue *q) 219 { 220 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state); 221 } 222 223 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 224 { 225 return (atomic_read(&q->guc->state) & 226 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED | 227 EXEC_QUEUE_STATE_BANNED)); 228 } 229 230 static void guc_submit_fini(struct drm_device *drm, void *arg) 231 { 232 struct xe_guc *guc = arg; 233 struct xe_device *xe = guc_to_xe(guc); 234 struct xe_gt *gt = guc_to_gt(guc); 235 int ret; 236 237 ret = wait_event_timeout(guc->submission_state.fini_wq, 238 xa_empty(&guc->submission_state.exec_queue_lookup), 239 HZ * 5); 240 241 drain_workqueue(xe->destroy_wq); 242 243 xe_gt_assert(gt, ret); 244 245 xa_destroy(&guc->submission_state.exec_queue_lookup); 246 } 247 248 static void guc_submit_wedged_fini(void *arg) 249 { 250 struct xe_guc *guc = arg; 251 struct xe_exec_queue *q; 252 unsigned long index; 253 254 mutex_lock(&guc->submission_state.lock); 255 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 256 if (exec_queue_wedged(q)) { 257 mutex_unlock(&guc->submission_state.lock); 258 xe_exec_queue_put(q); 259 mutex_lock(&guc->submission_state.lock); 260 } 261 } 262 mutex_unlock(&guc->submission_state.lock); 263 } 264 265 static const struct xe_exec_queue_ops guc_exec_queue_ops; 266 267 static void primelockdep(struct xe_guc *guc) 268 { 269 if (!IS_ENABLED(CONFIG_LOCKDEP)) 270 return; 271 272 fs_reclaim_acquire(GFP_KERNEL); 273 274 mutex_lock(&guc->submission_state.lock); 275 mutex_unlock(&guc->submission_state.lock); 276 277 fs_reclaim_release(GFP_KERNEL); 278 } 279 280 /** 281 * xe_guc_submit_init() - Initialize GuC submission. 282 * @guc: the &xe_guc to initialize 283 * @num_ids: number of GuC context IDs to use 284 * 285 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 286 * GuC context IDs supported by the GuC firmware should be used for submission. 287 * 288 * Only VF drivers will have to provide explicit number of GuC context IDs 289 * that they can use for submission. 290 * 291 * Return: 0 on success or a negative error code on failure. 292 */ 293 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 294 { 295 struct xe_device *xe = guc_to_xe(guc); 296 struct xe_gt *gt = guc_to_gt(guc); 297 int err; 298 299 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 300 if (err) 301 return err; 302 303 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 304 if (err) 305 return err; 306 307 gt->exec_queue_ops = &guc_exec_queue_ops; 308 309 xa_init(&guc->submission_state.exec_queue_lookup); 310 311 init_waitqueue_head(&guc->submission_state.fini_wq); 312 313 primelockdep(guc); 314 315 guc->submission_state.initialized = true; 316 317 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 318 } 319 320 /* 321 * Given that we want to guarantee enough RCS throughput to avoid missing 322 * frames, we set the yield policy to 20% of each 80ms interval. 323 */ 324 #define RC_YIELD_DURATION 80 /* in ms */ 325 #define RC_YIELD_RATIO 20 /* in percent */ 326 static u32 *emit_render_compute_yield_klv(u32 *emit) 327 { 328 *emit++ = PREP_GUC_KLV_TAG(SCHEDULING_POLICIES_RENDER_COMPUTE_YIELD); 329 *emit++ = RC_YIELD_DURATION; 330 *emit++ = RC_YIELD_RATIO; 331 332 return emit; 333 } 334 335 #define SCHEDULING_POLICY_MAX_DWORDS 16 336 static int guc_init_global_schedule_policy(struct xe_guc *guc) 337 { 338 u32 data[SCHEDULING_POLICY_MAX_DWORDS]; 339 u32 *emit = data; 340 u32 count = 0; 341 int ret; 342 343 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) 344 return 0; 345 346 *emit++ = XE_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; 347 348 if (CCS_MASK(guc_to_gt(guc))) 349 emit = emit_render_compute_yield_klv(emit); 350 351 count = emit - data; 352 if (count > 1) { 353 xe_assert(guc_to_xe(guc), count <= SCHEDULING_POLICY_MAX_DWORDS); 354 355 ret = xe_guc_ct_send_block(&guc->ct, data, count); 356 if (ret < 0) { 357 xe_gt_err(guc_to_gt(guc), 358 "failed to enable GuC sheduling policies: %pe\n", 359 ERR_PTR(ret)); 360 return ret; 361 } 362 } 363 364 return 0; 365 } 366 367 int xe_guc_submit_enable(struct xe_guc *guc) 368 { 369 int ret; 370 371 ret = guc_init_global_schedule_policy(guc); 372 if (ret) 373 return ret; 374 375 guc->submission_state.enabled = true; 376 377 return 0; 378 } 379 380 void xe_guc_submit_disable(struct xe_guc *guc) 381 { 382 guc->submission_state.enabled = false; 383 } 384 385 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 386 { 387 int i; 388 389 lockdep_assert_held(&guc->submission_state.lock); 390 391 for (i = 0; i < xa_count; ++i) 392 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 393 394 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 395 q->guc->id, q->width); 396 397 if (xa_empty(&guc->submission_state.exec_queue_lookup)) 398 wake_up(&guc->submission_state.fini_wq); 399 } 400 401 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 402 { 403 int ret; 404 int i; 405 406 /* 407 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 408 * worse case user gets -ENOMEM on engine create and has to try again. 409 * 410 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 411 * failure. 412 */ 413 lockdep_assert_held(&guc->submission_state.lock); 414 415 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 416 q->width); 417 if (ret < 0) 418 return ret; 419 420 q->guc->id = ret; 421 422 for (i = 0; i < q->width; ++i) { 423 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup, 424 q->guc->id + i, q, GFP_NOWAIT)); 425 if (ret) 426 goto err_release; 427 } 428 429 return 0; 430 431 err_release: 432 __release_guc_id(guc, q, i); 433 434 return ret; 435 } 436 437 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 438 { 439 mutex_lock(&guc->submission_state.lock); 440 __release_guc_id(guc, q, q->width); 441 mutex_unlock(&guc->submission_state.lock); 442 } 443 444 struct exec_queue_policy { 445 u32 count; 446 struct guc_update_exec_queue_policy h2g; 447 }; 448 449 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 450 { 451 size_t bytes = sizeof(policy->h2g.header) + 452 (sizeof(policy->h2g.klv[0]) * policy->count); 453 454 return bytes / sizeof(u32); 455 } 456 457 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 458 u16 guc_id) 459 { 460 policy->h2g.header.action = 461 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 462 policy->h2g.header.guc_id = guc_id; 463 policy->count = 0; 464 } 465 466 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 467 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 468 u32 data) \ 469 { \ 470 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 471 \ 472 policy->h2g.klv[policy->count].kl = \ 473 FIELD_PREP(GUC_KLV_0_KEY, \ 474 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 475 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 476 policy->h2g.klv[policy->count].value = data; \ 477 policy->count++; \ 478 } 479 480 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 481 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 482 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 483 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY) 484 #undef MAKE_EXEC_QUEUE_POLICY_ADD 485 486 static const int xe_exec_queue_prio_to_guc[] = { 487 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 488 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 489 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 490 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 491 }; 492 493 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 494 { 495 struct exec_queue_policy policy; 496 enum xe_exec_queue_priority prio = q->sched_props.priority; 497 u32 timeslice_us = q->sched_props.timeslice_us; 498 u32 slpc_exec_queue_freq_req = 0; 499 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 500 501 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 502 503 if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY) 504 slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE; 505 506 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 507 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 508 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 509 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 510 __guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy, 511 slpc_exec_queue_freq_req); 512 513 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 514 __guc_exec_queue_policy_action_size(&policy), 0, 0); 515 } 516 517 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 518 { 519 struct exec_queue_policy policy; 520 521 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 522 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 523 524 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 525 __guc_exec_queue_policy_action_size(&policy), 0, 0); 526 } 527 528 #define parallel_read(xe_, map_, field_) \ 529 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 530 field_) 531 #define parallel_write(xe_, map_, field_, val_) \ 532 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 533 field_, val_) 534 535 static void __register_mlrc_exec_queue(struct xe_guc *guc, 536 struct xe_exec_queue *q, 537 struct guc_ctxt_registration_info *info) 538 { 539 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 540 u32 action[MAX_MLRC_REG_SIZE]; 541 int len = 0; 542 int i; 543 544 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q)); 545 546 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 547 action[len++] = info->flags; 548 action[len++] = info->context_idx; 549 action[len++] = info->engine_class; 550 action[len++] = info->engine_submit_mask; 551 action[len++] = info->wq_desc_lo; 552 action[len++] = info->wq_desc_hi; 553 action[len++] = info->wq_base_lo; 554 action[len++] = info->wq_base_hi; 555 action[len++] = info->wq_size; 556 action[len++] = q->width; 557 action[len++] = info->hwlrca_lo; 558 action[len++] = info->hwlrca_hi; 559 560 for (i = 1; i < q->width; ++i) { 561 struct xe_lrc *lrc = q->lrc[i]; 562 563 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 564 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 565 } 566 567 /* explicitly checks some fields that we might fixup later */ 568 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo == 569 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER]); 570 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo == 571 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER]); 572 xe_gt_assert(guc_to_gt(guc), q->width == 573 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS]); 574 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo == 575 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR]); 576 xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE); 577 #undef MAX_MLRC_REG_SIZE 578 579 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 580 } 581 582 static void __register_exec_queue(struct xe_guc *guc, 583 struct guc_ctxt_registration_info *info) 584 { 585 u32 action[] = { 586 XE_GUC_ACTION_REGISTER_CONTEXT, 587 info->flags, 588 info->context_idx, 589 info->engine_class, 590 info->engine_submit_mask, 591 info->wq_desc_lo, 592 info->wq_desc_hi, 593 info->wq_base_lo, 594 info->wq_base_hi, 595 info->wq_size, 596 info->hwlrca_lo, 597 info->hwlrca_hi, 598 }; 599 600 /* explicitly checks some fields that we might fixup later */ 601 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo == 602 action[XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER]); 603 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo == 604 action[XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER]); 605 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo == 606 action[XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR]); 607 608 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 609 } 610 611 static void register_exec_queue(struct xe_exec_queue *q) 612 { 613 struct xe_guc *guc = exec_queue_to_guc(q); 614 struct xe_device *xe = guc_to_xe(guc); 615 struct xe_lrc *lrc = q->lrc[0]; 616 struct guc_ctxt_registration_info info; 617 618 xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q)); 619 620 memset(&info, 0, sizeof(info)); 621 info.context_idx = q->guc->id; 622 info.engine_class = xe_engine_class_to_guc_class(q->class); 623 info.engine_submit_mask = q->logical_mask; 624 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 625 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 626 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 627 628 if (xe_exec_queue_is_parallel(q)) { 629 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 630 struct iosys_map map = xe_lrc_parallel_map(lrc); 631 632 info.wq_desc_lo = lower_32_bits(ggtt_addr + 633 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 634 info.wq_desc_hi = upper_32_bits(ggtt_addr + 635 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 636 info.wq_base_lo = lower_32_bits(ggtt_addr + 637 offsetof(struct guc_submit_parallel_scratch, wq[0])); 638 info.wq_base_hi = upper_32_bits(ggtt_addr + 639 offsetof(struct guc_submit_parallel_scratch, wq[0])); 640 info.wq_size = WQ_SIZE; 641 642 q->guc->wqi_head = 0; 643 q->guc->wqi_tail = 0; 644 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 645 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 646 } 647 648 /* 649 * We must keep a reference for LR engines if engine is registered with 650 * the GuC as jobs signal immediately and can't destroy an engine if the 651 * GuC has a reference to it. 652 */ 653 if (xe_exec_queue_is_lr(q)) 654 xe_exec_queue_get(q); 655 656 set_exec_queue_registered(q); 657 trace_xe_exec_queue_register(q); 658 if (xe_exec_queue_is_parallel(q)) 659 __register_mlrc_exec_queue(guc, q, &info); 660 else 661 __register_exec_queue(guc, &info); 662 init_policies(guc, q); 663 } 664 665 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 666 { 667 return (WQ_SIZE - q->guc->wqi_tail); 668 } 669 670 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 671 { 672 struct xe_guc *guc = exec_queue_to_guc(q); 673 struct xe_device *xe = guc_to_xe(guc); 674 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 675 unsigned int sleep_period_ms = 1; 676 677 #define AVAILABLE_SPACE \ 678 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 679 if (wqi_size > AVAILABLE_SPACE) { 680 try_again: 681 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 682 if (wqi_size > AVAILABLE_SPACE) { 683 if (sleep_period_ms == 1024) { 684 xe_gt_reset_async(q->gt); 685 return -ENODEV; 686 } 687 688 msleep(sleep_period_ms); 689 sleep_period_ms <<= 1; 690 goto try_again; 691 } 692 } 693 #undef AVAILABLE_SPACE 694 695 return 0; 696 } 697 698 static int wq_noop_append(struct xe_exec_queue *q) 699 { 700 struct xe_guc *guc = exec_queue_to_guc(q); 701 struct xe_device *xe = guc_to_xe(guc); 702 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 703 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 704 705 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 706 return -ENODEV; 707 708 xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw)); 709 710 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 711 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 712 FIELD_PREP(WQ_LEN_MASK, len_dw)); 713 q->guc->wqi_tail = 0; 714 715 return 0; 716 } 717 718 static void wq_item_append(struct xe_exec_queue *q) 719 { 720 struct xe_guc *guc = exec_queue_to_guc(q); 721 struct xe_device *xe = guc_to_xe(guc); 722 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 723 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 724 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 725 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 726 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 727 int i = 0, j; 728 729 if (wqi_size > wq_space_until_wrap(q)) { 730 if (wq_noop_append(q)) 731 return; 732 } 733 if (wq_wait_for_space(q, wqi_size)) 734 return; 735 736 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 737 FIELD_PREP(WQ_LEN_MASK, len_dw); 738 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 739 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 740 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 741 wqi[i++] = 0; 742 for (j = 1; j < q->width; ++j) { 743 struct xe_lrc *lrc = q->lrc[j]; 744 745 wqi[i++] = lrc->ring.tail / sizeof(u64); 746 } 747 748 xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32)); 749 750 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 751 wq[q->guc->wqi_tail / sizeof(u32)])); 752 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 753 q->guc->wqi_tail += wqi_size; 754 xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE); 755 756 xe_device_wmb(xe); 757 758 map = xe_lrc_parallel_map(q->lrc[0]); 759 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 760 } 761 762 #define RESUME_PENDING ~0x0ull 763 static void submit_exec_queue(struct xe_exec_queue *q) 764 { 765 struct xe_guc *guc = exec_queue_to_guc(q); 766 struct xe_lrc *lrc = q->lrc[0]; 767 u32 action[3]; 768 u32 g2h_len = 0; 769 u32 num_g2h = 0; 770 int len = 0; 771 bool extra_submit = false; 772 773 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 774 775 if (xe_exec_queue_is_parallel(q)) 776 wq_item_append(q); 777 else 778 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 779 780 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 781 return; 782 783 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 784 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 785 action[len++] = q->guc->id; 786 action[len++] = GUC_CONTEXT_ENABLE; 787 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 788 num_g2h = 1; 789 if (xe_exec_queue_is_parallel(q)) 790 extra_submit = true; 791 792 q->guc->resume_time = RESUME_PENDING; 793 set_exec_queue_pending_enable(q); 794 set_exec_queue_enabled(q); 795 trace_xe_exec_queue_scheduling_enable(q); 796 } else { 797 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 798 action[len++] = q->guc->id; 799 trace_xe_exec_queue_submit(q); 800 } 801 802 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 803 804 if (extra_submit) { 805 len = 0; 806 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 807 action[len++] = q->guc->id; 808 trace_xe_exec_queue_submit(q); 809 810 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 811 } 812 } 813 814 static struct dma_fence * 815 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 816 { 817 struct xe_sched_job *job = to_xe_sched_job(drm_job); 818 struct xe_exec_queue *q = job->q; 819 struct xe_guc *guc = exec_queue_to_guc(q); 820 struct dma_fence *fence = NULL; 821 bool lr = xe_exec_queue_is_lr(q); 822 823 xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 824 exec_queue_banned(q) || exec_queue_suspended(q)); 825 826 trace_xe_sched_job_run(job); 827 828 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 829 if (!exec_queue_registered(q)) 830 register_exec_queue(q); 831 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 832 q->ring_ops->emit_job(job); 833 submit_exec_queue(q); 834 } 835 836 if (lr) { 837 xe_sched_job_set_error(job, -EOPNOTSUPP); 838 dma_fence_put(job->fence); /* Drop ref from xe_sched_job_arm */ 839 } else { 840 fence = job->fence; 841 } 842 843 return fence; 844 } 845 846 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 847 { 848 struct xe_sched_job *job = to_xe_sched_job(drm_job); 849 850 trace_xe_sched_job_free(job); 851 xe_sched_job_put(job); 852 } 853 854 int xe_guc_read_stopped(struct xe_guc *guc) 855 { 856 return atomic_read(&guc->submission_state.stopped); 857 } 858 859 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 860 u32 action[] = { \ 861 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 862 q->guc->id, \ 863 GUC_CONTEXT_##enable_disable, \ 864 } 865 866 static void disable_scheduling_deregister(struct xe_guc *guc, 867 struct xe_exec_queue *q) 868 { 869 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 870 int ret; 871 872 set_min_preemption_timeout(guc, q); 873 smp_rmb(); 874 ret = wait_event_timeout(guc->ct.wq, 875 (!exec_queue_pending_enable(q) && 876 !exec_queue_pending_disable(q)) || 877 xe_guc_read_stopped(guc), 878 HZ * 5); 879 if (!ret) { 880 struct xe_gpu_scheduler *sched = &q->guc->sched; 881 882 xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n"); 883 xe_sched_submission_start(sched); 884 xe_gt_reset_async(q->gt); 885 xe_sched_tdr_queue_imm(sched); 886 return; 887 } 888 889 clear_exec_queue_enabled(q); 890 set_exec_queue_pending_disable(q); 891 set_exec_queue_destroyed(q); 892 trace_xe_exec_queue_scheduling_disable(q); 893 894 /* 895 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 896 * handler and we are not allowed to reserved G2H space in handlers. 897 */ 898 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 899 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 900 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 901 } 902 903 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 904 { 905 struct xe_guc *guc = exec_queue_to_guc(q); 906 struct xe_device *xe = guc_to_xe(guc); 907 908 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 909 wake_up_all(&xe->ufence_wq); 910 911 if (xe_exec_queue_is_lr(q)) 912 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 913 else 914 xe_sched_tdr_queue_imm(&q->guc->sched); 915 } 916 917 /** 918 * xe_guc_submit_wedge() - Wedge GuC submission 919 * @guc: the GuC object 920 * 921 * Save exec queue's registered with GuC state by taking a ref to each queue. 922 * Register a DRMM handler to drop refs upon driver unload. 923 */ 924 void xe_guc_submit_wedge(struct xe_guc *guc) 925 { 926 struct xe_gt *gt = guc_to_gt(guc); 927 struct xe_exec_queue *q; 928 unsigned long index; 929 int err; 930 931 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); 932 933 /* 934 * If device is being wedged even before submission_state is 935 * initialized, there's nothing to do here. 936 */ 937 if (!guc->submission_state.initialized) 938 return; 939 940 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev, 941 guc_submit_wedged_fini, guc); 942 if (err) { 943 xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; " 944 "Although device is wedged.\n"); 945 return; 946 } 947 948 mutex_lock(&guc->submission_state.lock); 949 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 950 if (xe_exec_queue_get_unless_zero(q)) 951 set_exec_queue_wedged(q); 952 mutex_unlock(&guc->submission_state.lock); 953 } 954 955 static bool guc_submit_hint_wedged(struct xe_guc *guc) 956 { 957 struct xe_device *xe = guc_to_xe(guc); 958 959 if (xe->wedged.mode != 2) 960 return false; 961 962 if (xe_device_wedged(xe)) 963 return true; 964 965 xe_device_declare_wedged(xe); 966 967 return true; 968 } 969 970 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 971 { 972 struct xe_guc_exec_queue *ge = 973 container_of(w, struct xe_guc_exec_queue, lr_tdr); 974 struct xe_exec_queue *q = ge->q; 975 struct xe_guc *guc = exec_queue_to_guc(q); 976 struct xe_gpu_scheduler *sched = &ge->sched; 977 bool wedged = false; 978 979 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q)); 980 trace_xe_exec_queue_lr_cleanup(q); 981 982 if (!exec_queue_killed(q)) 983 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 984 985 /* Kill the run_job / process_msg entry points */ 986 xe_sched_submission_stop(sched); 987 988 /* 989 * Engine state now mostly stable, disable scheduling / deregister if 990 * needed. This cleanup routine might be called multiple times, where 991 * the actual async engine deregister drops the final engine ref. 992 * Calling disable_scheduling_deregister will mark the engine as 993 * destroyed and fire off the CT requests to disable scheduling / 994 * deregister, which we only want to do once. We also don't want to mark 995 * the engine as pending_disable again as this may race with the 996 * xe_guc_deregister_done_handler() which treats it as an unexpected 997 * state. 998 */ 999 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1000 struct xe_guc *guc = exec_queue_to_guc(q); 1001 int ret; 1002 1003 set_exec_queue_banned(q); 1004 disable_scheduling_deregister(guc, q); 1005 1006 /* 1007 * Must wait for scheduling to be disabled before signalling 1008 * any fences, if GT broken the GT reset code should signal us. 1009 */ 1010 ret = wait_event_timeout(guc->ct.wq, 1011 !exec_queue_pending_disable(q) || 1012 xe_guc_read_stopped(guc), HZ * 5); 1013 if (!ret) { 1014 xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n", 1015 q->guc->id); 1016 xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n", 1017 q->guc->id); 1018 xe_sched_submission_start(sched); 1019 xe_gt_reset_async(q->gt); 1020 return; 1021 } 1022 } 1023 1024 if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0])) 1025 xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id); 1026 1027 xe_sched_submission_start(sched); 1028 } 1029 1030 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100) 1031 1032 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job) 1033 { 1034 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q)); 1035 u32 ctx_timestamp, ctx_job_timestamp; 1036 u32 timeout_ms = q->sched_props.job_timeout_ms; 1037 u32 diff; 1038 u64 running_time_ms; 1039 1040 if (!xe_sched_job_started(job)) { 1041 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started", 1042 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1043 q->guc->id); 1044 1045 return xe_sched_invalidate_job(job, 2); 1046 } 1047 1048 ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(q->lrc[0])); 1049 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]); 1050 1051 /* 1052 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch 1053 * possible overflows with a high timeout. 1054 */ 1055 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC); 1056 1057 diff = ctx_timestamp - ctx_job_timestamp; 1058 1059 /* 1060 * Ensure timeout is within 5% to account for an GuC scheduling latency 1061 */ 1062 running_time_ms = 1063 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff)); 1064 1065 xe_gt_dbg(gt, 1066 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x", 1067 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1068 q->guc->id, running_time_ms, timeout_ms, diff); 1069 1070 return running_time_ms >= timeout_ms; 1071 } 1072 1073 static void enable_scheduling(struct xe_exec_queue *q) 1074 { 1075 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 1076 struct xe_guc *guc = exec_queue_to_guc(q); 1077 int ret; 1078 1079 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1080 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1081 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1082 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1083 1084 set_exec_queue_pending_enable(q); 1085 set_exec_queue_enabled(q); 1086 trace_xe_exec_queue_scheduling_enable(q); 1087 1088 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1089 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1090 1091 ret = wait_event_timeout(guc->ct.wq, 1092 !exec_queue_pending_enable(q) || 1093 xe_guc_read_stopped(guc), HZ * 5); 1094 if (!ret || xe_guc_read_stopped(guc)) { 1095 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond"); 1096 set_exec_queue_banned(q); 1097 xe_gt_reset_async(q->gt); 1098 xe_sched_tdr_queue_imm(&q->guc->sched); 1099 } 1100 } 1101 1102 static void disable_scheduling(struct xe_exec_queue *q, bool immediate) 1103 { 1104 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 1105 struct xe_guc *guc = exec_queue_to_guc(q); 1106 1107 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1108 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1109 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1110 1111 if (immediate) 1112 set_min_preemption_timeout(guc, q); 1113 clear_exec_queue_enabled(q); 1114 set_exec_queue_pending_disable(q); 1115 trace_xe_exec_queue_scheduling_disable(q); 1116 1117 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1118 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1119 } 1120 1121 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1122 { 1123 u32 action[] = { 1124 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1125 q->guc->id, 1126 }; 1127 1128 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1129 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1130 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1131 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1132 1133 set_exec_queue_destroyed(q); 1134 trace_xe_exec_queue_deregister(q); 1135 1136 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1137 G2H_LEN_DW_DEREGISTER_CONTEXT, 1); 1138 } 1139 1140 static enum drm_gpu_sched_stat 1141 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 1142 { 1143 struct xe_sched_job *job = to_xe_sched_job(drm_job); 1144 struct xe_sched_job *tmp_job; 1145 struct xe_exec_queue *q = job->q; 1146 struct xe_gpu_scheduler *sched = &q->guc->sched; 1147 struct xe_guc *guc = exec_queue_to_guc(q); 1148 const char *process_name = "no process"; 1149 struct xe_device *xe = guc_to_xe(guc); 1150 unsigned int fw_ref; 1151 int err = -ETIME; 1152 pid_t pid = -1; 1153 int i = 0; 1154 bool wedged = false, skip_timeout_check; 1155 1156 /* 1157 * TDR has fired before free job worker. Common if exec queue 1158 * immediately closed after last fence signaled. Add back to pending 1159 * list so job can be freed and kick scheduler ensuring free job is not 1160 * lost. 1161 */ 1162 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) 1163 return DRM_GPU_SCHED_STAT_NO_HANG; 1164 1165 /* Kill the run_job entry point */ 1166 xe_sched_submission_stop(sched); 1167 1168 /* Must check all state after stopping scheduler */ 1169 skip_timeout_check = exec_queue_reset(q) || 1170 exec_queue_killed_or_banned_or_wedged(q) || 1171 exec_queue_destroyed(q); 1172 1173 /* 1174 * If devcoredump not captured and GuC capture for the job is not ready 1175 * do manual capture first and decide later if we need to use it 1176 */ 1177 if (!exec_queue_killed(q) && !xe->devcoredump.captured && 1178 !xe_guc_capture_get_matching_and_lock(q)) { 1179 /* take force wake before engine register manual capture */ 1180 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 1181 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 1182 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n"); 1183 1184 xe_engine_snapshot_capture_for_queue(q); 1185 1186 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 1187 } 1188 1189 /* 1190 * XXX: Sampling timeout doesn't work in wedged mode as we have to 1191 * modify scheduling state to read timestamp. We could read the 1192 * timestamp from a register to accumulate current running time but this 1193 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are 1194 * genuine timeouts. 1195 */ 1196 if (!exec_queue_killed(q)) 1197 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 1198 1199 /* Engine state now stable, disable scheduling to check timestamp */ 1200 if (!wedged && exec_queue_registered(q)) { 1201 int ret; 1202 1203 if (exec_queue_reset(q)) 1204 err = -EIO; 1205 1206 if (!exec_queue_destroyed(q)) { 1207 /* 1208 * Wait for any pending G2H to flush out before 1209 * modifying state 1210 */ 1211 ret = wait_event_timeout(guc->ct.wq, 1212 (!exec_queue_pending_enable(q) && 1213 !exec_queue_pending_disable(q)) || 1214 xe_guc_read_stopped(guc), HZ * 5); 1215 if (!ret || xe_guc_read_stopped(guc)) 1216 goto trigger_reset; 1217 1218 /* 1219 * Flag communicates to G2H handler that schedule 1220 * disable originated from a timeout check. The G2H then 1221 * avoid triggering cleanup or deregistering the exec 1222 * queue. 1223 */ 1224 set_exec_queue_check_timeout(q); 1225 disable_scheduling(q, skip_timeout_check); 1226 } 1227 1228 /* 1229 * Must wait for scheduling to be disabled before signalling 1230 * any fences, if GT broken the GT reset code should signal us. 1231 * 1232 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 1233 * error) messages which can cause the schedule disable to get 1234 * lost. If this occurs, trigger a GT reset to recover. 1235 */ 1236 smp_rmb(); 1237 ret = wait_event_timeout(guc->ct.wq, 1238 !exec_queue_pending_disable(q) || 1239 xe_guc_read_stopped(guc), HZ * 5); 1240 if (!ret || xe_guc_read_stopped(guc)) { 1241 trigger_reset: 1242 if (!ret) 1243 xe_gt_warn(guc_to_gt(guc), 1244 "Schedule disable failed to respond, guc_id=%d", 1245 q->guc->id); 1246 xe_devcoredump(q, job, 1247 "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d", 1248 q->guc->id, ret, xe_guc_read_stopped(guc)); 1249 set_exec_queue_extra_ref(q); 1250 xe_exec_queue_get(q); /* GT reset owns this */ 1251 set_exec_queue_banned(q); 1252 xe_gt_reset_async(q->gt); 1253 xe_sched_tdr_queue_imm(sched); 1254 goto rearm; 1255 } 1256 } 1257 1258 /* 1259 * Check if job is actually timed out, if so restart job execution and TDR 1260 */ 1261 if (!wedged && !skip_timeout_check && !check_timeout(q, job) && 1262 !exec_queue_reset(q) && exec_queue_registered(q)) { 1263 clear_exec_queue_check_timeout(q); 1264 goto sched_enable; 1265 } 1266 1267 if (q->vm && q->vm->xef) { 1268 process_name = q->vm->xef->process_name; 1269 pid = q->vm->xef->pid; 1270 } 1271 1272 if (!exec_queue_killed(q)) 1273 xe_gt_notice(guc_to_gt(guc), 1274 "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]", 1275 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1276 q->guc->id, q->flags, process_name, pid); 1277 1278 trace_xe_sched_job_timedout(job); 1279 1280 if (!exec_queue_killed(q)) 1281 xe_devcoredump(q, job, 1282 "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx", 1283 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1284 q->guc->id, q->flags); 1285 1286 /* 1287 * Kernel jobs should never fail, nor should VM jobs if they do 1288 * somethings has gone wrong and the GT needs a reset 1289 */ 1290 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 1291 "Kernel-submitted job timed out\n"); 1292 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 1293 "VM job timed out on non-killed execqueue\n"); 1294 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 1295 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 1296 if (!xe_sched_invalidate_job(job, 2)) { 1297 clear_exec_queue_check_timeout(q); 1298 xe_gt_reset_async(q->gt); 1299 goto rearm; 1300 } 1301 } 1302 1303 /* Finish cleaning up exec queue via deregister */ 1304 set_exec_queue_banned(q); 1305 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1306 set_exec_queue_extra_ref(q); 1307 xe_exec_queue_get(q); 1308 __deregister_exec_queue(guc, q); 1309 } 1310 1311 /* Stop fence signaling */ 1312 xe_hw_fence_irq_stop(q->fence_irq); 1313 1314 /* 1315 * Fence state now stable, stop / start scheduler which cleans up any 1316 * fences that are complete 1317 */ 1318 xe_sched_add_pending_job(sched, job); 1319 xe_sched_submission_start(sched); 1320 1321 xe_guc_exec_queue_trigger_cleanup(q); 1322 1323 /* Mark all outstanding jobs as bad, thus completing them */ 1324 spin_lock(&sched->base.job_list_lock); 1325 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1326 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1327 spin_unlock(&sched->base.job_list_lock); 1328 1329 /* Start fence signaling */ 1330 xe_hw_fence_irq_start(q->fence_irq); 1331 1332 return DRM_GPU_SCHED_STAT_RESET; 1333 1334 sched_enable: 1335 enable_scheduling(q); 1336 rearm: 1337 /* 1338 * XXX: Ideally want to adjust timeout based on current execution time 1339 * but there is not currently an easy way to do in DRM scheduler. With 1340 * some thought, do this in a follow up. 1341 */ 1342 xe_sched_submission_start(sched); 1343 return DRM_GPU_SCHED_STAT_NO_HANG; 1344 } 1345 1346 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1347 { 1348 struct xe_guc_exec_queue *ge = q->guc; 1349 struct xe_guc *guc = exec_queue_to_guc(q); 1350 1351 release_guc_id(guc, q); 1352 xe_sched_entity_fini(&ge->entity); 1353 xe_sched_fini(&ge->sched); 1354 1355 /* 1356 * RCU free due sched being exported via DRM scheduler fences 1357 * (timeline name). 1358 */ 1359 kfree_rcu(ge, rcu); 1360 } 1361 1362 static void __guc_exec_queue_destroy_async(struct work_struct *w) 1363 { 1364 struct xe_guc_exec_queue *ge = 1365 container_of(w, struct xe_guc_exec_queue, destroy_async); 1366 struct xe_exec_queue *q = ge->q; 1367 struct xe_guc *guc = exec_queue_to_guc(q); 1368 1369 xe_pm_runtime_get(guc_to_xe(guc)); 1370 trace_xe_exec_queue_destroy(q); 1371 1372 if (xe_exec_queue_is_lr(q)) 1373 cancel_work_sync(&ge->lr_tdr); 1374 /* Confirm no work left behind accessing device structures */ 1375 cancel_delayed_work_sync(&ge->sched.base.work_tdr); 1376 1377 xe_exec_queue_fini(q); 1378 1379 xe_pm_runtime_put(guc_to_xe(guc)); 1380 } 1381 1382 static void guc_exec_queue_destroy_async(struct xe_exec_queue *q) 1383 { 1384 struct xe_guc *guc = exec_queue_to_guc(q); 1385 struct xe_device *xe = guc_to_xe(guc); 1386 1387 INIT_WORK(&q->guc->destroy_async, __guc_exec_queue_destroy_async); 1388 1389 /* We must block on kernel engines so slabs are empty on driver unload */ 1390 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1391 __guc_exec_queue_destroy_async(&q->guc->destroy_async); 1392 else 1393 queue_work(xe->destroy_wq, &q->guc->destroy_async); 1394 } 1395 1396 static void __guc_exec_queue_destroy(struct xe_guc *guc, struct xe_exec_queue *q) 1397 { 1398 /* 1399 * Might be done from within the GPU scheduler, need to do async as we 1400 * fini the scheduler when the engine is fini'd, the scheduler can't 1401 * complete fini within itself (circular dependency). Async resolves 1402 * this we and don't really care when everything is fini'd, just that it 1403 * is. 1404 */ 1405 guc_exec_queue_destroy_async(q); 1406 } 1407 1408 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1409 { 1410 struct xe_exec_queue *q = msg->private_data; 1411 struct xe_guc *guc = exec_queue_to_guc(q); 1412 1413 xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1414 trace_xe_exec_queue_cleanup_entity(q); 1415 1416 if (exec_queue_registered(q)) 1417 disable_scheduling_deregister(guc, q); 1418 else 1419 __guc_exec_queue_destroy(guc, q); 1420 } 1421 1422 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1423 { 1424 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1425 } 1426 1427 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1428 { 1429 struct xe_exec_queue *q = msg->private_data; 1430 struct xe_guc *guc = exec_queue_to_guc(q); 1431 1432 if (guc_exec_queue_allowed_to_change_state(q)) 1433 init_policies(guc, q); 1434 kfree(msg); 1435 } 1436 1437 static void __suspend_fence_signal(struct xe_exec_queue *q) 1438 { 1439 if (!q->guc->suspend_pending) 1440 return; 1441 1442 WRITE_ONCE(q->guc->suspend_pending, false); 1443 wake_up(&q->guc->suspend_wait); 1444 } 1445 1446 static void suspend_fence_signal(struct xe_exec_queue *q) 1447 { 1448 struct xe_guc *guc = exec_queue_to_guc(q); 1449 1450 xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) || 1451 xe_guc_read_stopped(guc)); 1452 xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending); 1453 1454 __suspend_fence_signal(q); 1455 } 1456 1457 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1458 { 1459 struct xe_exec_queue *q = msg->private_data; 1460 struct xe_guc *guc = exec_queue_to_guc(q); 1461 1462 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1463 exec_queue_enabled(q)) { 1464 wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING || 1465 xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q)); 1466 1467 if (!xe_guc_read_stopped(guc)) { 1468 s64 since_resume_ms = 1469 ktime_ms_delta(ktime_get(), 1470 q->guc->resume_time); 1471 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1472 since_resume_ms; 1473 1474 if (wait_ms > 0 && q->guc->resume_time) 1475 msleep(wait_ms); 1476 1477 set_exec_queue_suspended(q); 1478 disable_scheduling(q, false); 1479 } 1480 } else if (q->guc->suspend_pending) { 1481 set_exec_queue_suspended(q); 1482 suspend_fence_signal(q); 1483 } 1484 } 1485 1486 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1487 { 1488 struct xe_exec_queue *q = msg->private_data; 1489 1490 if (guc_exec_queue_allowed_to_change_state(q)) { 1491 clear_exec_queue_suspended(q); 1492 if (!exec_queue_enabled(q)) { 1493 q->guc->resume_time = RESUME_PENDING; 1494 enable_scheduling(q); 1495 } 1496 } else { 1497 clear_exec_queue_suspended(q); 1498 } 1499 } 1500 1501 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1502 #define SET_SCHED_PROPS 2 1503 #define SUSPEND 3 1504 #define RESUME 4 1505 #define OPCODE_MASK 0xf 1506 #define MSG_LOCKED BIT(8) 1507 1508 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1509 { 1510 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data)); 1511 1512 trace_xe_sched_msg_recv(msg); 1513 1514 switch (msg->opcode) { 1515 case CLEANUP: 1516 __guc_exec_queue_process_msg_cleanup(msg); 1517 break; 1518 case SET_SCHED_PROPS: 1519 __guc_exec_queue_process_msg_set_sched_props(msg); 1520 break; 1521 case SUSPEND: 1522 __guc_exec_queue_process_msg_suspend(msg); 1523 break; 1524 case RESUME: 1525 __guc_exec_queue_process_msg_resume(msg); 1526 break; 1527 default: 1528 XE_WARN_ON("Unknown message type"); 1529 } 1530 1531 xe_pm_runtime_put(xe); 1532 } 1533 1534 static const struct drm_sched_backend_ops drm_sched_ops = { 1535 .run_job = guc_exec_queue_run_job, 1536 .free_job = guc_exec_queue_free_job, 1537 .timedout_job = guc_exec_queue_timedout_job, 1538 }; 1539 1540 static const struct xe_sched_backend_ops xe_sched_ops = { 1541 .process_msg = guc_exec_queue_process_msg, 1542 }; 1543 1544 static int guc_exec_queue_init(struct xe_exec_queue *q) 1545 { 1546 struct xe_gpu_scheduler *sched; 1547 struct xe_guc *guc = exec_queue_to_guc(q); 1548 struct xe_guc_exec_queue *ge; 1549 long timeout; 1550 int err, i; 1551 1552 xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc))); 1553 1554 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1555 if (!ge) 1556 return -ENOMEM; 1557 1558 q->guc = ge; 1559 ge->q = q; 1560 init_rcu_head(&ge->rcu); 1561 init_waitqueue_head(&ge->suspend_wait); 1562 1563 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i) 1564 INIT_LIST_HEAD(&ge->static_msgs[i].link); 1565 1566 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1567 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1568 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1569 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1570 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1571 q->name, gt_to_xe(q->gt)->drm.dev); 1572 if (err) 1573 goto err_free; 1574 1575 sched = &ge->sched; 1576 err = xe_sched_entity_init(&ge->entity, sched); 1577 if (err) 1578 goto err_sched; 1579 1580 if (xe_exec_queue_is_lr(q)) 1581 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1582 1583 mutex_lock(&guc->submission_state.lock); 1584 1585 err = alloc_guc_id(guc, q); 1586 if (err) 1587 goto err_entity; 1588 1589 q->entity = &ge->entity; 1590 1591 if (xe_guc_read_stopped(guc)) 1592 xe_sched_stop(sched); 1593 1594 mutex_unlock(&guc->submission_state.lock); 1595 1596 xe_exec_queue_assign_name(q, q->guc->id); 1597 1598 trace_xe_exec_queue_create(q); 1599 1600 return 0; 1601 1602 err_entity: 1603 mutex_unlock(&guc->submission_state.lock); 1604 xe_sched_entity_fini(&ge->entity); 1605 err_sched: 1606 xe_sched_fini(&ge->sched); 1607 err_free: 1608 kfree(ge); 1609 1610 return err; 1611 } 1612 1613 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1614 { 1615 trace_xe_exec_queue_kill(q); 1616 set_exec_queue_killed(q); 1617 __suspend_fence_signal(q); 1618 xe_guc_exec_queue_trigger_cleanup(q); 1619 } 1620 1621 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1622 u32 opcode) 1623 { 1624 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q))); 1625 1626 INIT_LIST_HEAD(&msg->link); 1627 msg->opcode = opcode & OPCODE_MASK; 1628 msg->private_data = q; 1629 1630 trace_xe_sched_msg_add(msg); 1631 if (opcode & MSG_LOCKED) 1632 xe_sched_add_msg_locked(&q->guc->sched, msg); 1633 else 1634 xe_sched_add_msg(&q->guc->sched, msg); 1635 } 1636 1637 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q, 1638 struct xe_sched_msg *msg, 1639 u32 opcode) 1640 { 1641 if (!list_empty(&msg->link)) 1642 return false; 1643 1644 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED); 1645 1646 return true; 1647 } 1648 1649 #define STATIC_MSG_CLEANUP 0 1650 #define STATIC_MSG_SUSPEND 1 1651 #define STATIC_MSG_RESUME 2 1652 static void guc_exec_queue_destroy(struct xe_exec_queue *q) 1653 { 1654 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1655 1656 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1657 guc_exec_queue_add_msg(q, msg, CLEANUP); 1658 else 1659 __guc_exec_queue_destroy(exec_queue_to_guc(q), q); 1660 } 1661 1662 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1663 enum xe_exec_queue_priority priority) 1664 { 1665 struct xe_sched_msg *msg; 1666 1667 if (q->sched_props.priority == priority || 1668 exec_queue_killed_or_banned_or_wedged(q)) 1669 return 0; 1670 1671 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1672 if (!msg) 1673 return -ENOMEM; 1674 1675 q->sched_props.priority = priority; 1676 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1677 1678 return 0; 1679 } 1680 1681 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1682 { 1683 struct xe_sched_msg *msg; 1684 1685 if (q->sched_props.timeslice_us == timeslice_us || 1686 exec_queue_killed_or_banned_or_wedged(q)) 1687 return 0; 1688 1689 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1690 if (!msg) 1691 return -ENOMEM; 1692 1693 q->sched_props.timeslice_us = timeslice_us; 1694 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1695 1696 return 0; 1697 } 1698 1699 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1700 u32 preempt_timeout_us) 1701 { 1702 struct xe_sched_msg *msg; 1703 1704 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1705 exec_queue_killed_or_banned_or_wedged(q)) 1706 return 0; 1707 1708 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1709 if (!msg) 1710 return -ENOMEM; 1711 1712 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1713 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1714 1715 return 0; 1716 } 1717 1718 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1719 { 1720 struct xe_gpu_scheduler *sched = &q->guc->sched; 1721 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1722 1723 if (exec_queue_killed_or_banned_or_wedged(q)) 1724 return -EINVAL; 1725 1726 xe_sched_msg_lock(sched); 1727 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND)) 1728 q->guc->suspend_pending = true; 1729 xe_sched_msg_unlock(sched); 1730 1731 return 0; 1732 } 1733 1734 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1735 { 1736 struct xe_guc *guc = exec_queue_to_guc(q); 1737 int ret; 1738 1739 /* 1740 * Likely don't need to check exec_queue_killed() as we clear 1741 * suspend_pending upon kill but to be paranoid but races in which 1742 * suspend_pending is set after kill also check kill here. 1743 */ 1744 ret = wait_event_interruptible_timeout(q->guc->suspend_wait, 1745 !READ_ONCE(q->guc->suspend_pending) || 1746 exec_queue_killed(q) || 1747 xe_guc_read_stopped(guc), 1748 HZ * 5); 1749 1750 if (!ret) { 1751 xe_gt_warn(guc_to_gt(guc), 1752 "Suspend fence, guc_id=%d, failed to respond", 1753 q->guc->id); 1754 /* XXX: Trigger GT reset? */ 1755 return -ETIME; 1756 } 1757 1758 return ret < 0 ? ret : 0; 1759 } 1760 1761 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1762 { 1763 struct xe_gpu_scheduler *sched = &q->guc->sched; 1764 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1765 struct xe_guc *guc = exec_queue_to_guc(q); 1766 1767 xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending); 1768 1769 xe_sched_msg_lock(sched); 1770 guc_exec_queue_try_add_msg(q, msg, RESUME); 1771 xe_sched_msg_unlock(sched); 1772 } 1773 1774 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1775 { 1776 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1777 } 1778 1779 /* 1780 * All of these functions are an abstraction layer which other parts of XE can 1781 * use to trap into the GuC backend. All of these functions, aside from init, 1782 * really shouldn't do much other than trap into the DRM scheduler which 1783 * synchronizes these operations. 1784 */ 1785 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1786 .init = guc_exec_queue_init, 1787 .kill = guc_exec_queue_kill, 1788 .fini = guc_exec_queue_fini, 1789 .destroy = guc_exec_queue_destroy, 1790 .set_priority = guc_exec_queue_set_priority, 1791 .set_timeslice = guc_exec_queue_set_timeslice, 1792 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1793 .suspend = guc_exec_queue_suspend, 1794 .suspend_wait = guc_exec_queue_suspend_wait, 1795 .resume = guc_exec_queue_resume, 1796 .reset_status = guc_exec_queue_reset_status, 1797 }; 1798 1799 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1800 { 1801 struct xe_gpu_scheduler *sched = &q->guc->sched; 1802 1803 /* Stop scheduling + flush any DRM scheduler operations */ 1804 xe_sched_submission_stop(sched); 1805 1806 /* Clean up lost G2H + reset engine state */ 1807 if (exec_queue_registered(q)) { 1808 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1809 xe_exec_queue_put(q); 1810 else if (exec_queue_destroyed(q)) 1811 __guc_exec_queue_destroy(guc, q); 1812 } 1813 if (q->guc->suspend_pending) { 1814 set_exec_queue_suspended(q); 1815 suspend_fence_signal(q); 1816 } 1817 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED | 1818 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED | 1819 EXEC_QUEUE_STATE_SUSPENDED, 1820 &q->guc->state); 1821 q->guc->resume_time = 0; 1822 trace_xe_exec_queue_stop(q); 1823 1824 /* 1825 * Ban any engine (aside from kernel and engines used for VM ops) with a 1826 * started but not complete job or if a job has gone through a GT reset 1827 * more than twice. 1828 */ 1829 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1830 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1831 bool ban = false; 1832 1833 if (job) { 1834 if ((xe_sched_job_started(job) && 1835 !xe_sched_job_completed(job)) || 1836 xe_sched_invalidate_job(job, 2)) { 1837 trace_xe_sched_job_ban(job); 1838 ban = true; 1839 } 1840 } else if (xe_exec_queue_is_lr(q) && 1841 !xe_lrc_ring_is_idle(q->lrc[0])) { 1842 ban = true; 1843 } 1844 1845 if (ban) { 1846 set_exec_queue_banned(q); 1847 xe_guc_exec_queue_trigger_cleanup(q); 1848 } 1849 } 1850 } 1851 1852 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1853 { 1854 int ret; 1855 1856 if (!guc->submission_state.initialized) 1857 return 0; 1858 1859 /* 1860 * Using an atomic here rather than submission_state.lock as this 1861 * function can be called while holding the CT lock (engine reset 1862 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1863 * Atomic is not ideal, but it works to prevent against concurrent reset 1864 * and releasing any TDRs waiting on guc->submission_state.stopped. 1865 */ 1866 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1867 smp_wmb(); 1868 wake_up_all(&guc->ct.wq); 1869 1870 return ret; 1871 } 1872 1873 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1874 { 1875 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) || 1876 !xe_guc_read_stopped(guc)); 1877 } 1878 1879 void xe_guc_submit_stop(struct xe_guc *guc) 1880 { 1881 struct xe_exec_queue *q; 1882 unsigned long index; 1883 1884 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1); 1885 1886 mutex_lock(&guc->submission_state.lock); 1887 1888 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1889 /* Prevent redundant attempts to stop parallel queues */ 1890 if (q->guc->id != index) 1891 continue; 1892 1893 guc_exec_queue_stop(guc, q); 1894 } 1895 1896 mutex_unlock(&guc->submission_state.lock); 1897 1898 /* 1899 * No one can enter the backend at this point, aside from new engine 1900 * creation which is protected by guc->submission_state.lock. 1901 */ 1902 1903 } 1904 1905 static void guc_exec_queue_start(struct xe_exec_queue *q) 1906 { 1907 struct xe_gpu_scheduler *sched = &q->guc->sched; 1908 1909 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1910 int i; 1911 1912 trace_xe_exec_queue_resubmit(q); 1913 for (i = 0; i < q->width; ++i) 1914 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1915 xe_sched_resubmit_jobs(sched); 1916 } 1917 1918 xe_sched_submission_start(sched); 1919 xe_sched_submission_resume_tdr(sched); 1920 } 1921 1922 int xe_guc_submit_start(struct xe_guc *guc) 1923 { 1924 struct xe_exec_queue *q; 1925 unsigned long index; 1926 1927 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1); 1928 1929 mutex_lock(&guc->submission_state.lock); 1930 atomic_dec(&guc->submission_state.stopped); 1931 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1932 /* Prevent redundant attempts to start parallel queues */ 1933 if (q->guc->id != index) 1934 continue; 1935 1936 guc_exec_queue_start(q); 1937 } 1938 mutex_unlock(&guc->submission_state.lock); 1939 1940 wake_up_all(&guc->ct.wq); 1941 1942 return 0; 1943 } 1944 1945 static struct xe_exec_queue * 1946 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1947 { 1948 struct xe_gt *gt = guc_to_gt(guc); 1949 struct xe_exec_queue *q; 1950 1951 if (unlikely(guc_id >= GUC_ID_MAX)) { 1952 xe_gt_err(gt, "Invalid guc_id %u\n", guc_id); 1953 return NULL; 1954 } 1955 1956 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1957 if (unlikely(!q)) { 1958 xe_gt_err(gt, "Not engine present for guc_id %u\n", guc_id); 1959 return NULL; 1960 } 1961 1962 xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id); 1963 xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width)); 1964 1965 return q; 1966 } 1967 1968 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1969 { 1970 u32 action[] = { 1971 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1972 q->guc->id, 1973 }; 1974 1975 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q)); 1976 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1977 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1978 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1979 1980 trace_xe_exec_queue_deregister(q); 1981 1982 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1983 } 1984 1985 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q, 1986 u32 runnable_state) 1987 { 1988 trace_xe_exec_queue_scheduling_done(q); 1989 1990 if (runnable_state == 1) { 1991 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q)); 1992 1993 q->guc->resume_time = ktime_get(); 1994 clear_exec_queue_pending_enable(q); 1995 smp_wmb(); 1996 wake_up_all(&guc->ct.wq); 1997 } else { 1998 bool check_timeout = exec_queue_check_timeout(q); 1999 2000 xe_gt_assert(guc_to_gt(guc), runnable_state == 0); 2001 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q)); 2002 2003 if (q->guc->suspend_pending) { 2004 suspend_fence_signal(q); 2005 clear_exec_queue_pending_disable(q); 2006 } else { 2007 if (exec_queue_banned(q) || check_timeout) { 2008 smp_wmb(); 2009 wake_up_all(&guc->ct.wq); 2010 } 2011 if (!check_timeout && exec_queue_destroyed(q)) { 2012 /* 2013 * Make sure to clear the pending_disable only 2014 * after sampling the destroyed state. We want 2015 * to ensure we don't trigger the unregister too 2016 * early with something intending to only 2017 * disable scheduling. The caller doing the 2018 * destroy must wait for an ongoing 2019 * pending_disable before marking as destroyed. 2020 */ 2021 clear_exec_queue_pending_disable(q); 2022 deregister_exec_queue(guc, q); 2023 } else { 2024 clear_exec_queue_pending_disable(q); 2025 } 2026 } 2027 } 2028 } 2029 2030 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 2031 { 2032 struct xe_exec_queue *q; 2033 u32 guc_id, runnable_state; 2034 2035 if (unlikely(len < 2)) 2036 return -EPROTO; 2037 2038 guc_id = msg[0]; 2039 runnable_state = msg[1]; 2040 2041 q = g2h_exec_queue_lookup(guc, guc_id); 2042 if (unlikely(!q)) 2043 return -EPROTO; 2044 2045 if (unlikely(!exec_queue_pending_enable(q) && 2046 !exec_queue_pending_disable(q))) { 2047 xe_gt_err(guc_to_gt(guc), 2048 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u", 2049 atomic_read(&q->guc->state), q->guc->id, 2050 runnable_state); 2051 return -EPROTO; 2052 } 2053 2054 handle_sched_done(guc, q, runnable_state); 2055 2056 return 0; 2057 } 2058 2059 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 2060 { 2061 trace_xe_exec_queue_deregister_done(q); 2062 2063 clear_exec_queue_registered(q); 2064 2065 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 2066 xe_exec_queue_put(q); 2067 else 2068 __guc_exec_queue_destroy(guc, q); 2069 } 2070 2071 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 2072 { 2073 struct xe_exec_queue *q; 2074 u32 guc_id; 2075 2076 if (unlikely(len < 1)) 2077 return -EPROTO; 2078 2079 guc_id = msg[0]; 2080 2081 q = g2h_exec_queue_lookup(guc, guc_id); 2082 if (unlikely(!q)) 2083 return -EPROTO; 2084 2085 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 2086 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 2087 xe_gt_err(guc_to_gt(guc), 2088 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d", 2089 atomic_read(&q->guc->state), q->guc->id); 2090 return -EPROTO; 2091 } 2092 2093 handle_deregister_done(guc, q); 2094 2095 return 0; 2096 } 2097 2098 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 2099 { 2100 struct xe_gt *gt = guc_to_gt(guc); 2101 struct xe_exec_queue *q; 2102 u32 guc_id; 2103 2104 if (unlikely(len < 1)) 2105 return -EPROTO; 2106 2107 guc_id = msg[0]; 2108 2109 q = g2h_exec_queue_lookup(guc, guc_id); 2110 if (unlikely(!q)) 2111 return -EPROTO; 2112 2113 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 2114 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2115 2116 trace_xe_exec_queue_reset(q); 2117 2118 /* 2119 * A banned engine is a NOP at this point (came from 2120 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 2121 * jobs by setting timeout of the job to the minimum value kicking 2122 * guc_exec_queue_timedout_job. 2123 */ 2124 set_exec_queue_reset(q); 2125 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2126 xe_guc_exec_queue_trigger_cleanup(q); 2127 2128 return 0; 2129 } 2130 2131 /* 2132 * xe_guc_error_capture_handler - Handler of GuC captured message 2133 * @guc: The GuC object 2134 * @msg: Point to the message 2135 * @len: The message length 2136 * 2137 * When GuC captured data is ready, GuC will send message 2138 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be 2139 * called 1st to check status before process the data comes with the message. 2140 * 2141 * Returns: error code. 0 if success 2142 */ 2143 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len) 2144 { 2145 u32 status; 2146 2147 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN)) 2148 return -EPROTO; 2149 2150 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 2151 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 2152 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space"); 2153 2154 xe_guc_capture_process(guc); 2155 2156 return 0; 2157 } 2158 2159 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 2160 u32 len) 2161 { 2162 struct xe_gt *gt = guc_to_gt(guc); 2163 struct xe_exec_queue *q; 2164 u32 guc_id; 2165 u32 type = XE_GUC_CAT_ERR_TYPE_INVALID; 2166 2167 if (unlikely(!len || len > 2)) 2168 return -EPROTO; 2169 2170 guc_id = msg[0]; 2171 2172 if (len == 2) 2173 type = msg[1]; 2174 2175 if (guc_id == GUC_ID_UNKNOWN) { 2176 /* 2177 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF 2178 * context. In such case only PF will be notified about that fault. 2179 */ 2180 xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n"); 2181 return 0; 2182 } 2183 2184 q = g2h_exec_queue_lookup(guc, guc_id); 2185 if (unlikely(!q)) 2186 return -EPROTO; 2187 2188 /* 2189 * The type is HW-defined and changes based on platform, so we don't 2190 * decode it in the kernel and only check if it is valid. 2191 * See bspec 54047 and 72187 for details. 2192 */ 2193 if (type != XE_GUC_CAT_ERR_TYPE_INVALID) 2194 xe_gt_dbg(gt, 2195 "Engine memory CAT error [%u]: class=%s, logical_mask: 0x%x, guc_id=%d", 2196 type, xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2197 else 2198 xe_gt_dbg(gt, 2199 "Engine memory CAT error: class=%s, logical_mask: 0x%x, guc_id=%d", 2200 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2201 2202 trace_xe_exec_queue_memory_cat_error(q); 2203 2204 /* Treat the same as engine reset */ 2205 set_exec_queue_reset(q); 2206 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2207 xe_guc_exec_queue_trigger_cleanup(q); 2208 2209 return 0; 2210 } 2211 2212 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 2213 { 2214 struct xe_gt *gt = guc_to_gt(guc); 2215 u8 guc_class, instance; 2216 u32 reason; 2217 2218 if (unlikely(len != 3)) 2219 return -EPROTO; 2220 2221 guc_class = msg[0]; 2222 instance = msg[1]; 2223 reason = msg[2]; 2224 2225 /* Unexpected failure of a hardware feature, log an actual error */ 2226 xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X", 2227 guc_class, instance, reason); 2228 2229 xe_gt_reset_async(gt); 2230 2231 return 0; 2232 } 2233 2234 static void 2235 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 2236 struct xe_guc_submit_exec_queue_snapshot *snapshot) 2237 { 2238 struct xe_guc *guc = exec_queue_to_guc(q); 2239 struct xe_device *xe = guc_to_xe(guc); 2240 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 2241 int i; 2242 2243 snapshot->guc.wqi_head = q->guc->wqi_head; 2244 snapshot->guc.wqi_tail = q->guc->wqi_tail; 2245 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 2246 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 2247 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 2248 wq_desc.wq_status); 2249 2250 if (snapshot->parallel.wq_desc.head != 2251 snapshot->parallel.wq_desc.tail) { 2252 for (i = snapshot->parallel.wq_desc.head; 2253 i != snapshot->parallel.wq_desc.tail; 2254 i = (i + sizeof(u32)) % WQ_SIZE) 2255 snapshot->parallel.wq[i / sizeof(u32)] = 2256 parallel_read(xe, map, wq[i / sizeof(u32)]); 2257 } 2258 } 2259 2260 static void 2261 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2262 struct drm_printer *p) 2263 { 2264 int i; 2265 2266 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 2267 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 2268 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 2269 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 2270 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 2271 2272 if (snapshot->parallel.wq_desc.head != 2273 snapshot->parallel.wq_desc.tail) { 2274 for (i = snapshot->parallel.wq_desc.head; 2275 i != snapshot->parallel.wq_desc.tail; 2276 i = (i + sizeof(u32)) % WQ_SIZE) 2277 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 2278 snapshot->parallel.wq[i / sizeof(u32)]); 2279 } 2280 } 2281 2282 /** 2283 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 2284 * @q: faulty exec queue 2285 * 2286 * This can be printed out in a later stage like during dev_coredump 2287 * analysis. 2288 * 2289 * Returns: a GuC Submit Engine snapshot object that must be freed by the 2290 * caller, using `xe_guc_exec_queue_snapshot_free`. 2291 */ 2292 struct xe_guc_submit_exec_queue_snapshot * 2293 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 2294 { 2295 struct xe_gpu_scheduler *sched = &q->guc->sched; 2296 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2297 int i; 2298 2299 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 2300 2301 if (!snapshot) 2302 return NULL; 2303 2304 snapshot->guc.id = q->guc->id; 2305 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 2306 snapshot->class = q->class; 2307 snapshot->logical_mask = q->logical_mask; 2308 snapshot->width = q->width; 2309 snapshot->refcount = kref_read(&q->refcount); 2310 snapshot->sched_timeout = sched->base.timeout; 2311 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 2312 snapshot->sched_props.preempt_timeout_us = 2313 q->sched_props.preempt_timeout_us; 2314 2315 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 2316 GFP_ATOMIC); 2317 2318 if (snapshot->lrc) { 2319 for (i = 0; i < q->width; ++i) { 2320 struct xe_lrc *lrc = q->lrc[i]; 2321 2322 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 2323 } 2324 } 2325 2326 snapshot->schedule_state = atomic_read(&q->guc->state); 2327 snapshot->exec_queue_flags = q->flags; 2328 2329 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 2330 if (snapshot->parallel_execution) 2331 guc_exec_queue_wq_snapshot_capture(q, snapshot); 2332 2333 spin_lock(&sched->base.job_list_lock); 2334 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 2335 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 2336 sizeof(struct pending_list_snapshot), 2337 GFP_ATOMIC); 2338 2339 if (snapshot->pending_list) { 2340 struct xe_sched_job *job_iter; 2341 2342 i = 0; 2343 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 2344 snapshot->pending_list[i].seqno = 2345 xe_sched_job_seqno(job_iter); 2346 snapshot->pending_list[i].fence = 2347 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 2348 snapshot->pending_list[i].finished = 2349 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 2350 ? 1 : 0; 2351 i++; 2352 } 2353 } 2354 2355 spin_unlock(&sched->base.job_list_lock); 2356 2357 return snapshot; 2358 } 2359 2360 /** 2361 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 2362 * @snapshot: Previously captured snapshot of job. 2363 * 2364 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 2365 */ 2366 void 2367 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2368 { 2369 int i; 2370 2371 if (!snapshot || !snapshot->lrc) 2372 return; 2373 2374 for (i = 0; i < snapshot->width; ++i) 2375 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 2376 } 2377 2378 /** 2379 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 2380 * @snapshot: GuC Submit Engine snapshot object. 2381 * @p: drm_printer where it will be printed out. 2382 * 2383 * This function prints out a given GuC Submit Engine snapshot object. 2384 */ 2385 void 2386 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2387 struct drm_printer *p) 2388 { 2389 int i; 2390 2391 if (!snapshot) 2392 return; 2393 2394 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id); 2395 drm_printf(p, "\tName: %s\n", snapshot->name); 2396 drm_printf(p, "\tClass: %d\n", snapshot->class); 2397 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 2398 drm_printf(p, "\tWidth: %d\n", snapshot->width); 2399 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 2400 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 2401 drm_printf(p, "\tTimeslice: %u (us)\n", 2402 snapshot->sched_props.timeslice_us); 2403 drm_printf(p, "\tPreempt timeout: %u (us)\n", 2404 snapshot->sched_props.preempt_timeout_us); 2405 2406 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 2407 xe_lrc_snapshot_print(snapshot->lrc[i], p); 2408 2409 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 2410 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 2411 2412 if (snapshot->parallel_execution) 2413 guc_exec_queue_wq_snapshot_print(snapshot, p); 2414 2415 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 2416 i++) 2417 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 2418 snapshot->pending_list[i].seqno, 2419 snapshot->pending_list[i].fence, 2420 snapshot->pending_list[i].finished); 2421 } 2422 2423 /** 2424 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 2425 * snapshot. 2426 * @snapshot: GuC Submit Engine snapshot object. 2427 * 2428 * This function free all the memory that needed to be allocated at capture 2429 * time. 2430 */ 2431 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2432 { 2433 int i; 2434 2435 if (!snapshot) 2436 return; 2437 2438 if (snapshot->lrc) { 2439 for (i = 0; i < snapshot->width; i++) 2440 xe_lrc_snapshot_free(snapshot->lrc[i]); 2441 kfree(snapshot->lrc); 2442 } 2443 kfree(snapshot->pending_list); 2444 kfree(snapshot); 2445 } 2446 2447 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 2448 { 2449 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2450 2451 snapshot = xe_guc_exec_queue_snapshot_capture(q); 2452 xe_guc_exec_queue_snapshot_print(snapshot, p); 2453 xe_guc_exec_queue_snapshot_free(snapshot); 2454 } 2455 2456 /** 2457 * xe_guc_submit_print - GuC Submit Print. 2458 * @guc: GuC. 2459 * @p: drm_printer where it will be printed out. 2460 * 2461 * This function capture and prints snapshots of **all** GuC Engines. 2462 */ 2463 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2464 { 2465 struct xe_exec_queue *q; 2466 unsigned long index; 2467 2468 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2469 return; 2470 2471 mutex_lock(&guc->submission_state.lock); 2472 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2473 guc_exec_queue_print(q, p); 2474 mutex_unlock(&guc->submission_state.lock); 2475 } 2476