1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 #include <linux/math64.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_klvs_abi.h" 19 #include "regs/xe_lrc_layout.h" 20 #include "xe_assert.h" 21 #include "xe_devcoredump.h" 22 #include "xe_device.h" 23 #include "xe_exec_queue.h" 24 #include "xe_force_wake.h" 25 #include "xe_gpu_scheduler.h" 26 #include "xe_gt.h" 27 #include "xe_gt_clock.h" 28 #include "xe_gt_printk.h" 29 #include "xe_guc.h" 30 #include "xe_guc_ct.h" 31 #include "xe_guc_exec_queue_types.h" 32 #include "xe_guc_id_mgr.h" 33 #include "xe_guc_submit_types.h" 34 #include "xe_hw_engine.h" 35 #include "xe_hw_fence.h" 36 #include "xe_lrc.h" 37 #include "xe_macros.h" 38 #include "xe_map.h" 39 #include "xe_mocs.h" 40 #include "xe_pm.h" 41 #include "xe_ring_ops_types.h" 42 #include "xe_sched_job.h" 43 #include "xe_trace.h" 44 #include "xe_vm.h" 45 46 static struct xe_guc * 47 exec_queue_to_guc(struct xe_exec_queue *q) 48 { 49 return &q->gt->uc.guc; 50 } 51 52 /* 53 * Helpers for engine state, using an atomic as some of the bits can transition 54 * as the same time (e.g. a suspend can be happning at the same time as schedule 55 * engine done being processed). 56 */ 57 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 58 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 59 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 60 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 61 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 62 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 63 #define EXEC_QUEUE_STATE_RESET (1 << 6) 64 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 65 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 66 #define EXEC_QUEUE_STATE_BANNED (1 << 9) 67 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10) 68 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11) 69 70 static bool exec_queue_registered(struct xe_exec_queue *q) 71 { 72 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 73 } 74 75 static void set_exec_queue_registered(struct xe_exec_queue *q) 76 { 77 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 78 } 79 80 static void clear_exec_queue_registered(struct xe_exec_queue *q) 81 { 82 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 83 } 84 85 static bool exec_queue_enabled(struct xe_exec_queue *q) 86 { 87 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 88 } 89 90 static void set_exec_queue_enabled(struct xe_exec_queue *q) 91 { 92 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 93 } 94 95 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 96 { 97 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 98 } 99 100 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 101 { 102 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 103 } 104 105 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 106 { 107 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 108 } 109 110 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 111 { 112 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 113 } 114 115 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 116 { 117 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 118 } 119 120 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 121 { 122 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 123 } 124 125 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 126 { 127 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 128 } 129 130 static bool exec_queue_destroyed(struct xe_exec_queue *q) 131 { 132 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 133 } 134 135 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 136 { 137 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 138 } 139 140 static bool exec_queue_banned(struct xe_exec_queue *q) 141 { 142 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED; 143 } 144 145 static void set_exec_queue_banned(struct xe_exec_queue *q) 146 { 147 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state); 148 } 149 150 static bool exec_queue_suspended(struct xe_exec_queue *q) 151 { 152 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 153 } 154 155 static void set_exec_queue_suspended(struct xe_exec_queue *q) 156 { 157 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 158 } 159 160 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 161 { 162 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 163 } 164 165 static bool exec_queue_reset(struct xe_exec_queue *q) 166 { 167 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 168 } 169 170 static void set_exec_queue_reset(struct xe_exec_queue *q) 171 { 172 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 173 } 174 175 static bool exec_queue_killed(struct xe_exec_queue *q) 176 { 177 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 178 } 179 180 static void set_exec_queue_killed(struct xe_exec_queue *q) 181 { 182 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 183 } 184 185 static bool exec_queue_wedged(struct xe_exec_queue *q) 186 { 187 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 188 } 189 190 static void set_exec_queue_wedged(struct xe_exec_queue *q) 191 { 192 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 193 } 194 195 static bool exec_queue_check_timeout(struct xe_exec_queue *q) 196 { 197 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT; 198 } 199 200 static void set_exec_queue_check_timeout(struct xe_exec_queue *q) 201 { 202 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 203 } 204 205 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q) 206 { 207 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 208 } 209 210 static bool exec_queue_extra_ref(struct xe_exec_queue *q) 211 { 212 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF; 213 } 214 215 static void set_exec_queue_extra_ref(struct xe_exec_queue *q) 216 { 217 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state); 218 } 219 220 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 221 { 222 return (atomic_read(&q->guc->state) & 223 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED | 224 EXEC_QUEUE_STATE_BANNED)); 225 } 226 227 #ifdef CONFIG_PROVE_LOCKING 228 static int alloc_submit_wq(struct xe_guc *guc) 229 { 230 int i; 231 232 for (i = 0; i < NUM_SUBMIT_WQ; ++i) { 233 guc->submission_state.submit_wq_pool[i] = 234 alloc_ordered_workqueue("submit_wq", 0); 235 if (!guc->submission_state.submit_wq_pool[i]) 236 goto err_free; 237 } 238 239 return 0; 240 241 err_free: 242 while (i) 243 destroy_workqueue(guc->submission_state.submit_wq_pool[--i]); 244 245 return -ENOMEM; 246 } 247 248 static void free_submit_wq(struct xe_guc *guc) 249 { 250 int i; 251 252 for (i = 0; i < NUM_SUBMIT_WQ; ++i) 253 destroy_workqueue(guc->submission_state.submit_wq_pool[i]); 254 } 255 256 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc) 257 { 258 int idx = guc->submission_state.submit_wq_idx++ % NUM_SUBMIT_WQ; 259 260 return guc->submission_state.submit_wq_pool[idx]; 261 } 262 #else 263 static int alloc_submit_wq(struct xe_guc *guc) 264 { 265 return 0; 266 } 267 268 static void free_submit_wq(struct xe_guc *guc) 269 { 270 271 } 272 273 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc) 274 { 275 return NULL; 276 } 277 #endif 278 279 static void guc_submit_fini(struct drm_device *drm, void *arg) 280 { 281 struct xe_guc *guc = arg; 282 283 xa_destroy(&guc->submission_state.exec_queue_lookup); 284 free_submit_wq(guc); 285 } 286 287 static void guc_submit_wedged_fini(struct drm_device *drm, void *arg) 288 { 289 struct xe_guc *guc = arg; 290 struct xe_exec_queue *q; 291 unsigned long index; 292 293 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 294 if (exec_queue_wedged(q)) 295 xe_exec_queue_put(q); 296 } 297 298 static const struct xe_exec_queue_ops guc_exec_queue_ops; 299 300 static void primelockdep(struct xe_guc *guc) 301 { 302 if (!IS_ENABLED(CONFIG_LOCKDEP)) 303 return; 304 305 fs_reclaim_acquire(GFP_KERNEL); 306 307 mutex_lock(&guc->submission_state.lock); 308 mutex_unlock(&guc->submission_state.lock); 309 310 fs_reclaim_release(GFP_KERNEL); 311 } 312 313 /** 314 * xe_guc_submit_init() - Initialize GuC submission. 315 * @guc: the &xe_guc to initialize 316 * @num_ids: number of GuC context IDs to use 317 * 318 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 319 * GuC context IDs supported by the GuC firmware should be used for submission. 320 * 321 * Only VF drivers will have to provide explicit number of GuC context IDs 322 * that they can use for submission. 323 * 324 * Return: 0 on success or a negative error code on failure. 325 */ 326 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 327 { 328 struct xe_device *xe = guc_to_xe(guc); 329 struct xe_gt *gt = guc_to_gt(guc); 330 int err; 331 332 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 333 if (err) 334 return err; 335 336 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 337 if (err) 338 return err; 339 340 err = alloc_submit_wq(guc); 341 if (err) 342 return err; 343 344 gt->exec_queue_ops = &guc_exec_queue_ops; 345 346 xa_init(&guc->submission_state.exec_queue_lookup); 347 348 primelockdep(guc); 349 350 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 351 } 352 353 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 354 { 355 int i; 356 357 lockdep_assert_held(&guc->submission_state.lock); 358 359 for (i = 0; i < xa_count; ++i) 360 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 361 362 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 363 q->guc->id, q->width); 364 } 365 366 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 367 { 368 int ret; 369 void *ptr; 370 int i; 371 372 /* 373 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 374 * worse case user gets -ENOMEM on engine create and has to try again. 375 * 376 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 377 * failure. 378 */ 379 lockdep_assert_held(&guc->submission_state.lock); 380 381 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 382 q->width); 383 if (ret < 0) 384 return ret; 385 386 q->guc->id = ret; 387 388 for (i = 0; i < q->width; ++i) { 389 ptr = xa_store(&guc->submission_state.exec_queue_lookup, 390 q->guc->id + i, q, GFP_NOWAIT); 391 if (IS_ERR(ptr)) { 392 ret = PTR_ERR(ptr); 393 goto err_release; 394 } 395 } 396 397 return 0; 398 399 err_release: 400 __release_guc_id(guc, q, i); 401 402 return ret; 403 } 404 405 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 406 { 407 mutex_lock(&guc->submission_state.lock); 408 __release_guc_id(guc, q, q->width); 409 mutex_unlock(&guc->submission_state.lock); 410 } 411 412 struct exec_queue_policy { 413 u32 count; 414 struct guc_update_exec_queue_policy h2g; 415 }; 416 417 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 418 { 419 size_t bytes = sizeof(policy->h2g.header) + 420 (sizeof(policy->h2g.klv[0]) * policy->count); 421 422 return bytes / sizeof(u32); 423 } 424 425 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 426 u16 guc_id) 427 { 428 policy->h2g.header.action = 429 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 430 policy->h2g.header.guc_id = guc_id; 431 policy->count = 0; 432 } 433 434 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 435 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 436 u32 data) \ 437 { \ 438 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 439 \ 440 policy->h2g.klv[policy->count].kl = \ 441 FIELD_PREP(GUC_KLV_0_KEY, \ 442 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 443 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 444 policy->h2g.klv[policy->count].value = data; \ 445 policy->count++; \ 446 } 447 448 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 449 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 450 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 451 #undef MAKE_EXEC_QUEUE_POLICY_ADD 452 453 static const int xe_exec_queue_prio_to_guc[] = { 454 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 455 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 456 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 457 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 458 }; 459 460 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 461 { 462 struct exec_queue_policy policy; 463 struct xe_device *xe = guc_to_xe(guc); 464 enum xe_exec_queue_priority prio = q->sched_props.priority; 465 u32 timeslice_us = q->sched_props.timeslice_us; 466 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 467 468 xe_assert(xe, exec_queue_registered(q)); 469 470 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 471 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 472 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 473 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 474 475 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 476 __guc_exec_queue_policy_action_size(&policy), 0, 0); 477 } 478 479 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 480 { 481 struct exec_queue_policy policy; 482 483 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 484 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 485 486 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 487 __guc_exec_queue_policy_action_size(&policy), 0, 0); 488 } 489 490 #define parallel_read(xe_, map_, field_) \ 491 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 492 field_) 493 #define parallel_write(xe_, map_, field_, val_) \ 494 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 495 field_, val_) 496 497 static void __register_mlrc_exec_queue(struct xe_guc *guc, 498 struct xe_exec_queue *q, 499 struct guc_ctxt_registration_info *info) 500 { 501 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 502 struct xe_device *xe = guc_to_xe(guc); 503 u32 action[MAX_MLRC_REG_SIZE]; 504 int len = 0; 505 int i; 506 507 xe_assert(xe, xe_exec_queue_is_parallel(q)); 508 509 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 510 action[len++] = info->flags; 511 action[len++] = info->context_idx; 512 action[len++] = info->engine_class; 513 action[len++] = info->engine_submit_mask; 514 action[len++] = info->wq_desc_lo; 515 action[len++] = info->wq_desc_hi; 516 action[len++] = info->wq_base_lo; 517 action[len++] = info->wq_base_hi; 518 action[len++] = info->wq_size; 519 action[len++] = q->width; 520 action[len++] = info->hwlrca_lo; 521 action[len++] = info->hwlrca_hi; 522 523 for (i = 1; i < q->width; ++i) { 524 struct xe_lrc *lrc = q->lrc[i]; 525 526 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 527 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 528 } 529 530 xe_assert(xe, len <= MAX_MLRC_REG_SIZE); 531 #undef MAX_MLRC_REG_SIZE 532 533 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 534 } 535 536 static void __register_exec_queue(struct xe_guc *guc, 537 struct guc_ctxt_registration_info *info) 538 { 539 u32 action[] = { 540 XE_GUC_ACTION_REGISTER_CONTEXT, 541 info->flags, 542 info->context_idx, 543 info->engine_class, 544 info->engine_submit_mask, 545 info->wq_desc_lo, 546 info->wq_desc_hi, 547 info->wq_base_lo, 548 info->wq_base_hi, 549 info->wq_size, 550 info->hwlrca_lo, 551 info->hwlrca_hi, 552 }; 553 554 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 555 } 556 557 static void register_exec_queue(struct xe_exec_queue *q) 558 { 559 struct xe_guc *guc = exec_queue_to_guc(q); 560 struct xe_device *xe = guc_to_xe(guc); 561 struct xe_lrc *lrc = q->lrc[0]; 562 struct guc_ctxt_registration_info info; 563 564 xe_assert(xe, !exec_queue_registered(q)); 565 566 memset(&info, 0, sizeof(info)); 567 info.context_idx = q->guc->id; 568 info.engine_class = xe_engine_class_to_guc_class(q->class); 569 info.engine_submit_mask = q->logical_mask; 570 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 571 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 572 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 573 574 if (xe_exec_queue_is_parallel(q)) { 575 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 576 struct iosys_map map = xe_lrc_parallel_map(lrc); 577 578 info.wq_desc_lo = lower_32_bits(ggtt_addr + 579 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 580 info.wq_desc_hi = upper_32_bits(ggtt_addr + 581 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 582 info.wq_base_lo = lower_32_bits(ggtt_addr + 583 offsetof(struct guc_submit_parallel_scratch, wq[0])); 584 info.wq_base_hi = upper_32_bits(ggtt_addr + 585 offsetof(struct guc_submit_parallel_scratch, wq[0])); 586 info.wq_size = WQ_SIZE; 587 588 q->guc->wqi_head = 0; 589 q->guc->wqi_tail = 0; 590 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 591 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 592 } 593 594 /* 595 * We must keep a reference for LR engines if engine is registered with 596 * the GuC as jobs signal immediately and can't destroy an engine if the 597 * GuC has a reference to it. 598 */ 599 if (xe_exec_queue_is_lr(q)) 600 xe_exec_queue_get(q); 601 602 set_exec_queue_registered(q); 603 trace_xe_exec_queue_register(q); 604 if (xe_exec_queue_is_parallel(q)) 605 __register_mlrc_exec_queue(guc, q, &info); 606 else 607 __register_exec_queue(guc, &info); 608 init_policies(guc, q); 609 } 610 611 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 612 { 613 return (WQ_SIZE - q->guc->wqi_tail); 614 } 615 616 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 617 { 618 struct xe_guc *guc = exec_queue_to_guc(q); 619 struct xe_device *xe = guc_to_xe(guc); 620 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 621 unsigned int sleep_period_ms = 1; 622 623 #define AVAILABLE_SPACE \ 624 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 625 if (wqi_size > AVAILABLE_SPACE) { 626 try_again: 627 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 628 if (wqi_size > AVAILABLE_SPACE) { 629 if (sleep_period_ms == 1024) { 630 xe_gt_reset_async(q->gt); 631 return -ENODEV; 632 } 633 634 msleep(sleep_period_ms); 635 sleep_period_ms <<= 1; 636 goto try_again; 637 } 638 } 639 #undef AVAILABLE_SPACE 640 641 return 0; 642 } 643 644 static int wq_noop_append(struct xe_exec_queue *q) 645 { 646 struct xe_guc *guc = exec_queue_to_guc(q); 647 struct xe_device *xe = guc_to_xe(guc); 648 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 649 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 650 651 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 652 return -ENODEV; 653 654 xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw)); 655 656 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 657 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 658 FIELD_PREP(WQ_LEN_MASK, len_dw)); 659 q->guc->wqi_tail = 0; 660 661 return 0; 662 } 663 664 static void wq_item_append(struct xe_exec_queue *q) 665 { 666 struct xe_guc *guc = exec_queue_to_guc(q); 667 struct xe_device *xe = guc_to_xe(guc); 668 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 669 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 670 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 671 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 672 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 673 int i = 0, j; 674 675 if (wqi_size > wq_space_until_wrap(q)) { 676 if (wq_noop_append(q)) 677 return; 678 } 679 if (wq_wait_for_space(q, wqi_size)) 680 return; 681 682 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 683 FIELD_PREP(WQ_LEN_MASK, len_dw); 684 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 685 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 686 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 687 wqi[i++] = 0; 688 for (j = 1; j < q->width; ++j) { 689 struct xe_lrc *lrc = q->lrc[j]; 690 691 wqi[i++] = lrc->ring.tail / sizeof(u64); 692 } 693 694 xe_assert(xe, i == wqi_size / sizeof(u32)); 695 696 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 697 wq[q->guc->wqi_tail / sizeof(u32)])); 698 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 699 q->guc->wqi_tail += wqi_size; 700 xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE); 701 702 xe_device_wmb(xe); 703 704 map = xe_lrc_parallel_map(q->lrc[0]); 705 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 706 } 707 708 #define RESUME_PENDING ~0x0ull 709 static void submit_exec_queue(struct xe_exec_queue *q) 710 { 711 struct xe_guc *guc = exec_queue_to_guc(q); 712 struct xe_device *xe = guc_to_xe(guc); 713 struct xe_lrc *lrc = q->lrc[0]; 714 u32 action[3]; 715 u32 g2h_len = 0; 716 u32 num_g2h = 0; 717 int len = 0; 718 bool extra_submit = false; 719 720 xe_assert(xe, exec_queue_registered(q)); 721 722 if (xe_exec_queue_is_parallel(q)) 723 wq_item_append(q); 724 else 725 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 726 727 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 728 return; 729 730 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 731 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 732 action[len++] = q->guc->id; 733 action[len++] = GUC_CONTEXT_ENABLE; 734 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 735 num_g2h = 1; 736 if (xe_exec_queue_is_parallel(q)) 737 extra_submit = true; 738 739 q->guc->resume_time = RESUME_PENDING; 740 set_exec_queue_pending_enable(q); 741 set_exec_queue_enabled(q); 742 trace_xe_exec_queue_scheduling_enable(q); 743 } else { 744 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 745 action[len++] = q->guc->id; 746 trace_xe_exec_queue_submit(q); 747 } 748 749 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 750 751 if (extra_submit) { 752 len = 0; 753 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 754 action[len++] = q->guc->id; 755 trace_xe_exec_queue_submit(q); 756 757 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 758 } 759 } 760 761 static struct dma_fence * 762 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 763 { 764 struct xe_sched_job *job = to_xe_sched_job(drm_job); 765 struct xe_exec_queue *q = job->q; 766 struct xe_guc *guc = exec_queue_to_guc(q); 767 struct xe_device *xe = guc_to_xe(guc); 768 bool lr = xe_exec_queue_is_lr(q); 769 770 xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 771 exec_queue_banned(q) || exec_queue_suspended(q)); 772 773 trace_xe_sched_job_run(job); 774 775 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 776 if (!exec_queue_registered(q)) 777 register_exec_queue(q); 778 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 779 q->ring_ops->emit_job(job); 780 submit_exec_queue(q); 781 } 782 783 if (lr) { 784 xe_sched_job_set_error(job, -EOPNOTSUPP); 785 return NULL; 786 } else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) { 787 return job->fence; 788 } else { 789 return dma_fence_get(job->fence); 790 } 791 } 792 793 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 794 { 795 struct xe_sched_job *job = to_xe_sched_job(drm_job); 796 797 xe_exec_queue_update_run_ticks(job->q); 798 799 trace_xe_sched_job_free(job); 800 xe_sched_job_put(job); 801 } 802 803 static int guc_read_stopped(struct xe_guc *guc) 804 { 805 return atomic_read(&guc->submission_state.stopped); 806 } 807 808 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 809 u32 action[] = { \ 810 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 811 q->guc->id, \ 812 GUC_CONTEXT_##enable_disable, \ 813 } 814 815 static void disable_scheduling_deregister(struct xe_guc *guc, 816 struct xe_exec_queue *q) 817 { 818 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 819 struct xe_device *xe = guc_to_xe(guc); 820 int ret; 821 822 set_min_preemption_timeout(guc, q); 823 smp_rmb(); 824 ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) || 825 guc_read_stopped(guc), HZ * 5); 826 if (!ret) { 827 struct xe_gpu_scheduler *sched = &q->guc->sched; 828 829 drm_warn(&xe->drm, "Pending enable failed to respond"); 830 xe_sched_submission_start(sched); 831 xe_gt_reset_async(q->gt); 832 xe_sched_tdr_queue_imm(sched); 833 return; 834 } 835 836 clear_exec_queue_enabled(q); 837 set_exec_queue_pending_disable(q); 838 set_exec_queue_destroyed(q); 839 trace_xe_exec_queue_scheduling_disable(q); 840 841 /* 842 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 843 * handler and we are not allowed to reserved G2H space in handlers. 844 */ 845 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 846 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 847 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 848 } 849 850 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 851 { 852 struct xe_guc *guc = exec_queue_to_guc(q); 853 struct xe_device *xe = guc_to_xe(guc); 854 855 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 856 wake_up_all(&xe->ufence_wq); 857 858 if (xe_exec_queue_is_lr(q)) 859 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 860 else 861 xe_sched_tdr_queue_imm(&q->guc->sched); 862 } 863 864 static bool guc_submit_hint_wedged(struct xe_guc *guc) 865 { 866 struct xe_device *xe = guc_to_xe(guc); 867 struct xe_exec_queue *q; 868 unsigned long index; 869 int err; 870 871 if (xe->wedged.mode != 2) 872 return false; 873 874 if (xe_device_wedged(xe)) 875 return true; 876 877 xe_device_declare_wedged(xe); 878 879 xe_guc_submit_reset_prepare(guc); 880 xe_guc_ct_stop(&guc->ct); 881 882 err = drmm_add_action_or_reset(&guc_to_xe(guc)->drm, 883 guc_submit_wedged_fini, guc); 884 if (err) { 885 drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n"); 886 return true; /* Device is wedged anyway */ 887 } 888 889 mutex_lock(&guc->submission_state.lock); 890 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 891 if (xe_exec_queue_get_unless_zero(q)) 892 set_exec_queue_wedged(q); 893 mutex_unlock(&guc->submission_state.lock); 894 895 return true; 896 } 897 898 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 899 { 900 struct xe_guc_exec_queue *ge = 901 container_of(w, struct xe_guc_exec_queue, lr_tdr); 902 struct xe_exec_queue *q = ge->q; 903 struct xe_guc *guc = exec_queue_to_guc(q); 904 struct xe_device *xe = guc_to_xe(guc); 905 struct xe_gpu_scheduler *sched = &ge->sched; 906 bool wedged; 907 908 xe_assert(xe, xe_exec_queue_is_lr(q)); 909 trace_xe_exec_queue_lr_cleanup(q); 910 911 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 912 913 /* Kill the run_job / process_msg entry points */ 914 xe_sched_submission_stop(sched); 915 916 /* 917 * Engine state now mostly stable, disable scheduling / deregister if 918 * needed. This cleanup routine might be called multiple times, where 919 * the actual async engine deregister drops the final engine ref. 920 * Calling disable_scheduling_deregister will mark the engine as 921 * destroyed and fire off the CT requests to disable scheduling / 922 * deregister, which we only want to do once. We also don't want to mark 923 * the engine as pending_disable again as this may race with the 924 * xe_guc_deregister_done_handler() which treats it as an unexpected 925 * state. 926 */ 927 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 928 struct xe_guc *guc = exec_queue_to_guc(q); 929 int ret; 930 931 set_exec_queue_banned(q); 932 disable_scheduling_deregister(guc, q); 933 934 /* 935 * Must wait for scheduling to be disabled before signalling 936 * any fences, if GT broken the GT reset code should signal us. 937 */ 938 ret = wait_event_timeout(guc->ct.wq, 939 !exec_queue_pending_disable(q) || 940 guc_read_stopped(guc), HZ * 5); 941 if (!ret) { 942 drm_warn(&xe->drm, "Schedule disable failed to respond"); 943 xe_sched_submission_start(sched); 944 xe_gt_reset_async(q->gt); 945 return; 946 } 947 } 948 949 xe_sched_submission_start(sched); 950 } 951 952 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100) 953 954 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job) 955 { 956 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q)); 957 u32 ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]); 958 u32 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]); 959 u32 timeout_ms = q->sched_props.job_timeout_ms; 960 u32 diff; 961 u64 running_time_ms; 962 963 /* 964 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch 965 * possible overflows with a high timeout. 966 */ 967 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC); 968 969 if (ctx_timestamp < ctx_job_timestamp) 970 diff = ctx_timestamp + U32_MAX - ctx_job_timestamp; 971 else 972 diff = ctx_timestamp - ctx_job_timestamp; 973 974 /* 975 * Ensure timeout is within 5% to account for an GuC scheduling latency 976 */ 977 running_time_ms = 978 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff)); 979 980 xe_gt_dbg(gt, 981 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x", 982 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 983 q->guc->id, running_time_ms, timeout_ms, diff); 984 985 return running_time_ms >= timeout_ms; 986 } 987 988 static void enable_scheduling(struct xe_exec_queue *q) 989 { 990 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 991 struct xe_guc *guc = exec_queue_to_guc(q); 992 int ret; 993 994 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 995 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 996 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 997 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 998 999 set_exec_queue_pending_enable(q); 1000 set_exec_queue_enabled(q); 1001 trace_xe_exec_queue_scheduling_enable(q); 1002 1003 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1004 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1005 1006 ret = wait_event_timeout(guc->ct.wq, 1007 !exec_queue_pending_enable(q) || 1008 guc_read_stopped(guc), HZ * 5); 1009 if (!ret || guc_read_stopped(guc)) { 1010 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond"); 1011 set_exec_queue_banned(q); 1012 xe_gt_reset_async(q->gt); 1013 xe_sched_tdr_queue_imm(&q->guc->sched); 1014 } 1015 } 1016 1017 static void disable_scheduling(struct xe_exec_queue *q, bool immediate) 1018 { 1019 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 1020 struct xe_guc *guc = exec_queue_to_guc(q); 1021 1022 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1023 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1024 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1025 1026 if (immediate) 1027 set_min_preemption_timeout(guc, q); 1028 clear_exec_queue_enabled(q); 1029 set_exec_queue_pending_disable(q); 1030 trace_xe_exec_queue_scheduling_disable(q); 1031 1032 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1033 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1034 } 1035 1036 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1037 { 1038 u32 action[] = { 1039 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1040 q->guc->id, 1041 }; 1042 1043 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1044 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1045 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1046 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1047 1048 set_exec_queue_destroyed(q); 1049 trace_xe_exec_queue_deregister(q); 1050 1051 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1052 G2H_LEN_DW_DEREGISTER_CONTEXT, 1); 1053 } 1054 1055 static enum drm_gpu_sched_stat 1056 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 1057 { 1058 struct xe_sched_job *job = to_xe_sched_job(drm_job); 1059 struct xe_sched_job *tmp_job; 1060 struct xe_exec_queue *q = job->q; 1061 struct xe_gpu_scheduler *sched = &q->guc->sched; 1062 struct xe_guc *guc = exec_queue_to_guc(q); 1063 int err = -ETIME; 1064 int i = 0; 1065 bool wedged, skip_timeout_check; 1066 1067 /* 1068 * TDR has fired before free job worker. Common if exec queue 1069 * immediately closed after last fence signaled. 1070 */ 1071 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) { 1072 guc_exec_queue_free_job(drm_job); 1073 1074 return DRM_GPU_SCHED_STAT_NOMINAL; 1075 } 1076 1077 /* Kill the run_job entry point */ 1078 xe_sched_submission_stop(sched); 1079 1080 /* Must check all state after stopping scheduler */ 1081 skip_timeout_check = exec_queue_reset(q) || 1082 exec_queue_killed_or_banned_or_wedged(q) || 1083 exec_queue_destroyed(q); 1084 1085 /* Job hasn't started, can't be timed out */ 1086 if (!skip_timeout_check && !xe_sched_job_started(job)) 1087 goto rearm; 1088 1089 /* 1090 * XXX: Sampling timeout doesn't work in wedged mode as we have to 1091 * modify scheduling state to read timestamp. We could read the 1092 * timestamp from a register to accumulate current running time but this 1093 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are 1094 * genuine timeouts. 1095 */ 1096 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 1097 1098 /* Engine state now stable, disable scheduling to check timestamp */ 1099 if (!wedged && exec_queue_registered(q)) { 1100 int ret; 1101 1102 if (exec_queue_reset(q)) 1103 err = -EIO; 1104 1105 if (!exec_queue_destroyed(q)) { 1106 /* 1107 * Wait for any pending G2H to flush out before 1108 * modifying state 1109 */ 1110 ret = wait_event_timeout(guc->ct.wq, 1111 !exec_queue_pending_enable(q) || 1112 guc_read_stopped(guc), HZ * 5); 1113 if (!ret || guc_read_stopped(guc)) 1114 goto trigger_reset; 1115 1116 /* 1117 * Flag communicates to G2H handler that schedule 1118 * disable originated from a timeout check. The G2H then 1119 * avoid triggering cleanup or deregistering the exec 1120 * queue. 1121 */ 1122 set_exec_queue_check_timeout(q); 1123 disable_scheduling(q, skip_timeout_check); 1124 } 1125 1126 /* 1127 * Must wait for scheduling to be disabled before signalling 1128 * any fences, if GT broken the GT reset code should signal us. 1129 * 1130 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 1131 * error) messages which can cause the schedule disable to get 1132 * lost. If this occurs, trigger a GT reset to recover. 1133 */ 1134 smp_rmb(); 1135 ret = wait_event_timeout(guc->ct.wq, 1136 !exec_queue_pending_disable(q) || 1137 guc_read_stopped(guc), HZ * 5); 1138 if (!ret || guc_read_stopped(guc)) { 1139 trigger_reset: 1140 if (!ret) 1141 xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond"); 1142 set_exec_queue_extra_ref(q); 1143 xe_exec_queue_get(q); /* GT reset owns this */ 1144 set_exec_queue_banned(q); 1145 xe_gt_reset_async(q->gt); 1146 xe_sched_tdr_queue_imm(sched); 1147 goto rearm; 1148 } 1149 } 1150 1151 /* 1152 * Check if job is actually timed out, if so restart job execution and TDR 1153 */ 1154 if (!wedged && !skip_timeout_check && !check_timeout(q, job) && 1155 !exec_queue_reset(q) && exec_queue_registered(q)) { 1156 clear_exec_queue_check_timeout(q); 1157 goto sched_enable; 1158 } 1159 1160 xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx", 1161 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1162 q->guc->id, q->flags); 1163 trace_xe_sched_job_timedout(job); 1164 1165 if (!exec_queue_killed(q)) 1166 xe_devcoredump(job); 1167 1168 /* 1169 * Kernel jobs should never fail, nor should VM jobs if they do 1170 * somethings has gone wrong and the GT needs a reset 1171 */ 1172 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 1173 "Kernel-submitted job timed out\n"); 1174 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 1175 "VM job timed out on non-killed execqueue\n"); 1176 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 1177 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 1178 if (!xe_sched_invalidate_job(job, 2)) { 1179 clear_exec_queue_check_timeout(q); 1180 xe_gt_reset_async(q->gt); 1181 goto rearm; 1182 } 1183 } 1184 1185 /* Finish cleaning up exec queue via deregister */ 1186 set_exec_queue_banned(q); 1187 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1188 set_exec_queue_extra_ref(q); 1189 xe_exec_queue_get(q); 1190 __deregister_exec_queue(guc, q); 1191 } 1192 1193 /* Stop fence signaling */ 1194 xe_hw_fence_irq_stop(q->fence_irq); 1195 1196 /* 1197 * Fence state now stable, stop / start scheduler which cleans up any 1198 * fences that are complete 1199 */ 1200 xe_sched_add_pending_job(sched, job); 1201 xe_sched_submission_start(sched); 1202 1203 xe_guc_exec_queue_trigger_cleanup(q); 1204 1205 /* Mark all outstanding jobs as bad, thus completing them */ 1206 spin_lock(&sched->base.job_list_lock); 1207 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1208 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1209 spin_unlock(&sched->base.job_list_lock); 1210 1211 /* Start fence signaling */ 1212 xe_hw_fence_irq_start(q->fence_irq); 1213 1214 return DRM_GPU_SCHED_STAT_NOMINAL; 1215 1216 sched_enable: 1217 enable_scheduling(q); 1218 rearm: 1219 /* 1220 * XXX: Ideally want to adjust timeout based on current exection time 1221 * but there is not currently an easy way to do in DRM scheduler. With 1222 * some thought, do this in a follow up. 1223 */ 1224 xe_sched_add_pending_job(sched, job); 1225 xe_sched_submission_start(sched); 1226 1227 return DRM_GPU_SCHED_STAT_NOMINAL; 1228 } 1229 1230 static void __guc_exec_queue_fini_async(struct work_struct *w) 1231 { 1232 struct xe_guc_exec_queue *ge = 1233 container_of(w, struct xe_guc_exec_queue, fini_async); 1234 struct xe_exec_queue *q = ge->q; 1235 struct xe_guc *guc = exec_queue_to_guc(q); 1236 1237 xe_pm_runtime_get(guc_to_xe(guc)); 1238 trace_xe_exec_queue_destroy(q); 1239 1240 if (xe_exec_queue_is_lr(q)) 1241 cancel_work_sync(&ge->lr_tdr); 1242 release_guc_id(guc, q); 1243 xe_sched_entity_fini(&ge->entity); 1244 xe_sched_fini(&ge->sched); 1245 1246 kfree(ge); 1247 xe_exec_queue_fini(q); 1248 xe_pm_runtime_put(guc_to_xe(guc)); 1249 } 1250 1251 static void guc_exec_queue_fini_async(struct xe_exec_queue *q) 1252 { 1253 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async); 1254 1255 /* We must block on kernel engines so slabs are empty on driver unload */ 1256 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1257 __guc_exec_queue_fini_async(&q->guc->fini_async); 1258 else 1259 queue_work(system_wq, &q->guc->fini_async); 1260 } 1261 1262 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q) 1263 { 1264 /* 1265 * Might be done from within the GPU scheduler, need to do async as we 1266 * fini the scheduler when the engine is fini'd, the scheduler can't 1267 * complete fini within itself (circular dependency). Async resolves 1268 * this we and don't really care when everything is fini'd, just that it 1269 * is. 1270 */ 1271 guc_exec_queue_fini_async(q); 1272 } 1273 1274 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1275 { 1276 struct xe_exec_queue *q = msg->private_data; 1277 struct xe_guc *guc = exec_queue_to_guc(q); 1278 struct xe_device *xe = guc_to_xe(guc); 1279 1280 xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1281 trace_xe_exec_queue_cleanup_entity(q); 1282 1283 if (exec_queue_registered(q)) 1284 disable_scheduling_deregister(guc, q); 1285 else 1286 __guc_exec_queue_fini(guc, q); 1287 } 1288 1289 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1290 { 1291 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1292 } 1293 1294 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1295 { 1296 struct xe_exec_queue *q = msg->private_data; 1297 struct xe_guc *guc = exec_queue_to_guc(q); 1298 1299 if (guc_exec_queue_allowed_to_change_state(q)) 1300 init_policies(guc, q); 1301 kfree(msg); 1302 } 1303 1304 static void suspend_fence_signal(struct xe_exec_queue *q) 1305 { 1306 struct xe_guc *guc = exec_queue_to_guc(q); 1307 struct xe_device *xe = guc_to_xe(guc); 1308 1309 xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) || 1310 guc_read_stopped(guc)); 1311 xe_assert(xe, q->guc->suspend_pending); 1312 1313 q->guc->suspend_pending = false; 1314 smp_wmb(); 1315 wake_up(&q->guc->suspend_wait); 1316 } 1317 1318 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1319 { 1320 struct xe_exec_queue *q = msg->private_data; 1321 struct xe_guc *guc = exec_queue_to_guc(q); 1322 1323 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1324 exec_queue_enabled(q)) { 1325 wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING || 1326 guc_read_stopped(guc)); 1327 1328 if (!guc_read_stopped(guc)) { 1329 s64 since_resume_ms = 1330 ktime_ms_delta(ktime_get(), 1331 q->guc->resume_time); 1332 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1333 since_resume_ms; 1334 1335 if (wait_ms > 0 && q->guc->resume_time) 1336 msleep(wait_ms); 1337 1338 set_exec_queue_suspended(q); 1339 disable_scheduling(q, false); 1340 } 1341 } else if (q->guc->suspend_pending) { 1342 set_exec_queue_suspended(q); 1343 suspend_fence_signal(q); 1344 } 1345 } 1346 1347 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1348 { 1349 struct xe_exec_queue *q = msg->private_data; 1350 1351 if (guc_exec_queue_allowed_to_change_state(q)) { 1352 q->guc->resume_time = RESUME_PENDING; 1353 clear_exec_queue_suspended(q); 1354 enable_scheduling(q); 1355 } else { 1356 clear_exec_queue_suspended(q); 1357 } 1358 } 1359 1360 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1361 #define SET_SCHED_PROPS 2 1362 #define SUSPEND 3 1363 #define RESUME 4 1364 1365 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1366 { 1367 trace_xe_sched_msg_recv(msg); 1368 1369 switch (msg->opcode) { 1370 case CLEANUP: 1371 __guc_exec_queue_process_msg_cleanup(msg); 1372 break; 1373 case SET_SCHED_PROPS: 1374 __guc_exec_queue_process_msg_set_sched_props(msg); 1375 break; 1376 case SUSPEND: 1377 __guc_exec_queue_process_msg_suspend(msg); 1378 break; 1379 case RESUME: 1380 __guc_exec_queue_process_msg_resume(msg); 1381 break; 1382 default: 1383 XE_WARN_ON("Unknown message type"); 1384 } 1385 } 1386 1387 static const struct drm_sched_backend_ops drm_sched_ops = { 1388 .run_job = guc_exec_queue_run_job, 1389 .free_job = guc_exec_queue_free_job, 1390 .timedout_job = guc_exec_queue_timedout_job, 1391 }; 1392 1393 static const struct xe_sched_backend_ops xe_sched_ops = { 1394 .process_msg = guc_exec_queue_process_msg, 1395 }; 1396 1397 static int guc_exec_queue_init(struct xe_exec_queue *q) 1398 { 1399 struct xe_gpu_scheduler *sched; 1400 struct xe_guc *guc = exec_queue_to_guc(q); 1401 struct xe_device *xe = guc_to_xe(guc); 1402 struct xe_guc_exec_queue *ge; 1403 long timeout; 1404 int err; 1405 1406 xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc))); 1407 1408 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1409 if (!ge) 1410 return -ENOMEM; 1411 1412 q->guc = ge; 1413 ge->q = q; 1414 init_waitqueue_head(&ge->suspend_wait); 1415 1416 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1417 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1418 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1419 get_submit_wq(guc), 1420 q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1421 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1422 q->name, gt_to_xe(q->gt)->drm.dev); 1423 if (err) 1424 goto err_free; 1425 1426 sched = &ge->sched; 1427 err = xe_sched_entity_init(&ge->entity, sched); 1428 if (err) 1429 goto err_sched; 1430 1431 if (xe_exec_queue_is_lr(q)) 1432 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1433 1434 mutex_lock(&guc->submission_state.lock); 1435 1436 err = alloc_guc_id(guc, q); 1437 if (err) 1438 goto err_entity; 1439 1440 q->entity = &ge->entity; 1441 1442 if (guc_read_stopped(guc)) 1443 xe_sched_stop(sched); 1444 1445 mutex_unlock(&guc->submission_state.lock); 1446 1447 xe_exec_queue_assign_name(q, q->guc->id); 1448 1449 trace_xe_exec_queue_create(q); 1450 1451 return 0; 1452 1453 err_entity: 1454 mutex_unlock(&guc->submission_state.lock); 1455 xe_sched_entity_fini(&ge->entity); 1456 err_sched: 1457 xe_sched_fini(&ge->sched); 1458 err_free: 1459 kfree(ge); 1460 1461 return err; 1462 } 1463 1464 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1465 { 1466 trace_xe_exec_queue_kill(q); 1467 set_exec_queue_killed(q); 1468 xe_guc_exec_queue_trigger_cleanup(q); 1469 } 1470 1471 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1472 u32 opcode) 1473 { 1474 INIT_LIST_HEAD(&msg->link); 1475 msg->opcode = opcode; 1476 msg->private_data = q; 1477 1478 trace_xe_sched_msg_add(msg); 1479 xe_sched_add_msg(&q->guc->sched, msg); 1480 } 1481 1482 #define STATIC_MSG_CLEANUP 0 1483 #define STATIC_MSG_SUSPEND 1 1484 #define STATIC_MSG_RESUME 2 1485 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1486 { 1487 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1488 1489 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1490 guc_exec_queue_add_msg(q, msg, CLEANUP); 1491 else 1492 __guc_exec_queue_fini(exec_queue_to_guc(q), q); 1493 } 1494 1495 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1496 enum xe_exec_queue_priority priority) 1497 { 1498 struct xe_sched_msg *msg; 1499 1500 if (q->sched_props.priority == priority || 1501 exec_queue_killed_or_banned_or_wedged(q)) 1502 return 0; 1503 1504 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1505 if (!msg) 1506 return -ENOMEM; 1507 1508 q->sched_props.priority = priority; 1509 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1510 1511 return 0; 1512 } 1513 1514 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1515 { 1516 struct xe_sched_msg *msg; 1517 1518 if (q->sched_props.timeslice_us == timeslice_us || 1519 exec_queue_killed_or_banned_or_wedged(q)) 1520 return 0; 1521 1522 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1523 if (!msg) 1524 return -ENOMEM; 1525 1526 q->sched_props.timeslice_us = timeslice_us; 1527 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1528 1529 return 0; 1530 } 1531 1532 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1533 u32 preempt_timeout_us) 1534 { 1535 struct xe_sched_msg *msg; 1536 1537 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1538 exec_queue_killed_or_banned_or_wedged(q)) 1539 return 0; 1540 1541 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1542 if (!msg) 1543 return -ENOMEM; 1544 1545 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1546 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1547 1548 return 0; 1549 } 1550 1551 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1552 { 1553 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1554 1555 if (exec_queue_killed_or_banned_or_wedged(q) || q->guc->suspend_pending) 1556 return -EINVAL; 1557 1558 q->guc->suspend_pending = true; 1559 guc_exec_queue_add_msg(q, msg, SUSPEND); 1560 1561 return 0; 1562 } 1563 1564 static void guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1565 { 1566 struct xe_guc *guc = exec_queue_to_guc(q); 1567 1568 wait_event(q->guc->suspend_wait, !q->guc->suspend_pending || 1569 guc_read_stopped(guc)); 1570 } 1571 1572 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1573 { 1574 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1575 struct xe_guc *guc = exec_queue_to_guc(q); 1576 struct xe_device *xe = guc_to_xe(guc); 1577 1578 xe_assert(xe, !q->guc->suspend_pending); 1579 1580 guc_exec_queue_add_msg(q, msg, RESUME); 1581 } 1582 1583 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1584 { 1585 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1586 } 1587 1588 /* 1589 * All of these functions are an abstraction layer which other parts of XE can 1590 * use to trap into the GuC backend. All of these functions, aside from init, 1591 * really shouldn't do much other than trap into the DRM scheduler which 1592 * synchronizes these operations. 1593 */ 1594 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1595 .init = guc_exec_queue_init, 1596 .kill = guc_exec_queue_kill, 1597 .fini = guc_exec_queue_fini, 1598 .set_priority = guc_exec_queue_set_priority, 1599 .set_timeslice = guc_exec_queue_set_timeslice, 1600 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1601 .suspend = guc_exec_queue_suspend, 1602 .suspend_wait = guc_exec_queue_suspend_wait, 1603 .resume = guc_exec_queue_resume, 1604 .reset_status = guc_exec_queue_reset_status, 1605 }; 1606 1607 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1608 { 1609 struct xe_gpu_scheduler *sched = &q->guc->sched; 1610 1611 /* Stop scheduling + flush any DRM scheduler operations */ 1612 xe_sched_submission_stop(sched); 1613 1614 /* Clean up lost G2H + reset engine state */ 1615 if (exec_queue_registered(q)) { 1616 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1617 xe_exec_queue_put(q); 1618 else if (exec_queue_destroyed(q)) 1619 __guc_exec_queue_fini(guc, q); 1620 } 1621 if (q->guc->suspend_pending) { 1622 set_exec_queue_suspended(q); 1623 suspend_fence_signal(q); 1624 } 1625 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED | 1626 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED | 1627 EXEC_QUEUE_STATE_SUSPENDED, 1628 &q->guc->state); 1629 q->guc->resume_time = 0; 1630 trace_xe_exec_queue_stop(q); 1631 1632 /* 1633 * Ban any engine (aside from kernel and engines used for VM ops) with a 1634 * started but not complete job or if a job has gone through a GT reset 1635 * more than twice. 1636 */ 1637 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1638 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1639 bool ban = false; 1640 1641 if (job) { 1642 if ((xe_sched_job_started(job) && 1643 !xe_sched_job_completed(job)) || 1644 xe_sched_invalidate_job(job, 2)) { 1645 trace_xe_sched_job_ban(job); 1646 ban = true; 1647 } 1648 } else if (xe_exec_queue_is_lr(q) && 1649 (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) { 1650 ban = true; 1651 } 1652 1653 if (ban) { 1654 set_exec_queue_banned(q); 1655 xe_guc_exec_queue_trigger_cleanup(q); 1656 } 1657 } 1658 } 1659 1660 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1661 { 1662 int ret; 1663 1664 /* 1665 * Using an atomic here rather than submission_state.lock as this 1666 * function can be called while holding the CT lock (engine reset 1667 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1668 * Atomic is not ideal, but it works to prevent against concurrent reset 1669 * and releasing any TDRs waiting on guc->submission_state.stopped. 1670 */ 1671 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1672 smp_wmb(); 1673 wake_up_all(&guc->ct.wq); 1674 1675 return ret; 1676 } 1677 1678 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1679 { 1680 wait_event(guc->ct.wq, !guc_read_stopped(guc)); 1681 } 1682 1683 void xe_guc_submit_stop(struct xe_guc *guc) 1684 { 1685 struct xe_exec_queue *q; 1686 unsigned long index; 1687 struct xe_device *xe = guc_to_xe(guc); 1688 1689 xe_assert(xe, guc_read_stopped(guc) == 1); 1690 1691 mutex_lock(&guc->submission_state.lock); 1692 1693 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1694 guc_exec_queue_stop(guc, q); 1695 1696 mutex_unlock(&guc->submission_state.lock); 1697 1698 /* 1699 * No one can enter the backend at this point, aside from new engine 1700 * creation which is protected by guc->submission_state.lock. 1701 */ 1702 1703 } 1704 1705 static void guc_exec_queue_start(struct xe_exec_queue *q) 1706 { 1707 struct xe_gpu_scheduler *sched = &q->guc->sched; 1708 1709 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1710 int i; 1711 1712 trace_xe_exec_queue_resubmit(q); 1713 for (i = 0; i < q->width; ++i) 1714 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1715 xe_sched_resubmit_jobs(sched); 1716 } 1717 1718 xe_sched_submission_start(sched); 1719 } 1720 1721 int xe_guc_submit_start(struct xe_guc *guc) 1722 { 1723 struct xe_exec_queue *q; 1724 unsigned long index; 1725 struct xe_device *xe = guc_to_xe(guc); 1726 1727 xe_assert(xe, guc_read_stopped(guc) == 1); 1728 1729 mutex_lock(&guc->submission_state.lock); 1730 atomic_dec(&guc->submission_state.stopped); 1731 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1732 guc_exec_queue_start(q); 1733 mutex_unlock(&guc->submission_state.lock); 1734 1735 wake_up_all(&guc->ct.wq); 1736 1737 return 0; 1738 } 1739 1740 static struct xe_exec_queue * 1741 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1742 { 1743 struct xe_device *xe = guc_to_xe(guc); 1744 struct xe_exec_queue *q; 1745 1746 if (unlikely(guc_id >= GUC_ID_MAX)) { 1747 drm_err(&xe->drm, "Invalid guc_id %u", guc_id); 1748 return NULL; 1749 } 1750 1751 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1752 if (unlikely(!q)) { 1753 drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id); 1754 return NULL; 1755 } 1756 1757 xe_assert(xe, guc_id >= q->guc->id); 1758 xe_assert(xe, guc_id < (q->guc->id + q->width)); 1759 1760 return q; 1761 } 1762 1763 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1764 { 1765 u32 action[] = { 1766 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1767 q->guc->id, 1768 }; 1769 1770 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q)); 1771 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1772 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1773 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1774 1775 trace_xe_exec_queue_deregister(q); 1776 1777 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1778 } 1779 1780 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q, 1781 u32 runnable_state) 1782 { 1783 trace_xe_exec_queue_scheduling_done(q); 1784 1785 if (runnable_state == 1) { 1786 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q)); 1787 1788 q->guc->resume_time = ktime_get(); 1789 clear_exec_queue_pending_enable(q); 1790 smp_wmb(); 1791 wake_up_all(&guc->ct.wq); 1792 } else { 1793 bool check_timeout = exec_queue_check_timeout(q); 1794 1795 xe_gt_assert(guc_to_gt(guc), runnable_state == 0); 1796 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q)); 1797 1798 clear_exec_queue_pending_disable(q); 1799 if (q->guc->suspend_pending) { 1800 suspend_fence_signal(q); 1801 } else { 1802 if (exec_queue_banned(q) || check_timeout) { 1803 smp_wmb(); 1804 wake_up_all(&guc->ct.wq); 1805 } 1806 if (!check_timeout) 1807 deregister_exec_queue(guc, q); 1808 } 1809 } 1810 } 1811 1812 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1813 { 1814 struct xe_device *xe = guc_to_xe(guc); 1815 struct xe_exec_queue *q; 1816 u32 guc_id = msg[0]; 1817 u32 runnable_state = msg[1]; 1818 1819 if (unlikely(len < 2)) { 1820 drm_err(&xe->drm, "Invalid length %u", len); 1821 return -EPROTO; 1822 } 1823 1824 q = g2h_exec_queue_lookup(guc, guc_id); 1825 if (unlikely(!q)) 1826 return -EPROTO; 1827 1828 if (unlikely(!exec_queue_pending_enable(q) && 1829 !exec_queue_pending_disable(q))) { 1830 xe_gt_err(guc_to_gt(guc), 1831 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u", 1832 atomic_read(&q->guc->state), q->guc->id, 1833 runnable_state); 1834 return -EPROTO; 1835 } 1836 1837 handle_sched_done(guc, q, runnable_state); 1838 1839 return 0; 1840 } 1841 1842 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 1843 { 1844 trace_xe_exec_queue_deregister_done(q); 1845 1846 clear_exec_queue_registered(q); 1847 1848 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1849 xe_exec_queue_put(q); 1850 else 1851 __guc_exec_queue_fini(guc, q); 1852 } 1853 1854 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1855 { 1856 struct xe_device *xe = guc_to_xe(guc); 1857 struct xe_exec_queue *q; 1858 u32 guc_id = msg[0]; 1859 1860 if (unlikely(len < 1)) { 1861 drm_err(&xe->drm, "Invalid length %u", len); 1862 return -EPROTO; 1863 } 1864 1865 q = g2h_exec_queue_lookup(guc, guc_id); 1866 if (unlikely(!q)) 1867 return -EPROTO; 1868 1869 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 1870 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 1871 xe_gt_err(guc_to_gt(guc), 1872 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d", 1873 atomic_read(&q->guc->state), q->guc->id); 1874 return -EPROTO; 1875 } 1876 1877 handle_deregister_done(guc, q); 1878 1879 return 0; 1880 } 1881 1882 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 1883 { 1884 struct xe_gt *gt = guc_to_gt(guc); 1885 struct xe_device *xe = guc_to_xe(guc); 1886 struct xe_exec_queue *q; 1887 u32 guc_id = msg[0]; 1888 1889 if (unlikely(len < 1)) { 1890 drm_err(&xe->drm, "Invalid length %u", len); 1891 return -EPROTO; 1892 } 1893 1894 q = g2h_exec_queue_lookup(guc, guc_id); 1895 if (unlikely(!q)) 1896 return -EPROTO; 1897 1898 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1899 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1900 1901 /* FIXME: Do error capture, most likely async */ 1902 1903 trace_xe_exec_queue_reset(q); 1904 1905 /* 1906 * A banned engine is a NOP at this point (came from 1907 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 1908 * jobs by setting timeout of the job to the minimum value kicking 1909 * guc_exec_queue_timedout_job. 1910 */ 1911 set_exec_queue_reset(q); 1912 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 1913 xe_guc_exec_queue_trigger_cleanup(q); 1914 1915 return 0; 1916 } 1917 1918 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 1919 u32 len) 1920 { 1921 struct xe_gt *gt = guc_to_gt(guc); 1922 struct xe_device *xe = guc_to_xe(guc); 1923 struct xe_exec_queue *q; 1924 u32 guc_id = msg[0]; 1925 1926 if (unlikely(len < 1)) { 1927 drm_err(&xe->drm, "Invalid length %u", len); 1928 return -EPROTO; 1929 } 1930 1931 q = g2h_exec_queue_lookup(guc, guc_id); 1932 if (unlikely(!q)) 1933 return -EPROTO; 1934 1935 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1936 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1937 1938 trace_xe_exec_queue_memory_cat_error(q); 1939 1940 /* Treat the same as engine reset */ 1941 set_exec_queue_reset(q); 1942 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 1943 xe_guc_exec_queue_trigger_cleanup(q); 1944 1945 return 0; 1946 } 1947 1948 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 1949 { 1950 struct xe_device *xe = guc_to_xe(guc); 1951 u8 guc_class, instance; 1952 u32 reason; 1953 1954 if (unlikely(len != 3)) { 1955 drm_err(&xe->drm, "Invalid length %u", len); 1956 return -EPROTO; 1957 } 1958 1959 guc_class = msg[0]; 1960 instance = msg[1]; 1961 reason = msg[2]; 1962 1963 /* Unexpected failure of a hardware feature, log an actual error */ 1964 drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X", 1965 guc_class, instance, reason); 1966 1967 xe_gt_reset_async(guc_to_gt(guc)); 1968 1969 return 0; 1970 } 1971 1972 static void 1973 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 1974 struct xe_guc_submit_exec_queue_snapshot *snapshot) 1975 { 1976 struct xe_guc *guc = exec_queue_to_guc(q); 1977 struct xe_device *xe = guc_to_xe(guc); 1978 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 1979 int i; 1980 1981 snapshot->guc.wqi_head = q->guc->wqi_head; 1982 snapshot->guc.wqi_tail = q->guc->wqi_tail; 1983 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 1984 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 1985 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 1986 wq_desc.wq_status); 1987 1988 if (snapshot->parallel.wq_desc.head != 1989 snapshot->parallel.wq_desc.tail) { 1990 for (i = snapshot->parallel.wq_desc.head; 1991 i != snapshot->parallel.wq_desc.tail; 1992 i = (i + sizeof(u32)) % WQ_SIZE) 1993 snapshot->parallel.wq[i / sizeof(u32)] = 1994 parallel_read(xe, map, wq[i / sizeof(u32)]); 1995 } 1996 } 1997 1998 static void 1999 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2000 struct drm_printer *p) 2001 { 2002 int i; 2003 2004 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 2005 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 2006 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 2007 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 2008 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 2009 2010 if (snapshot->parallel.wq_desc.head != 2011 snapshot->parallel.wq_desc.tail) { 2012 for (i = snapshot->parallel.wq_desc.head; 2013 i != snapshot->parallel.wq_desc.tail; 2014 i = (i + sizeof(u32)) % WQ_SIZE) 2015 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 2016 snapshot->parallel.wq[i / sizeof(u32)]); 2017 } 2018 } 2019 2020 /** 2021 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 2022 * @q: faulty exec queue 2023 * 2024 * This can be printed out in a later stage like during dev_coredump 2025 * analysis. 2026 * 2027 * Returns: a GuC Submit Engine snapshot object that must be freed by the 2028 * caller, using `xe_guc_exec_queue_snapshot_free`. 2029 */ 2030 struct xe_guc_submit_exec_queue_snapshot * 2031 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 2032 { 2033 struct xe_gpu_scheduler *sched = &q->guc->sched; 2034 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2035 int i; 2036 2037 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 2038 2039 if (!snapshot) 2040 return NULL; 2041 2042 snapshot->guc.id = q->guc->id; 2043 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 2044 snapshot->class = q->class; 2045 snapshot->logical_mask = q->logical_mask; 2046 snapshot->width = q->width; 2047 snapshot->refcount = kref_read(&q->refcount); 2048 snapshot->sched_timeout = sched->base.timeout; 2049 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 2050 snapshot->sched_props.preempt_timeout_us = 2051 q->sched_props.preempt_timeout_us; 2052 2053 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 2054 GFP_ATOMIC); 2055 2056 if (snapshot->lrc) { 2057 for (i = 0; i < q->width; ++i) { 2058 struct xe_lrc *lrc = q->lrc[i]; 2059 2060 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 2061 } 2062 } 2063 2064 snapshot->schedule_state = atomic_read(&q->guc->state); 2065 snapshot->exec_queue_flags = q->flags; 2066 2067 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 2068 if (snapshot->parallel_execution) 2069 guc_exec_queue_wq_snapshot_capture(q, snapshot); 2070 2071 spin_lock(&sched->base.job_list_lock); 2072 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 2073 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 2074 sizeof(struct pending_list_snapshot), 2075 GFP_ATOMIC); 2076 2077 if (snapshot->pending_list) { 2078 struct xe_sched_job *job_iter; 2079 2080 i = 0; 2081 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 2082 snapshot->pending_list[i].seqno = 2083 xe_sched_job_seqno(job_iter); 2084 snapshot->pending_list[i].fence = 2085 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 2086 snapshot->pending_list[i].finished = 2087 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 2088 ? 1 : 0; 2089 i++; 2090 } 2091 } 2092 2093 spin_unlock(&sched->base.job_list_lock); 2094 2095 return snapshot; 2096 } 2097 2098 /** 2099 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 2100 * @snapshot: Previously captured snapshot of job. 2101 * 2102 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 2103 */ 2104 void 2105 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2106 { 2107 int i; 2108 2109 if (!snapshot || !snapshot->lrc) 2110 return; 2111 2112 for (i = 0; i < snapshot->width; ++i) 2113 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 2114 } 2115 2116 /** 2117 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 2118 * @snapshot: GuC Submit Engine snapshot object. 2119 * @p: drm_printer where it will be printed out. 2120 * 2121 * This function prints out a given GuC Submit Engine snapshot object. 2122 */ 2123 void 2124 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2125 struct drm_printer *p) 2126 { 2127 int i; 2128 2129 if (!snapshot) 2130 return; 2131 2132 drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id); 2133 drm_printf(p, "\tName: %s\n", snapshot->name); 2134 drm_printf(p, "\tClass: %d\n", snapshot->class); 2135 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 2136 drm_printf(p, "\tWidth: %d\n", snapshot->width); 2137 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 2138 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 2139 drm_printf(p, "\tTimeslice: %u (us)\n", 2140 snapshot->sched_props.timeslice_us); 2141 drm_printf(p, "\tPreempt timeout: %u (us)\n", 2142 snapshot->sched_props.preempt_timeout_us); 2143 2144 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 2145 xe_lrc_snapshot_print(snapshot->lrc[i], p); 2146 2147 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 2148 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 2149 2150 if (snapshot->parallel_execution) 2151 guc_exec_queue_wq_snapshot_print(snapshot, p); 2152 2153 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 2154 i++) 2155 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 2156 snapshot->pending_list[i].seqno, 2157 snapshot->pending_list[i].fence, 2158 snapshot->pending_list[i].finished); 2159 } 2160 2161 /** 2162 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 2163 * snapshot. 2164 * @snapshot: GuC Submit Engine snapshot object. 2165 * 2166 * This function free all the memory that needed to be allocated at capture 2167 * time. 2168 */ 2169 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2170 { 2171 int i; 2172 2173 if (!snapshot) 2174 return; 2175 2176 if (snapshot->lrc) { 2177 for (i = 0; i < snapshot->width; i++) 2178 xe_lrc_snapshot_free(snapshot->lrc[i]); 2179 kfree(snapshot->lrc); 2180 } 2181 kfree(snapshot->pending_list); 2182 kfree(snapshot); 2183 } 2184 2185 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 2186 { 2187 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2188 2189 snapshot = xe_guc_exec_queue_snapshot_capture(q); 2190 xe_guc_exec_queue_snapshot_print(snapshot, p); 2191 xe_guc_exec_queue_snapshot_free(snapshot); 2192 } 2193 2194 /** 2195 * xe_guc_submit_print - GuC Submit Print. 2196 * @guc: GuC. 2197 * @p: drm_printer where it will be printed out. 2198 * 2199 * This function capture and prints snapshots of **all** GuC Engines. 2200 */ 2201 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2202 { 2203 struct xe_exec_queue *q; 2204 unsigned long index; 2205 2206 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2207 return; 2208 2209 mutex_lock(&guc->submission_state.lock); 2210 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2211 guc_exec_queue_print(q, p); 2212 mutex_unlock(&guc->submission_state.lock); 2213 } 2214