1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 #include <linux/math64.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_klvs_abi.h" 19 #include "regs/xe_lrc_layout.h" 20 #include "xe_assert.h" 21 #include "xe_devcoredump.h" 22 #include "xe_device.h" 23 #include "xe_exec_queue.h" 24 #include "xe_force_wake.h" 25 #include "xe_gpu_scheduler.h" 26 #include "xe_gt.h" 27 #include "xe_gt_clock.h" 28 #include "xe_gt_printk.h" 29 #include "xe_guc.h" 30 #include "xe_guc_ct.h" 31 #include "xe_guc_exec_queue_types.h" 32 #include "xe_guc_id_mgr.h" 33 #include "xe_guc_submit_types.h" 34 #include "xe_hw_engine.h" 35 #include "xe_hw_fence.h" 36 #include "xe_lrc.h" 37 #include "xe_macros.h" 38 #include "xe_map.h" 39 #include "xe_mocs.h" 40 #include "xe_pm.h" 41 #include "xe_ring_ops_types.h" 42 #include "xe_sched_job.h" 43 #include "xe_trace.h" 44 #include "xe_vm.h" 45 46 static struct xe_guc * 47 exec_queue_to_guc(struct xe_exec_queue *q) 48 { 49 return &q->gt->uc.guc; 50 } 51 52 /* 53 * Helpers for engine state, using an atomic as some of the bits can transition 54 * as the same time (e.g. a suspend can be happning at the same time as schedule 55 * engine done being processed). 56 */ 57 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 58 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 59 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 60 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 61 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 62 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 63 #define EXEC_QUEUE_STATE_RESET (1 << 6) 64 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 65 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 66 #define EXEC_QUEUE_STATE_BANNED (1 << 9) 67 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10) 68 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11) 69 70 static bool exec_queue_registered(struct xe_exec_queue *q) 71 { 72 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 73 } 74 75 static void set_exec_queue_registered(struct xe_exec_queue *q) 76 { 77 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 78 } 79 80 static void clear_exec_queue_registered(struct xe_exec_queue *q) 81 { 82 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 83 } 84 85 static bool exec_queue_enabled(struct xe_exec_queue *q) 86 { 87 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 88 } 89 90 static void set_exec_queue_enabled(struct xe_exec_queue *q) 91 { 92 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 93 } 94 95 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 96 { 97 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 98 } 99 100 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 101 { 102 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 103 } 104 105 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 106 { 107 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 108 } 109 110 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 111 { 112 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 113 } 114 115 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 116 { 117 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 118 } 119 120 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 121 { 122 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 123 } 124 125 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 126 { 127 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 128 } 129 130 static bool exec_queue_destroyed(struct xe_exec_queue *q) 131 { 132 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 133 } 134 135 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 136 { 137 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 138 } 139 140 static bool exec_queue_banned(struct xe_exec_queue *q) 141 { 142 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED; 143 } 144 145 static void set_exec_queue_banned(struct xe_exec_queue *q) 146 { 147 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state); 148 } 149 150 static bool exec_queue_suspended(struct xe_exec_queue *q) 151 { 152 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 153 } 154 155 static void set_exec_queue_suspended(struct xe_exec_queue *q) 156 { 157 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 158 } 159 160 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 161 { 162 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 163 } 164 165 static bool exec_queue_reset(struct xe_exec_queue *q) 166 { 167 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 168 } 169 170 static void set_exec_queue_reset(struct xe_exec_queue *q) 171 { 172 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 173 } 174 175 static bool exec_queue_killed(struct xe_exec_queue *q) 176 { 177 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 178 } 179 180 static void set_exec_queue_killed(struct xe_exec_queue *q) 181 { 182 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 183 } 184 185 static bool exec_queue_wedged(struct xe_exec_queue *q) 186 { 187 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 188 } 189 190 static void set_exec_queue_wedged(struct xe_exec_queue *q) 191 { 192 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 193 } 194 195 static bool exec_queue_check_timeout(struct xe_exec_queue *q) 196 { 197 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT; 198 } 199 200 static void set_exec_queue_check_timeout(struct xe_exec_queue *q) 201 { 202 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 203 } 204 205 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q) 206 { 207 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 208 } 209 210 static bool exec_queue_extra_ref(struct xe_exec_queue *q) 211 { 212 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF; 213 } 214 215 static void set_exec_queue_extra_ref(struct xe_exec_queue *q) 216 { 217 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state); 218 } 219 220 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 221 { 222 return (atomic_read(&q->guc->state) & 223 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED | 224 EXEC_QUEUE_STATE_BANNED)); 225 } 226 227 static void guc_submit_fini(struct drm_device *drm, void *arg) 228 { 229 struct xe_guc *guc = arg; 230 231 xa_destroy(&guc->submission_state.exec_queue_lookup); 232 } 233 234 static void guc_submit_wedged_fini(void *arg) 235 { 236 struct xe_guc *guc = arg; 237 struct xe_exec_queue *q; 238 unsigned long index; 239 240 mutex_lock(&guc->submission_state.lock); 241 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 242 if (exec_queue_wedged(q)) { 243 mutex_unlock(&guc->submission_state.lock); 244 xe_exec_queue_put(q); 245 mutex_lock(&guc->submission_state.lock); 246 } 247 } 248 mutex_unlock(&guc->submission_state.lock); 249 } 250 251 static const struct xe_exec_queue_ops guc_exec_queue_ops; 252 253 static void primelockdep(struct xe_guc *guc) 254 { 255 if (!IS_ENABLED(CONFIG_LOCKDEP)) 256 return; 257 258 fs_reclaim_acquire(GFP_KERNEL); 259 260 mutex_lock(&guc->submission_state.lock); 261 mutex_unlock(&guc->submission_state.lock); 262 263 fs_reclaim_release(GFP_KERNEL); 264 } 265 266 /** 267 * xe_guc_submit_init() - Initialize GuC submission. 268 * @guc: the &xe_guc to initialize 269 * @num_ids: number of GuC context IDs to use 270 * 271 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 272 * GuC context IDs supported by the GuC firmware should be used for submission. 273 * 274 * Only VF drivers will have to provide explicit number of GuC context IDs 275 * that they can use for submission. 276 * 277 * Return: 0 on success or a negative error code on failure. 278 */ 279 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 280 { 281 struct xe_device *xe = guc_to_xe(guc); 282 struct xe_gt *gt = guc_to_gt(guc); 283 int err; 284 285 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 286 if (err) 287 return err; 288 289 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 290 if (err) 291 return err; 292 293 gt->exec_queue_ops = &guc_exec_queue_ops; 294 295 xa_init(&guc->submission_state.exec_queue_lookup); 296 297 init_waitqueue_head(&guc->submission_state.fini_wq); 298 299 primelockdep(guc); 300 301 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 302 } 303 304 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 305 { 306 int i; 307 308 lockdep_assert_held(&guc->submission_state.lock); 309 310 for (i = 0; i < xa_count; ++i) 311 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 312 313 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 314 q->guc->id, q->width); 315 316 if (xa_empty(&guc->submission_state.exec_queue_lookup)) 317 wake_up(&guc->submission_state.fini_wq); 318 } 319 320 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 321 { 322 int ret; 323 int i; 324 325 /* 326 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 327 * worse case user gets -ENOMEM on engine create and has to try again. 328 * 329 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 330 * failure. 331 */ 332 lockdep_assert_held(&guc->submission_state.lock); 333 334 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 335 q->width); 336 if (ret < 0) 337 return ret; 338 339 q->guc->id = ret; 340 341 for (i = 0; i < q->width; ++i) { 342 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup, 343 q->guc->id + i, q, GFP_NOWAIT)); 344 if (ret) 345 goto err_release; 346 } 347 348 return 0; 349 350 err_release: 351 __release_guc_id(guc, q, i); 352 353 return ret; 354 } 355 356 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 357 { 358 mutex_lock(&guc->submission_state.lock); 359 __release_guc_id(guc, q, q->width); 360 mutex_unlock(&guc->submission_state.lock); 361 } 362 363 struct exec_queue_policy { 364 u32 count; 365 struct guc_update_exec_queue_policy h2g; 366 }; 367 368 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 369 { 370 size_t bytes = sizeof(policy->h2g.header) + 371 (sizeof(policy->h2g.klv[0]) * policy->count); 372 373 return bytes / sizeof(u32); 374 } 375 376 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 377 u16 guc_id) 378 { 379 policy->h2g.header.action = 380 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 381 policy->h2g.header.guc_id = guc_id; 382 policy->count = 0; 383 } 384 385 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 386 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 387 u32 data) \ 388 { \ 389 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 390 \ 391 policy->h2g.klv[policy->count].kl = \ 392 FIELD_PREP(GUC_KLV_0_KEY, \ 393 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 394 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 395 policy->h2g.klv[policy->count].value = data; \ 396 policy->count++; \ 397 } 398 399 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 400 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 401 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 402 #undef MAKE_EXEC_QUEUE_POLICY_ADD 403 404 static const int xe_exec_queue_prio_to_guc[] = { 405 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 406 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 407 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 408 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 409 }; 410 411 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 412 { 413 struct exec_queue_policy policy; 414 struct xe_device *xe = guc_to_xe(guc); 415 enum xe_exec_queue_priority prio = q->sched_props.priority; 416 u32 timeslice_us = q->sched_props.timeslice_us; 417 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 418 419 xe_assert(xe, exec_queue_registered(q)); 420 421 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 422 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 423 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 424 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 425 426 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 427 __guc_exec_queue_policy_action_size(&policy), 0, 0); 428 } 429 430 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 431 { 432 struct exec_queue_policy policy; 433 434 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 435 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 436 437 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 438 __guc_exec_queue_policy_action_size(&policy), 0, 0); 439 } 440 441 #define parallel_read(xe_, map_, field_) \ 442 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 443 field_) 444 #define parallel_write(xe_, map_, field_, val_) \ 445 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 446 field_, val_) 447 448 static void __register_mlrc_exec_queue(struct xe_guc *guc, 449 struct xe_exec_queue *q, 450 struct guc_ctxt_registration_info *info) 451 { 452 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 453 struct xe_device *xe = guc_to_xe(guc); 454 u32 action[MAX_MLRC_REG_SIZE]; 455 int len = 0; 456 int i; 457 458 xe_assert(xe, xe_exec_queue_is_parallel(q)); 459 460 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 461 action[len++] = info->flags; 462 action[len++] = info->context_idx; 463 action[len++] = info->engine_class; 464 action[len++] = info->engine_submit_mask; 465 action[len++] = info->wq_desc_lo; 466 action[len++] = info->wq_desc_hi; 467 action[len++] = info->wq_base_lo; 468 action[len++] = info->wq_base_hi; 469 action[len++] = info->wq_size; 470 action[len++] = q->width; 471 action[len++] = info->hwlrca_lo; 472 action[len++] = info->hwlrca_hi; 473 474 for (i = 1; i < q->width; ++i) { 475 struct xe_lrc *lrc = q->lrc[i]; 476 477 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 478 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 479 } 480 481 xe_assert(xe, len <= MAX_MLRC_REG_SIZE); 482 #undef MAX_MLRC_REG_SIZE 483 484 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 485 } 486 487 static void __register_exec_queue(struct xe_guc *guc, 488 struct guc_ctxt_registration_info *info) 489 { 490 u32 action[] = { 491 XE_GUC_ACTION_REGISTER_CONTEXT, 492 info->flags, 493 info->context_idx, 494 info->engine_class, 495 info->engine_submit_mask, 496 info->wq_desc_lo, 497 info->wq_desc_hi, 498 info->wq_base_lo, 499 info->wq_base_hi, 500 info->wq_size, 501 info->hwlrca_lo, 502 info->hwlrca_hi, 503 }; 504 505 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 506 } 507 508 static void register_exec_queue(struct xe_exec_queue *q) 509 { 510 struct xe_guc *guc = exec_queue_to_guc(q); 511 struct xe_device *xe = guc_to_xe(guc); 512 struct xe_lrc *lrc = q->lrc[0]; 513 struct guc_ctxt_registration_info info; 514 515 xe_assert(xe, !exec_queue_registered(q)); 516 517 memset(&info, 0, sizeof(info)); 518 info.context_idx = q->guc->id; 519 info.engine_class = xe_engine_class_to_guc_class(q->class); 520 info.engine_submit_mask = q->logical_mask; 521 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 522 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 523 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 524 525 if (xe_exec_queue_is_parallel(q)) { 526 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 527 struct iosys_map map = xe_lrc_parallel_map(lrc); 528 529 info.wq_desc_lo = lower_32_bits(ggtt_addr + 530 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 531 info.wq_desc_hi = upper_32_bits(ggtt_addr + 532 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 533 info.wq_base_lo = lower_32_bits(ggtt_addr + 534 offsetof(struct guc_submit_parallel_scratch, wq[0])); 535 info.wq_base_hi = upper_32_bits(ggtt_addr + 536 offsetof(struct guc_submit_parallel_scratch, wq[0])); 537 info.wq_size = WQ_SIZE; 538 539 q->guc->wqi_head = 0; 540 q->guc->wqi_tail = 0; 541 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 542 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 543 } 544 545 /* 546 * We must keep a reference for LR engines if engine is registered with 547 * the GuC as jobs signal immediately and can't destroy an engine if the 548 * GuC has a reference to it. 549 */ 550 if (xe_exec_queue_is_lr(q)) 551 xe_exec_queue_get(q); 552 553 set_exec_queue_registered(q); 554 trace_xe_exec_queue_register(q); 555 if (xe_exec_queue_is_parallel(q)) 556 __register_mlrc_exec_queue(guc, q, &info); 557 else 558 __register_exec_queue(guc, &info); 559 init_policies(guc, q); 560 } 561 562 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 563 { 564 return (WQ_SIZE - q->guc->wqi_tail); 565 } 566 567 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 568 { 569 struct xe_guc *guc = exec_queue_to_guc(q); 570 struct xe_device *xe = guc_to_xe(guc); 571 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 572 unsigned int sleep_period_ms = 1; 573 574 #define AVAILABLE_SPACE \ 575 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 576 if (wqi_size > AVAILABLE_SPACE) { 577 try_again: 578 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 579 if (wqi_size > AVAILABLE_SPACE) { 580 if (sleep_period_ms == 1024) { 581 xe_gt_reset_async(q->gt); 582 return -ENODEV; 583 } 584 585 msleep(sleep_period_ms); 586 sleep_period_ms <<= 1; 587 goto try_again; 588 } 589 } 590 #undef AVAILABLE_SPACE 591 592 return 0; 593 } 594 595 static int wq_noop_append(struct xe_exec_queue *q) 596 { 597 struct xe_guc *guc = exec_queue_to_guc(q); 598 struct xe_device *xe = guc_to_xe(guc); 599 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 600 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 601 602 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 603 return -ENODEV; 604 605 xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw)); 606 607 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 608 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 609 FIELD_PREP(WQ_LEN_MASK, len_dw)); 610 q->guc->wqi_tail = 0; 611 612 return 0; 613 } 614 615 static void wq_item_append(struct xe_exec_queue *q) 616 { 617 struct xe_guc *guc = exec_queue_to_guc(q); 618 struct xe_device *xe = guc_to_xe(guc); 619 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 620 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 621 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 622 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 623 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 624 int i = 0, j; 625 626 if (wqi_size > wq_space_until_wrap(q)) { 627 if (wq_noop_append(q)) 628 return; 629 } 630 if (wq_wait_for_space(q, wqi_size)) 631 return; 632 633 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 634 FIELD_PREP(WQ_LEN_MASK, len_dw); 635 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 636 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 637 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 638 wqi[i++] = 0; 639 for (j = 1; j < q->width; ++j) { 640 struct xe_lrc *lrc = q->lrc[j]; 641 642 wqi[i++] = lrc->ring.tail / sizeof(u64); 643 } 644 645 xe_assert(xe, i == wqi_size / sizeof(u32)); 646 647 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 648 wq[q->guc->wqi_tail / sizeof(u32)])); 649 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 650 q->guc->wqi_tail += wqi_size; 651 xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE); 652 653 xe_device_wmb(xe); 654 655 map = xe_lrc_parallel_map(q->lrc[0]); 656 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 657 } 658 659 #define RESUME_PENDING ~0x0ull 660 static void submit_exec_queue(struct xe_exec_queue *q) 661 { 662 struct xe_guc *guc = exec_queue_to_guc(q); 663 struct xe_device *xe = guc_to_xe(guc); 664 struct xe_lrc *lrc = q->lrc[0]; 665 u32 action[3]; 666 u32 g2h_len = 0; 667 u32 num_g2h = 0; 668 int len = 0; 669 bool extra_submit = false; 670 671 xe_assert(xe, exec_queue_registered(q)); 672 673 if (xe_exec_queue_is_parallel(q)) 674 wq_item_append(q); 675 else 676 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 677 678 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 679 return; 680 681 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 682 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 683 action[len++] = q->guc->id; 684 action[len++] = GUC_CONTEXT_ENABLE; 685 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 686 num_g2h = 1; 687 if (xe_exec_queue_is_parallel(q)) 688 extra_submit = true; 689 690 q->guc->resume_time = RESUME_PENDING; 691 set_exec_queue_pending_enable(q); 692 set_exec_queue_enabled(q); 693 trace_xe_exec_queue_scheduling_enable(q); 694 } else { 695 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 696 action[len++] = q->guc->id; 697 trace_xe_exec_queue_submit(q); 698 } 699 700 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 701 702 if (extra_submit) { 703 len = 0; 704 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 705 action[len++] = q->guc->id; 706 trace_xe_exec_queue_submit(q); 707 708 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 709 } 710 } 711 712 static struct dma_fence * 713 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 714 { 715 struct xe_sched_job *job = to_xe_sched_job(drm_job); 716 struct xe_exec_queue *q = job->q; 717 struct xe_guc *guc = exec_queue_to_guc(q); 718 struct xe_device *xe = guc_to_xe(guc); 719 bool lr = xe_exec_queue_is_lr(q); 720 721 xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 722 exec_queue_banned(q) || exec_queue_suspended(q)); 723 724 trace_xe_sched_job_run(job); 725 726 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 727 if (!exec_queue_registered(q)) 728 register_exec_queue(q); 729 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 730 q->ring_ops->emit_job(job); 731 submit_exec_queue(q); 732 } 733 734 if (lr) { 735 xe_sched_job_set_error(job, -EOPNOTSUPP); 736 return NULL; 737 } else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) { 738 return job->fence; 739 } else { 740 return dma_fence_get(job->fence); 741 } 742 } 743 744 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 745 { 746 struct xe_sched_job *job = to_xe_sched_job(drm_job); 747 748 trace_xe_sched_job_free(job); 749 xe_sched_job_put(job); 750 } 751 752 static int guc_read_stopped(struct xe_guc *guc) 753 { 754 return atomic_read(&guc->submission_state.stopped); 755 } 756 757 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 758 u32 action[] = { \ 759 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 760 q->guc->id, \ 761 GUC_CONTEXT_##enable_disable, \ 762 } 763 764 static void disable_scheduling_deregister(struct xe_guc *guc, 765 struct xe_exec_queue *q) 766 { 767 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 768 struct xe_device *xe = guc_to_xe(guc); 769 int ret; 770 771 set_min_preemption_timeout(guc, q); 772 smp_rmb(); 773 ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) || 774 guc_read_stopped(guc), HZ * 5); 775 if (!ret) { 776 struct xe_gpu_scheduler *sched = &q->guc->sched; 777 778 drm_warn(&xe->drm, "Pending enable failed to respond"); 779 xe_sched_submission_start(sched); 780 xe_gt_reset_async(q->gt); 781 xe_sched_tdr_queue_imm(sched); 782 return; 783 } 784 785 clear_exec_queue_enabled(q); 786 set_exec_queue_pending_disable(q); 787 set_exec_queue_destroyed(q); 788 trace_xe_exec_queue_scheduling_disable(q); 789 790 /* 791 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 792 * handler and we are not allowed to reserved G2H space in handlers. 793 */ 794 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 795 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 796 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 797 } 798 799 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 800 { 801 struct xe_guc *guc = exec_queue_to_guc(q); 802 struct xe_device *xe = guc_to_xe(guc); 803 804 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 805 wake_up_all(&xe->ufence_wq); 806 807 if (xe_exec_queue_is_lr(q)) 808 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 809 else 810 xe_sched_tdr_queue_imm(&q->guc->sched); 811 } 812 813 /** 814 * xe_guc_submit_wedge() - Wedge GuC submission 815 * @guc: the GuC object 816 * 817 * Save exec queue's registered with GuC state by taking a ref to each queue. 818 * Register a DRMM handler to drop refs upon driver unload. 819 */ 820 void xe_guc_submit_wedge(struct xe_guc *guc) 821 { 822 struct xe_device *xe = guc_to_xe(guc); 823 struct xe_exec_queue *q; 824 unsigned long index; 825 int err; 826 827 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); 828 829 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev, 830 guc_submit_wedged_fini, guc); 831 if (err) { 832 drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n"); 833 return; 834 } 835 836 mutex_lock(&guc->submission_state.lock); 837 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 838 if (xe_exec_queue_get_unless_zero(q)) 839 set_exec_queue_wedged(q); 840 mutex_unlock(&guc->submission_state.lock); 841 } 842 843 static bool guc_submit_hint_wedged(struct xe_guc *guc) 844 { 845 struct xe_device *xe = guc_to_xe(guc); 846 847 if (xe->wedged.mode != 2) 848 return false; 849 850 if (xe_device_wedged(xe)) 851 return true; 852 853 xe_device_declare_wedged(xe); 854 855 return true; 856 } 857 858 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 859 { 860 struct xe_guc_exec_queue *ge = 861 container_of(w, struct xe_guc_exec_queue, lr_tdr); 862 struct xe_exec_queue *q = ge->q; 863 struct xe_guc *guc = exec_queue_to_guc(q); 864 struct xe_device *xe = guc_to_xe(guc); 865 struct xe_gpu_scheduler *sched = &ge->sched; 866 bool wedged; 867 868 xe_assert(xe, xe_exec_queue_is_lr(q)); 869 trace_xe_exec_queue_lr_cleanup(q); 870 871 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 872 873 /* Kill the run_job / process_msg entry points */ 874 xe_sched_submission_stop(sched); 875 876 /* 877 * Engine state now mostly stable, disable scheduling / deregister if 878 * needed. This cleanup routine might be called multiple times, where 879 * the actual async engine deregister drops the final engine ref. 880 * Calling disable_scheduling_deregister will mark the engine as 881 * destroyed and fire off the CT requests to disable scheduling / 882 * deregister, which we only want to do once. We also don't want to mark 883 * the engine as pending_disable again as this may race with the 884 * xe_guc_deregister_done_handler() which treats it as an unexpected 885 * state. 886 */ 887 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 888 struct xe_guc *guc = exec_queue_to_guc(q); 889 int ret; 890 891 set_exec_queue_banned(q); 892 disable_scheduling_deregister(guc, q); 893 894 /* 895 * Must wait for scheduling to be disabled before signalling 896 * any fences, if GT broken the GT reset code should signal us. 897 */ 898 ret = wait_event_timeout(guc->ct.wq, 899 !exec_queue_pending_disable(q) || 900 guc_read_stopped(guc), HZ * 5); 901 if (!ret) { 902 drm_warn(&xe->drm, "Schedule disable failed to respond"); 903 xe_sched_submission_start(sched); 904 xe_gt_reset_async(q->gt); 905 return; 906 } 907 } 908 909 xe_sched_submission_start(sched); 910 } 911 912 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100) 913 914 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job) 915 { 916 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q)); 917 u32 ctx_timestamp, ctx_job_timestamp; 918 u32 timeout_ms = q->sched_props.job_timeout_ms; 919 u32 diff; 920 u64 running_time_ms; 921 922 if (!xe_sched_job_started(job)) { 923 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started", 924 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 925 q->guc->id); 926 927 return xe_sched_invalidate_job(job, 2); 928 } 929 930 ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]); 931 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]); 932 933 /* 934 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch 935 * possible overflows with a high timeout. 936 */ 937 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC); 938 939 if (ctx_timestamp < ctx_job_timestamp) 940 diff = ctx_timestamp + U32_MAX - ctx_job_timestamp; 941 else 942 diff = ctx_timestamp - ctx_job_timestamp; 943 944 /* 945 * Ensure timeout is within 5% to account for an GuC scheduling latency 946 */ 947 running_time_ms = 948 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff)); 949 950 xe_gt_dbg(gt, 951 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x", 952 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 953 q->guc->id, running_time_ms, timeout_ms, diff); 954 955 return running_time_ms >= timeout_ms; 956 } 957 958 static void enable_scheduling(struct xe_exec_queue *q) 959 { 960 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 961 struct xe_guc *guc = exec_queue_to_guc(q); 962 int ret; 963 964 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 965 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 966 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 967 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 968 969 set_exec_queue_pending_enable(q); 970 set_exec_queue_enabled(q); 971 trace_xe_exec_queue_scheduling_enable(q); 972 973 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 974 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 975 976 ret = wait_event_timeout(guc->ct.wq, 977 !exec_queue_pending_enable(q) || 978 guc_read_stopped(guc), HZ * 5); 979 if (!ret || guc_read_stopped(guc)) { 980 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond"); 981 set_exec_queue_banned(q); 982 xe_gt_reset_async(q->gt); 983 xe_sched_tdr_queue_imm(&q->guc->sched); 984 } 985 } 986 987 static void disable_scheduling(struct xe_exec_queue *q, bool immediate) 988 { 989 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 990 struct xe_guc *guc = exec_queue_to_guc(q); 991 992 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 993 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 994 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 995 996 if (immediate) 997 set_min_preemption_timeout(guc, q); 998 clear_exec_queue_enabled(q); 999 set_exec_queue_pending_disable(q); 1000 trace_xe_exec_queue_scheduling_disable(q); 1001 1002 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1003 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1004 } 1005 1006 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1007 { 1008 u32 action[] = { 1009 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1010 q->guc->id, 1011 }; 1012 1013 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1014 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1015 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1016 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1017 1018 set_exec_queue_destroyed(q); 1019 trace_xe_exec_queue_deregister(q); 1020 1021 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1022 G2H_LEN_DW_DEREGISTER_CONTEXT, 1); 1023 } 1024 1025 static enum drm_gpu_sched_stat 1026 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 1027 { 1028 struct xe_sched_job *job = to_xe_sched_job(drm_job); 1029 struct xe_sched_job *tmp_job; 1030 struct xe_exec_queue *q = job->q; 1031 struct xe_gpu_scheduler *sched = &q->guc->sched; 1032 struct xe_guc *guc = exec_queue_to_guc(q); 1033 const char *process_name = "no process"; 1034 int err = -ETIME; 1035 pid_t pid = -1; 1036 int i = 0; 1037 bool wedged, skip_timeout_check; 1038 1039 /* 1040 * TDR has fired before free job worker. Common if exec queue 1041 * immediately closed after last fence signaled. Add back to pending 1042 * list so job can be freed and kick scheduler ensuring free job is not 1043 * lost. 1044 */ 1045 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) { 1046 xe_sched_add_pending_job(sched, job); 1047 xe_sched_submission_start(sched); 1048 1049 return DRM_GPU_SCHED_STAT_NOMINAL; 1050 } 1051 1052 /* Kill the run_job entry point */ 1053 xe_sched_submission_stop(sched); 1054 1055 /* Must check all state after stopping scheduler */ 1056 skip_timeout_check = exec_queue_reset(q) || 1057 exec_queue_killed_or_banned_or_wedged(q) || 1058 exec_queue_destroyed(q); 1059 1060 /* 1061 * XXX: Sampling timeout doesn't work in wedged mode as we have to 1062 * modify scheduling state to read timestamp. We could read the 1063 * timestamp from a register to accumulate current running time but this 1064 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are 1065 * genuine timeouts. 1066 */ 1067 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 1068 1069 /* Engine state now stable, disable scheduling to check timestamp */ 1070 if (!wedged && exec_queue_registered(q)) { 1071 int ret; 1072 1073 if (exec_queue_reset(q)) 1074 err = -EIO; 1075 1076 if (!exec_queue_destroyed(q)) { 1077 /* 1078 * Wait for any pending G2H to flush out before 1079 * modifying state 1080 */ 1081 ret = wait_event_timeout(guc->ct.wq, 1082 !exec_queue_pending_enable(q) || 1083 guc_read_stopped(guc), HZ * 5); 1084 if (!ret || guc_read_stopped(guc)) 1085 goto trigger_reset; 1086 1087 /* 1088 * Flag communicates to G2H handler that schedule 1089 * disable originated from a timeout check. The G2H then 1090 * avoid triggering cleanup or deregistering the exec 1091 * queue. 1092 */ 1093 set_exec_queue_check_timeout(q); 1094 disable_scheduling(q, skip_timeout_check); 1095 } 1096 1097 /* 1098 * Must wait for scheduling to be disabled before signalling 1099 * any fences, if GT broken the GT reset code should signal us. 1100 * 1101 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 1102 * error) messages which can cause the schedule disable to get 1103 * lost. If this occurs, trigger a GT reset to recover. 1104 */ 1105 smp_rmb(); 1106 ret = wait_event_timeout(guc->ct.wq, 1107 !exec_queue_pending_disable(q) || 1108 guc_read_stopped(guc), HZ * 5); 1109 if (!ret || guc_read_stopped(guc)) { 1110 trigger_reset: 1111 if (!ret) 1112 xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond"); 1113 set_exec_queue_extra_ref(q); 1114 xe_exec_queue_get(q); /* GT reset owns this */ 1115 set_exec_queue_banned(q); 1116 xe_gt_reset_async(q->gt); 1117 xe_sched_tdr_queue_imm(sched); 1118 goto rearm; 1119 } 1120 } 1121 1122 /* 1123 * Check if job is actually timed out, if so restart job execution and TDR 1124 */ 1125 if (!wedged && !skip_timeout_check && !check_timeout(q, job) && 1126 !exec_queue_reset(q) && exec_queue_registered(q)) { 1127 clear_exec_queue_check_timeout(q); 1128 goto sched_enable; 1129 } 1130 1131 if (q->vm && q->vm->xef) { 1132 process_name = q->vm->xef->process_name; 1133 pid = q->vm->xef->pid; 1134 } 1135 xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]", 1136 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1137 q->guc->id, q->flags, process_name, pid); 1138 1139 trace_xe_sched_job_timedout(job); 1140 1141 if (!exec_queue_killed(q)) 1142 xe_devcoredump(job); 1143 1144 /* 1145 * Kernel jobs should never fail, nor should VM jobs if they do 1146 * somethings has gone wrong and the GT needs a reset 1147 */ 1148 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 1149 "Kernel-submitted job timed out\n"); 1150 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 1151 "VM job timed out on non-killed execqueue\n"); 1152 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 1153 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 1154 if (!xe_sched_invalidate_job(job, 2)) { 1155 clear_exec_queue_check_timeout(q); 1156 xe_gt_reset_async(q->gt); 1157 goto rearm; 1158 } 1159 } 1160 1161 /* Finish cleaning up exec queue via deregister */ 1162 set_exec_queue_banned(q); 1163 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1164 set_exec_queue_extra_ref(q); 1165 xe_exec_queue_get(q); 1166 __deregister_exec_queue(guc, q); 1167 } 1168 1169 /* Stop fence signaling */ 1170 xe_hw_fence_irq_stop(q->fence_irq); 1171 1172 /* 1173 * Fence state now stable, stop / start scheduler which cleans up any 1174 * fences that are complete 1175 */ 1176 xe_sched_add_pending_job(sched, job); 1177 xe_sched_submission_start(sched); 1178 1179 xe_guc_exec_queue_trigger_cleanup(q); 1180 1181 /* Mark all outstanding jobs as bad, thus completing them */ 1182 spin_lock(&sched->base.job_list_lock); 1183 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1184 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1185 spin_unlock(&sched->base.job_list_lock); 1186 1187 /* Start fence signaling */ 1188 xe_hw_fence_irq_start(q->fence_irq); 1189 1190 return DRM_GPU_SCHED_STAT_NOMINAL; 1191 1192 sched_enable: 1193 enable_scheduling(q); 1194 rearm: 1195 /* 1196 * XXX: Ideally want to adjust timeout based on current exection time 1197 * but there is not currently an easy way to do in DRM scheduler. With 1198 * some thought, do this in a follow up. 1199 */ 1200 xe_sched_add_pending_job(sched, job); 1201 xe_sched_submission_start(sched); 1202 1203 return DRM_GPU_SCHED_STAT_NOMINAL; 1204 } 1205 1206 static void __guc_exec_queue_fini_async(struct work_struct *w) 1207 { 1208 struct xe_guc_exec_queue *ge = 1209 container_of(w, struct xe_guc_exec_queue, fini_async); 1210 struct xe_exec_queue *q = ge->q; 1211 struct xe_guc *guc = exec_queue_to_guc(q); 1212 1213 xe_pm_runtime_get(guc_to_xe(guc)); 1214 trace_xe_exec_queue_destroy(q); 1215 1216 if (xe_exec_queue_is_lr(q)) 1217 cancel_work_sync(&ge->lr_tdr); 1218 release_guc_id(guc, q); 1219 xe_sched_entity_fini(&ge->entity); 1220 xe_sched_fini(&ge->sched); 1221 1222 kfree(ge); 1223 xe_exec_queue_fini(q); 1224 xe_pm_runtime_put(guc_to_xe(guc)); 1225 } 1226 1227 static void guc_exec_queue_fini_async(struct xe_exec_queue *q) 1228 { 1229 struct xe_guc *guc = exec_queue_to_guc(q); 1230 struct xe_device *xe = guc_to_xe(guc); 1231 1232 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async); 1233 1234 /* We must block on kernel engines so slabs are empty on driver unload */ 1235 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1236 __guc_exec_queue_fini_async(&q->guc->fini_async); 1237 else 1238 queue_work(xe->destroy_wq, &q->guc->fini_async); 1239 } 1240 1241 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q) 1242 { 1243 /* 1244 * Might be done from within the GPU scheduler, need to do async as we 1245 * fini the scheduler when the engine is fini'd, the scheduler can't 1246 * complete fini within itself (circular dependency). Async resolves 1247 * this we and don't really care when everything is fini'd, just that it 1248 * is. 1249 */ 1250 guc_exec_queue_fini_async(q); 1251 } 1252 1253 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1254 { 1255 struct xe_exec_queue *q = msg->private_data; 1256 struct xe_guc *guc = exec_queue_to_guc(q); 1257 struct xe_device *xe = guc_to_xe(guc); 1258 1259 xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1260 trace_xe_exec_queue_cleanup_entity(q); 1261 1262 if (exec_queue_registered(q)) 1263 disable_scheduling_deregister(guc, q); 1264 else 1265 __guc_exec_queue_fini(guc, q); 1266 } 1267 1268 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1269 { 1270 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1271 } 1272 1273 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1274 { 1275 struct xe_exec_queue *q = msg->private_data; 1276 struct xe_guc *guc = exec_queue_to_guc(q); 1277 1278 if (guc_exec_queue_allowed_to_change_state(q)) 1279 init_policies(guc, q); 1280 kfree(msg); 1281 } 1282 1283 static void __suspend_fence_signal(struct xe_exec_queue *q) 1284 { 1285 if (!q->guc->suspend_pending) 1286 return; 1287 1288 WRITE_ONCE(q->guc->suspend_pending, false); 1289 wake_up(&q->guc->suspend_wait); 1290 } 1291 1292 static void suspend_fence_signal(struct xe_exec_queue *q) 1293 { 1294 struct xe_guc *guc = exec_queue_to_guc(q); 1295 struct xe_device *xe = guc_to_xe(guc); 1296 1297 xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) || 1298 guc_read_stopped(guc)); 1299 xe_assert(xe, q->guc->suspend_pending); 1300 1301 __suspend_fence_signal(q); 1302 } 1303 1304 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1305 { 1306 struct xe_exec_queue *q = msg->private_data; 1307 struct xe_guc *guc = exec_queue_to_guc(q); 1308 1309 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1310 exec_queue_enabled(q)) { 1311 wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING || 1312 guc_read_stopped(guc)); 1313 1314 if (!guc_read_stopped(guc)) { 1315 s64 since_resume_ms = 1316 ktime_ms_delta(ktime_get(), 1317 q->guc->resume_time); 1318 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1319 since_resume_ms; 1320 1321 if (wait_ms > 0 && q->guc->resume_time) 1322 msleep(wait_ms); 1323 1324 set_exec_queue_suspended(q); 1325 disable_scheduling(q, false); 1326 } 1327 } else if (q->guc->suspend_pending) { 1328 set_exec_queue_suspended(q); 1329 suspend_fence_signal(q); 1330 } 1331 } 1332 1333 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1334 { 1335 struct xe_exec_queue *q = msg->private_data; 1336 1337 if (guc_exec_queue_allowed_to_change_state(q)) { 1338 clear_exec_queue_suspended(q); 1339 if (!exec_queue_enabled(q)) { 1340 q->guc->resume_time = RESUME_PENDING; 1341 enable_scheduling(q); 1342 } 1343 } else { 1344 clear_exec_queue_suspended(q); 1345 } 1346 } 1347 1348 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1349 #define SET_SCHED_PROPS 2 1350 #define SUSPEND 3 1351 #define RESUME 4 1352 #define OPCODE_MASK 0xf 1353 #define MSG_LOCKED BIT(8) 1354 1355 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1356 { 1357 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data)); 1358 1359 trace_xe_sched_msg_recv(msg); 1360 1361 switch (msg->opcode) { 1362 case CLEANUP: 1363 __guc_exec_queue_process_msg_cleanup(msg); 1364 break; 1365 case SET_SCHED_PROPS: 1366 __guc_exec_queue_process_msg_set_sched_props(msg); 1367 break; 1368 case SUSPEND: 1369 __guc_exec_queue_process_msg_suspend(msg); 1370 break; 1371 case RESUME: 1372 __guc_exec_queue_process_msg_resume(msg); 1373 break; 1374 default: 1375 XE_WARN_ON("Unknown message type"); 1376 } 1377 1378 xe_pm_runtime_put(xe); 1379 } 1380 1381 static const struct drm_sched_backend_ops drm_sched_ops = { 1382 .run_job = guc_exec_queue_run_job, 1383 .free_job = guc_exec_queue_free_job, 1384 .timedout_job = guc_exec_queue_timedout_job, 1385 }; 1386 1387 static const struct xe_sched_backend_ops xe_sched_ops = { 1388 .process_msg = guc_exec_queue_process_msg, 1389 }; 1390 1391 static int guc_exec_queue_init(struct xe_exec_queue *q) 1392 { 1393 struct xe_gpu_scheduler *sched; 1394 struct xe_guc *guc = exec_queue_to_guc(q); 1395 struct xe_device *xe = guc_to_xe(guc); 1396 struct xe_guc_exec_queue *ge; 1397 long timeout; 1398 int err, i; 1399 1400 xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc))); 1401 1402 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1403 if (!ge) 1404 return -ENOMEM; 1405 1406 q->guc = ge; 1407 ge->q = q; 1408 init_waitqueue_head(&ge->suspend_wait); 1409 1410 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i) 1411 INIT_LIST_HEAD(&ge->static_msgs[i].link); 1412 1413 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1414 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1415 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1416 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1417 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1418 q->name, gt_to_xe(q->gt)->drm.dev); 1419 if (err) 1420 goto err_free; 1421 1422 sched = &ge->sched; 1423 err = xe_sched_entity_init(&ge->entity, sched); 1424 if (err) 1425 goto err_sched; 1426 1427 if (xe_exec_queue_is_lr(q)) 1428 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1429 1430 mutex_lock(&guc->submission_state.lock); 1431 1432 err = alloc_guc_id(guc, q); 1433 if (err) 1434 goto err_entity; 1435 1436 q->entity = &ge->entity; 1437 1438 if (guc_read_stopped(guc)) 1439 xe_sched_stop(sched); 1440 1441 mutex_unlock(&guc->submission_state.lock); 1442 1443 xe_exec_queue_assign_name(q, q->guc->id); 1444 1445 trace_xe_exec_queue_create(q); 1446 1447 return 0; 1448 1449 err_entity: 1450 mutex_unlock(&guc->submission_state.lock); 1451 xe_sched_entity_fini(&ge->entity); 1452 err_sched: 1453 xe_sched_fini(&ge->sched); 1454 err_free: 1455 kfree(ge); 1456 1457 return err; 1458 } 1459 1460 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1461 { 1462 trace_xe_exec_queue_kill(q); 1463 set_exec_queue_killed(q); 1464 __suspend_fence_signal(q); 1465 xe_guc_exec_queue_trigger_cleanup(q); 1466 } 1467 1468 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1469 u32 opcode) 1470 { 1471 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q))); 1472 1473 INIT_LIST_HEAD(&msg->link); 1474 msg->opcode = opcode & OPCODE_MASK; 1475 msg->private_data = q; 1476 1477 trace_xe_sched_msg_add(msg); 1478 if (opcode & MSG_LOCKED) 1479 xe_sched_add_msg_locked(&q->guc->sched, msg); 1480 else 1481 xe_sched_add_msg(&q->guc->sched, msg); 1482 } 1483 1484 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q, 1485 struct xe_sched_msg *msg, 1486 u32 opcode) 1487 { 1488 if (!list_empty(&msg->link)) 1489 return false; 1490 1491 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED); 1492 1493 return true; 1494 } 1495 1496 #define STATIC_MSG_CLEANUP 0 1497 #define STATIC_MSG_SUSPEND 1 1498 #define STATIC_MSG_RESUME 2 1499 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1500 { 1501 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1502 1503 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1504 guc_exec_queue_add_msg(q, msg, CLEANUP); 1505 else 1506 __guc_exec_queue_fini(exec_queue_to_guc(q), q); 1507 } 1508 1509 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1510 enum xe_exec_queue_priority priority) 1511 { 1512 struct xe_sched_msg *msg; 1513 1514 if (q->sched_props.priority == priority || 1515 exec_queue_killed_or_banned_or_wedged(q)) 1516 return 0; 1517 1518 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1519 if (!msg) 1520 return -ENOMEM; 1521 1522 q->sched_props.priority = priority; 1523 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1524 1525 return 0; 1526 } 1527 1528 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1529 { 1530 struct xe_sched_msg *msg; 1531 1532 if (q->sched_props.timeslice_us == timeslice_us || 1533 exec_queue_killed_or_banned_or_wedged(q)) 1534 return 0; 1535 1536 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1537 if (!msg) 1538 return -ENOMEM; 1539 1540 q->sched_props.timeslice_us = timeslice_us; 1541 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1542 1543 return 0; 1544 } 1545 1546 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1547 u32 preempt_timeout_us) 1548 { 1549 struct xe_sched_msg *msg; 1550 1551 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1552 exec_queue_killed_or_banned_or_wedged(q)) 1553 return 0; 1554 1555 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1556 if (!msg) 1557 return -ENOMEM; 1558 1559 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1560 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1561 1562 return 0; 1563 } 1564 1565 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1566 { 1567 struct xe_gpu_scheduler *sched = &q->guc->sched; 1568 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1569 1570 if (exec_queue_killed_or_banned_or_wedged(q)) 1571 return -EINVAL; 1572 1573 xe_sched_msg_lock(sched); 1574 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND)) 1575 q->guc->suspend_pending = true; 1576 xe_sched_msg_unlock(sched); 1577 1578 return 0; 1579 } 1580 1581 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1582 { 1583 struct xe_guc *guc = exec_queue_to_guc(q); 1584 int ret; 1585 1586 /* 1587 * Likely don't need to check exec_queue_killed() as we clear 1588 * suspend_pending upon kill but to be paranoid but races in which 1589 * suspend_pending is set after kill also check kill here. 1590 */ 1591 ret = wait_event_interruptible_timeout(q->guc->suspend_wait, 1592 !READ_ONCE(q->guc->suspend_pending) || 1593 exec_queue_killed(q) || 1594 guc_read_stopped(guc), 1595 HZ * 5); 1596 1597 if (!ret) { 1598 xe_gt_warn(guc_to_gt(guc), 1599 "Suspend fence, guc_id=%d, failed to respond", 1600 q->guc->id); 1601 /* XXX: Trigger GT reset? */ 1602 return -ETIME; 1603 } 1604 1605 return ret < 0 ? ret : 0; 1606 } 1607 1608 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1609 { 1610 struct xe_gpu_scheduler *sched = &q->guc->sched; 1611 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1612 struct xe_guc *guc = exec_queue_to_guc(q); 1613 struct xe_device *xe = guc_to_xe(guc); 1614 1615 xe_assert(xe, !q->guc->suspend_pending); 1616 1617 xe_sched_msg_lock(sched); 1618 guc_exec_queue_try_add_msg(q, msg, RESUME); 1619 xe_sched_msg_unlock(sched); 1620 } 1621 1622 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1623 { 1624 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1625 } 1626 1627 /* 1628 * All of these functions are an abstraction layer which other parts of XE can 1629 * use to trap into the GuC backend. All of these functions, aside from init, 1630 * really shouldn't do much other than trap into the DRM scheduler which 1631 * synchronizes these operations. 1632 */ 1633 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1634 .init = guc_exec_queue_init, 1635 .kill = guc_exec_queue_kill, 1636 .fini = guc_exec_queue_fini, 1637 .set_priority = guc_exec_queue_set_priority, 1638 .set_timeslice = guc_exec_queue_set_timeslice, 1639 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1640 .suspend = guc_exec_queue_suspend, 1641 .suspend_wait = guc_exec_queue_suspend_wait, 1642 .resume = guc_exec_queue_resume, 1643 .reset_status = guc_exec_queue_reset_status, 1644 }; 1645 1646 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1647 { 1648 struct xe_gpu_scheduler *sched = &q->guc->sched; 1649 1650 /* Stop scheduling + flush any DRM scheduler operations */ 1651 xe_sched_submission_stop(sched); 1652 1653 /* Clean up lost G2H + reset engine state */ 1654 if (exec_queue_registered(q)) { 1655 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1656 xe_exec_queue_put(q); 1657 else if (exec_queue_destroyed(q)) 1658 __guc_exec_queue_fini(guc, q); 1659 } 1660 if (q->guc->suspend_pending) { 1661 set_exec_queue_suspended(q); 1662 suspend_fence_signal(q); 1663 } 1664 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED | 1665 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED | 1666 EXEC_QUEUE_STATE_SUSPENDED, 1667 &q->guc->state); 1668 q->guc->resume_time = 0; 1669 trace_xe_exec_queue_stop(q); 1670 1671 /* 1672 * Ban any engine (aside from kernel and engines used for VM ops) with a 1673 * started but not complete job or if a job has gone through a GT reset 1674 * more than twice. 1675 */ 1676 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1677 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1678 bool ban = false; 1679 1680 if (job) { 1681 if ((xe_sched_job_started(job) && 1682 !xe_sched_job_completed(job)) || 1683 xe_sched_invalidate_job(job, 2)) { 1684 trace_xe_sched_job_ban(job); 1685 ban = true; 1686 } 1687 } else if (xe_exec_queue_is_lr(q) && 1688 (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) { 1689 ban = true; 1690 } 1691 1692 if (ban) { 1693 set_exec_queue_banned(q); 1694 xe_guc_exec_queue_trigger_cleanup(q); 1695 } 1696 } 1697 } 1698 1699 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1700 { 1701 int ret; 1702 1703 /* 1704 * Using an atomic here rather than submission_state.lock as this 1705 * function can be called while holding the CT lock (engine reset 1706 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1707 * Atomic is not ideal, but it works to prevent against concurrent reset 1708 * and releasing any TDRs waiting on guc->submission_state.stopped. 1709 */ 1710 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1711 smp_wmb(); 1712 wake_up_all(&guc->ct.wq); 1713 1714 return ret; 1715 } 1716 1717 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1718 { 1719 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) || 1720 !guc_read_stopped(guc)); 1721 } 1722 1723 void xe_guc_submit_stop(struct xe_guc *guc) 1724 { 1725 struct xe_exec_queue *q; 1726 unsigned long index; 1727 struct xe_device *xe = guc_to_xe(guc); 1728 1729 xe_assert(xe, guc_read_stopped(guc) == 1); 1730 1731 mutex_lock(&guc->submission_state.lock); 1732 1733 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1734 /* Prevent redundant attempts to stop parallel queues */ 1735 if (q->guc->id != index) 1736 continue; 1737 1738 guc_exec_queue_stop(guc, q); 1739 } 1740 1741 mutex_unlock(&guc->submission_state.lock); 1742 1743 /* 1744 * No one can enter the backend at this point, aside from new engine 1745 * creation which is protected by guc->submission_state.lock. 1746 */ 1747 1748 } 1749 1750 static void guc_exec_queue_start(struct xe_exec_queue *q) 1751 { 1752 struct xe_gpu_scheduler *sched = &q->guc->sched; 1753 1754 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1755 int i; 1756 1757 trace_xe_exec_queue_resubmit(q); 1758 for (i = 0; i < q->width; ++i) 1759 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1760 xe_sched_resubmit_jobs(sched); 1761 } 1762 1763 xe_sched_submission_start(sched); 1764 xe_sched_submission_resume_tdr(sched); 1765 } 1766 1767 int xe_guc_submit_start(struct xe_guc *guc) 1768 { 1769 struct xe_exec_queue *q; 1770 unsigned long index; 1771 struct xe_device *xe = guc_to_xe(guc); 1772 1773 xe_assert(xe, guc_read_stopped(guc) == 1); 1774 1775 mutex_lock(&guc->submission_state.lock); 1776 atomic_dec(&guc->submission_state.stopped); 1777 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1778 /* Prevent redundant attempts to start parallel queues */ 1779 if (q->guc->id != index) 1780 continue; 1781 1782 guc_exec_queue_start(q); 1783 } 1784 mutex_unlock(&guc->submission_state.lock); 1785 1786 wake_up_all(&guc->ct.wq); 1787 1788 return 0; 1789 } 1790 1791 static struct xe_exec_queue * 1792 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1793 { 1794 struct xe_device *xe = guc_to_xe(guc); 1795 struct xe_exec_queue *q; 1796 1797 if (unlikely(guc_id >= GUC_ID_MAX)) { 1798 drm_err(&xe->drm, "Invalid guc_id %u", guc_id); 1799 return NULL; 1800 } 1801 1802 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1803 if (unlikely(!q)) { 1804 drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id); 1805 return NULL; 1806 } 1807 1808 xe_assert(xe, guc_id >= q->guc->id); 1809 xe_assert(xe, guc_id < (q->guc->id + q->width)); 1810 1811 return q; 1812 } 1813 1814 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1815 { 1816 u32 action[] = { 1817 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1818 q->guc->id, 1819 }; 1820 1821 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q)); 1822 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1823 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1824 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1825 1826 trace_xe_exec_queue_deregister(q); 1827 1828 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1829 } 1830 1831 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q, 1832 u32 runnable_state) 1833 { 1834 trace_xe_exec_queue_scheduling_done(q); 1835 1836 if (runnable_state == 1) { 1837 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q)); 1838 1839 q->guc->resume_time = ktime_get(); 1840 clear_exec_queue_pending_enable(q); 1841 smp_wmb(); 1842 wake_up_all(&guc->ct.wq); 1843 } else { 1844 bool check_timeout = exec_queue_check_timeout(q); 1845 1846 xe_gt_assert(guc_to_gt(guc), runnable_state == 0); 1847 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q)); 1848 1849 clear_exec_queue_pending_disable(q); 1850 if (q->guc->suspend_pending) { 1851 suspend_fence_signal(q); 1852 } else { 1853 if (exec_queue_banned(q) || check_timeout) { 1854 smp_wmb(); 1855 wake_up_all(&guc->ct.wq); 1856 } 1857 if (!check_timeout) 1858 deregister_exec_queue(guc, q); 1859 } 1860 } 1861 } 1862 1863 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1864 { 1865 struct xe_device *xe = guc_to_xe(guc); 1866 struct xe_exec_queue *q; 1867 u32 guc_id = msg[0]; 1868 u32 runnable_state = msg[1]; 1869 1870 if (unlikely(len < 2)) { 1871 drm_err(&xe->drm, "Invalid length %u", len); 1872 return -EPROTO; 1873 } 1874 1875 q = g2h_exec_queue_lookup(guc, guc_id); 1876 if (unlikely(!q)) 1877 return -EPROTO; 1878 1879 if (unlikely(!exec_queue_pending_enable(q) && 1880 !exec_queue_pending_disable(q))) { 1881 xe_gt_err(guc_to_gt(guc), 1882 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u", 1883 atomic_read(&q->guc->state), q->guc->id, 1884 runnable_state); 1885 return -EPROTO; 1886 } 1887 1888 handle_sched_done(guc, q, runnable_state); 1889 1890 return 0; 1891 } 1892 1893 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 1894 { 1895 trace_xe_exec_queue_deregister_done(q); 1896 1897 clear_exec_queue_registered(q); 1898 1899 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1900 xe_exec_queue_put(q); 1901 else 1902 __guc_exec_queue_fini(guc, q); 1903 } 1904 1905 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1906 { 1907 struct xe_device *xe = guc_to_xe(guc); 1908 struct xe_exec_queue *q; 1909 u32 guc_id = msg[0]; 1910 1911 if (unlikely(len < 1)) { 1912 drm_err(&xe->drm, "Invalid length %u", len); 1913 return -EPROTO; 1914 } 1915 1916 q = g2h_exec_queue_lookup(guc, guc_id); 1917 if (unlikely(!q)) 1918 return -EPROTO; 1919 1920 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 1921 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 1922 xe_gt_err(guc_to_gt(guc), 1923 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d", 1924 atomic_read(&q->guc->state), q->guc->id); 1925 return -EPROTO; 1926 } 1927 1928 handle_deregister_done(guc, q); 1929 1930 return 0; 1931 } 1932 1933 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 1934 { 1935 struct xe_gt *gt = guc_to_gt(guc); 1936 struct xe_device *xe = guc_to_xe(guc); 1937 struct xe_exec_queue *q; 1938 u32 guc_id = msg[0]; 1939 1940 if (unlikely(len < 1)) { 1941 drm_err(&xe->drm, "Invalid length %u", len); 1942 return -EPROTO; 1943 } 1944 1945 q = g2h_exec_queue_lookup(guc, guc_id); 1946 if (unlikely(!q)) 1947 return -EPROTO; 1948 1949 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1950 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1951 1952 /* FIXME: Do error capture, most likely async */ 1953 1954 trace_xe_exec_queue_reset(q); 1955 1956 /* 1957 * A banned engine is a NOP at this point (came from 1958 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 1959 * jobs by setting timeout of the job to the minimum value kicking 1960 * guc_exec_queue_timedout_job. 1961 */ 1962 set_exec_queue_reset(q); 1963 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 1964 xe_guc_exec_queue_trigger_cleanup(q); 1965 1966 return 0; 1967 } 1968 1969 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 1970 u32 len) 1971 { 1972 struct xe_gt *gt = guc_to_gt(guc); 1973 struct xe_device *xe = guc_to_xe(guc); 1974 struct xe_exec_queue *q; 1975 u32 guc_id = msg[0]; 1976 1977 if (unlikely(len < 1)) { 1978 drm_err(&xe->drm, "Invalid length %u", len); 1979 return -EPROTO; 1980 } 1981 1982 q = g2h_exec_queue_lookup(guc, guc_id); 1983 if (unlikely(!q)) 1984 return -EPROTO; 1985 1986 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1987 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1988 1989 trace_xe_exec_queue_memory_cat_error(q); 1990 1991 /* Treat the same as engine reset */ 1992 set_exec_queue_reset(q); 1993 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 1994 xe_guc_exec_queue_trigger_cleanup(q); 1995 1996 return 0; 1997 } 1998 1999 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 2000 { 2001 struct xe_device *xe = guc_to_xe(guc); 2002 u8 guc_class, instance; 2003 u32 reason; 2004 2005 if (unlikely(len != 3)) { 2006 drm_err(&xe->drm, "Invalid length %u", len); 2007 return -EPROTO; 2008 } 2009 2010 guc_class = msg[0]; 2011 instance = msg[1]; 2012 reason = msg[2]; 2013 2014 /* Unexpected failure of a hardware feature, log an actual error */ 2015 drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X", 2016 guc_class, instance, reason); 2017 2018 xe_gt_reset_async(guc_to_gt(guc)); 2019 2020 return 0; 2021 } 2022 2023 static void 2024 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 2025 struct xe_guc_submit_exec_queue_snapshot *snapshot) 2026 { 2027 struct xe_guc *guc = exec_queue_to_guc(q); 2028 struct xe_device *xe = guc_to_xe(guc); 2029 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 2030 int i; 2031 2032 snapshot->guc.wqi_head = q->guc->wqi_head; 2033 snapshot->guc.wqi_tail = q->guc->wqi_tail; 2034 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 2035 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 2036 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 2037 wq_desc.wq_status); 2038 2039 if (snapshot->parallel.wq_desc.head != 2040 snapshot->parallel.wq_desc.tail) { 2041 for (i = snapshot->parallel.wq_desc.head; 2042 i != snapshot->parallel.wq_desc.tail; 2043 i = (i + sizeof(u32)) % WQ_SIZE) 2044 snapshot->parallel.wq[i / sizeof(u32)] = 2045 parallel_read(xe, map, wq[i / sizeof(u32)]); 2046 } 2047 } 2048 2049 static void 2050 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2051 struct drm_printer *p) 2052 { 2053 int i; 2054 2055 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 2056 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 2057 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 2058 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 2059 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 2060 2061 if (snapshot->parallel.wq_desc.head != 2062 snapshot->parallel.wq_desc.tail) { 2063 for (i = snapshot->parallel.wq_desc.head; 2064 i != snapshot->parallel.wq_desc.tail; 2065 i = (i + sizeof(u32)) % WQ_SIZE) 2066 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 2067 snapshot->parallel.wq[i / sizeof(u32)]); 2068 } 2069 } 2070 2071 /** 2072 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 2073 * @q: faulty exec queue 2074 * 2075 * This can be printed out in a later stage like during dev_coredump 2076 * analysis. 2077 * 2078 * Returns: a GuC Submit Engine snapshot object that must be freed by the 2079 * caller, using `xe_guc_exec_queue_snapshot_free`. 2080 */ 2081 struct xe_guc_submit_exec_queue_snapshot * 2082 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 2083 { 2084 struct xe_gpu_scheduler *sched = &q->guc->sched; 2085 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2086 int i; 2087 2088 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 2089 2090 if (!snapshot) 2091 return NULL; 2092 2093 snapshot->guc.id = q->guc->id; 2094 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 2095 snapshot->class = q->class; 2096 snapshot->logical_mask = q->logical_mask; 2097 snapshot->width = q->width; 2098 snapshot->refcount = kref_read(&q->refcount); 2099 snapshot->sched_timeout = sched->base.timeout; 2100 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 2101 snapshot->sched_props.preempt_timeout_us = 2102 q->sched_props.preempt_timeout_us; 2103 2104 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 2105 GFP_ATOMIC); 2106 2107 if (snapshot->lrc) { 2108 for (i = 0; i < q->width; ++i) { 2109 struct xe_lrc *lrc = q->lrc[i]; 2110 2111 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 2112 } 2113 } 2114 2115 snapshot->schedule_state = atomic_read(&q->guc->state); 2116 snapshot->exec_queue_flags = q->flags; 2117 2118 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 2119 if (snapshot->parallel_execution) 2120 guc_exec_queue_wq_snapshot_capture(q, snapshot); 2121 2122 spin_lock(&sched->base.job_list_lock); 2123 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 2124 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 2125 sizeof(struct pending_list_snapshot), 2126 GFP_ATOMIC); 2127 2128 if (snapshot->pending_list) { 2129 struct xe_sched_job *job_iter; 2130 2131 i = 0; 2132 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 2133 snapshot->pending_list[i].seqno = 2134 xe_sched_job_seqno(job_iter); 2135 snapshot->pending_list[i].fence = 2136 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 2137 snapshot->pending_list[i].finished = 2138 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 2139 ? 1 : 0; 2140 i++; 2141 } 2142 } 2143 2144 spin_unlock(&sched->base.job_list_lock); 2145 2146 return snapshot; 2147 } 2148 2149 /** 2150 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 2151 * @snapshot: Previously captured snapshot of job. 2152 * 2153 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 2154 */ 2155 void 2156 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2157 { 2158 int i; 2159 2160 if (!snapshot || !snapshot->lrc) 2161 return; 2162 2163 for (i = 0; i < snapshot->width; ++i) 2164 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 2165 } 2166 2167 /** 2168 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 2169 * @snapshot: GuC Submit Engine snapshot object. 2170 * @p: drm_printer where it will be printed out. 2171 * 2172 * This function prints out a given GuC Submit Engine snapshot object. 2173 */ 2174 void 2175 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2176 struct drm_printer *p) 2177 { 2178 int i; 2179 2180 if (!snapshot) 2181 return; 2182 2183 drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id); 2184 drm_printf(p, "\tName: %s\n", snapshot->name); 2185 drm_printf(p, "\tClass: %d\n", snapshot->class); 2186 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 2187 drm_printf(p, "\tWidth: %d\n", snapshot->width); 2188 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 2189 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 2190 drm_printf(p, "\tTimeslice: %u (us)\n", 2191 snapshot->sched_props.timeslice_us); 2192 drm_printf(p, "\tPreempt timeout: %u (us)\n", 2193 snapshot->sched_props.preempt_timeout_us); 2194 2195 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 2196 xe_lrc_snapshot_print(snapshot->lrc[i], p); 2197 2198 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 2199 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 2200 2201 if (snapshot->parallel_execution) 2202 guc_exec_queue_wq_snapshot_print(snapshot, p); 2203 2204 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 2205 i++) 2206 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 2207 snapshot->pending_list[i].seqno, 2208 snapshot->pending_list[i].fence, 2209 snapshot->pending_list[i].finished); 2210 } 2211 2212 /** 2213 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 2214 * snapshot. 2215 * @snapshot: GuC Submit Engine snapshot object. 2216 * 2217 * This function free all the memory that needed to be allocated at capture 2218 * time. 2219 */ 2220 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2221 { 2222 int i; 2223 2224 if (!snapshot) 2225 return; 2226 2227 if (snapshot->lrc) { 2228 for (i = 0; i < snapshot->width; i++) 2229 xe_lrc_snapshot_free(snapshot->lrc[i]); 2230 kfree(snapshot->lrc); 2231 } 2232 kfree(snapshot->pending_list); 2233 kfree(snapshot); 2234 } 2235 2236 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 2237 { 2238 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2239 2240 snapshot = xe_guc_exec_queue_snapshot_capture(q); 2241 xe_guc_exec_queue_snapshot_print(snapshot, p); 2242 xe_guc_exec_queue_snapshot_free(snapshot); 2243 } 2244 2245 /** 2246 * xe_guc_submit_print - GuC Submit Print. 2247 * @guc: GuC. 2248 * @p: drm_printer where it will be printed out. 2249 * 2250 * This function capture and prints snapshots of **all** GuC Engines. 2251 */ 2252 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2253 { 2254 struct xe_exec_queue *q; 2255 unsigned long index; 2256 2257 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2258 return; 2259 2260 mutex_lock(&guc->submission_state.lock); 2261 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2262 guc_exec_queue_print(q, p); 2263 mutex_unlock(&guc->submission_state.lock); 2264 } 2265