xref: /linux/drivers/gpu/drm/xe/xe_guc_submit.c (revision c31f4aa8fed048fa70e742c4bb49bb48dc489ab3)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_submit.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_slpc_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "regs/xe_lrc_layout.h"
21 #include "xe_assert.h"
22 #include "xe_devcoredump.h"
23 #include "xe_device.h"
24 #include "xe_exec_queue.h"
25 #include "xe_force_wake.h"
26 #include "xe_gpu_scheduler.h"
27 #include "xe_gt.h"
28 #include "xe_gt_clock.h"
29 #include "xe_gt_printk.h"
30 #include "xe_guc.h"
31 #include "xe_guc_capture.h"
32 #include "xe_guc_ct.h"
33 #include "xe_guc_exec_queue_types.h"
34 #include "xe_guc_id_mgr.h"
35 #include "xe_guc_klv_helpers.h"
36 #include "xe_guc_submit_types.h"
37 #include "xe_hw_engine.h"
38 #include "xe_hw_fence.h"
39 #include "xe_lrc.h"
40 #include "xe_macros.h"
41 #include "xe_map.h"
42 #include "xe_mocs.h"
43 #include "xe_pm.h"
44 #include "xe_ring_ops_types.h"
45 #include "xe_sched_job.h"
46 #include "xe_trace.h"
47 #include "xe_uc_fw.h"
48 #include "xe_vm.h"
49 
50 static struct xe_guc *
51 exec_queue_to_guc(struct xe_exec_queue *q)
52 {
53 	return &q->gt->uc.guc;
54 }
55 
56 /*
57  * Helpers for engine state, using an atomic as some of the bits can transition
58  * as the same time (e.g. a suspend can be happning at the same time as schedule
59  * engine done being processed).
60  */
61 #define EXEC_QUEUE_STATE_REGISTERED		(1 << 0)
62 #define EXEC_QUEUE_STATE_ENABLED		(1 << 1)
63 #define EXEC_QUEUE_STATE_PENDING_ENABLE		(1 << 2)
64 #define EXEC_QUEUE_STATE_PENDING_DISABLE	(1 << 3)
65 #define EXEC_QUEUE_STATE_DESTROYED		(1 << 4)
66 #define EXEC_QUEUE_STATE_SUSPENDED		(1 << 5)
67 #define EXEC_QUEUE_STATE_RESET			(1 << 6)
68 #define EXEC_QUEUE_STATE_KILLED			(1 << 7)
69 #define EXEC_QUEUE_STATE_WEDGED			(1 << 8)
70 #define EXEC_QUEUE_STATE_BANNED			(1 << 9)
71 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT		(1 << 10)
72 #define EXEC_QUEUE_STATE_EXTRA_REF		(1 << 11)
73 #define EXEC_QUEUE_STATE_PENDING_RESUME		(1 << 12)
74 #define EXEC_QUEUE_STATE_PENDING_TDR_EXIT	(1 << 13)
75 
76 static bool exec_queue_registered(struct xe_exec_queue *q)
77 {
78 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
79 }
80 
81 static void set_exec_queue_registered(struct xe_exec_queue *q)
82 {
83 	atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
84 }
85 
86 static void clear_exec_queue_registered(struct xe_exec_queue *q)
87 {
88 	atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
89 }
90 
91 static bool exec_queue_enabled(struct xe_exec_queue *q)
92 {
93 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
94 }
95 
96 static void set_exec_queue_enabled(struct xe_exec_queue *q)
97 {
98 	atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
99 }
100 
101 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
102 {
103 	atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
104 }
105 
106 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
107 {
108 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
109 }
110 
111 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
112 {
113 	atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
114 }
115 
116 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
117 {
118 	atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
119 }
120 
121 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
122 {
123 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
124 }
125 
126 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
127 {
128 	atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
129 }
130 
131 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
132 {
133 	atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
134 }
135 
136 static bool exec_queue_destroyed(struct xe_exec_queue *q)
137 {
138 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
139 }
140 
141 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
142 {
143 	atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
144 }
145 
146 static void clear_exec_queue_destroyed(struct xe_exec_queue *q)
147 {
148 	atomic_and(~EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
149 }
150 
151 static bool exec_queue_banned(struct xe_exec_queue *q)
152 {
153 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
154 }
155 
156 static void set_exec_queue_banned(struct xe_exec_queue *q)
157 {
158 	atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
159 }
160 
161 static bool exec_queue_suspended(struct xe_exec_queue *q)
162 {
163 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
164 }
165 
166 static void set_exec_queue_suspended(struct xe_exec_queue *q)
167 {
168 	atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
169 }
170 
171 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
172 {
173 	atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
174 }
175 
176 static bool exec_queue_reset(struct xe_exec_queue *q)
177 {
178 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
179 }
180 
181 static void set_exec_queue_reset(struct xe_exec_queue *q)
182 {
183 	atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
184 }
185 
186 static bool exec_queue_killed(struct xe_exec_queue *q)
187 {
188 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
189 }
190 
191 static void set_exec_queue_killed(struct xe_exec_queue *q)
192 {
193 	atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
194 }
195 
196 static bool exec_queue_wedged(struct xe_exec_queue *q)
197 {
198 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
199 }
200 
201 static void set_exec_queue_wedged(struct xe_exec_queue *q)
202 {
203 	atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
204 }
205 
206 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
207 {
208 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
209 }
210 
211 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
212 {
213 	atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
214 }
215 
216 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
217 {
218 	atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
219 }
220 
221 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
222 {
223 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
224 }
225 
226 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
227 {
228 	atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
229 }
230 
231 static void clear_exec_queue_extra_ref(struct xe_exec_queue *q)
232 {
233 	atomic_and(~EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
234 }
235 
236 static bool exec_queue_pending_resume(struct xe_exec_queue *q)
237 {
238 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_RESUME;
239 }
240 
241 static void set_exec_queue_pending_resume(struct xe_exec_queue *q)
242 {
243 	atomic_or(EXEC_QUEUE_STATE_PENDING_RESUME, &q->guc->state);
244 }
245 
246 static void clear_exec_queue_pending_resume(struct xe_exec_queue *q)
247 {
248 	atomic_and(~EXEC_QUEUE_STATE_PENDING_RESUME, &q->guc->state);
249 }
250 
251 static bool exec_queue_pending_tdr_exit(struct xe_exec_queue *q)
252 {
253 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_TDR_EXIT;
254 }
255 
256 static void set_exec_queue_pending_tdr_exit(struct xe_exec_queue *q)
257 {
258 	atomic_or(EXEC_QUEUE_STATE_PENDING_TDR_EXIT, &q->guc->state);
259 }
260 
261 static void clear_exec_queue_pending_tdr_exit(struct xe_exec_queue *q)
262 {
263 	atomic_and(~EXEC_QUEUE_STATE_PENDING_TDR_EXIT, &q->guc->state);
264 }
265 
266 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
267 {
268 	return (atomic_read(&q->guc->state) &
269 		(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
270 		 EXEC_QUEUE_STATE_BANNED));
271 }
272 
273 static void guc_submit_fini(struct drm_device *drm, void *arg)
274 {
275 	struct xe_guc *guc = arg;
276 	struct xe_device *xe = guc_to_xe(guc);
277 	struct xe_gt *gt = guc_to_gt(guc);
278 	int ret;
279 
280 	ret = wait_event_timeout(guc->submission_state.fini_wq,
281 				 xa_empty(&guc->submission_state.exec_queue_lookup),
282 				 HZ * 5);
283 
284 	drain_workqueue(xe->destroy_wq);
285 
286 	xe_gt_assert(gt, ret);
287 
288 	xa_destroy(&guc->submission_state.exec_queue_lookup);
289 }
290 
291 static void guc_submit_wedged_fini(void *arg)
292 {
293 	struct xe_guc *guc = arg;
294 	struct xe_exec_queue *q;
295 	unsigned long index;
296 
297 	mutex_lock(&guc->submission_state.lock);
298 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
299 		if (exec_queue_wedged(q)) {
300 			mutex_unlock(&guc->submission_state.lock);
301 			xe_exec_queue_put(q);
302 			mutex_lock(&guc->submission_state.lock);
303 		}
304 	}
305 	mutex_unlock(&guc->submission_state.lock);
306 }
307 
308 static const struct xe_exec_queue_ops guc_exec_queue_ops;
309 
310 static void primelockdep(struct xe_guc *guc)
311 {
312 	if (!IS_ENABLED(CONFIG_LOCKDEP))
313 		return;
314 
315 	fs_reclaim_acquire(GFP_KERNEL);
316 
317 	mutex_lock(&guc->submission_state.lock);
318 	mutex_unlock(&guc->submission_state.lock);
319 
320 	fs_reclaim_release(GFP_KERNEL);
321 }
322 
323 /**
324  * xe_guc_submit_init() - Initialize GuC submission.
325  * @guc: the &xe_guc to initialize
326  * @num_ids: number of GuC context IDs to use
327  *
328  * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
329  * GuC context IDs supported by the GuC firmware should be used for submission.
330  *
331  * Only VF drivers will have to provide explicit number of GuC context IDs
332  * that they can use for submission.
333  *
334  * Return: 0 on success or a negative error code on failure.
335  */
336 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
337 {
338 	struct xe_device *xe = guc_to_xe(guc);
339 	struct xe_gt *gt = guc_to_gt(guc);
340 	int err;
341 
342 	err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
343 	if (err)
344 		return err;
345 
346 	err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
347 	if (err)
348 		return err;
349 
350 	gt->exec_queue_ops = &guc_exec_queue_ops;
351 
352 	xa_init(&guc->submission_state.exec_queue_lookup);
353 
354 	init_waitqueue_head(&guc->submission_state.fini_wq);
355 
356 	primelockdep(guc);
357 
358 	guc->submission_state.initialized = true;
359 
360 	return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
361 }
362 
363 /*
364  * Given that we want to guarantee enough RCS throughput to avoid missing
365  * frames, we set the yield policy to 20% of each 80ms interval.
366  */
367 #define RC_YIELD_DURATION	80	/* in ms */
368 #define RC_YIELD_RATIO		20	/* in percent */
369 static u32 *emit_render_compute_yield_klv(u32 *emit)
370 {
371 	*emit++ = PREP_GUC_KLV_TAG(SCHEDULING_POLICIES_RENDER_COMPUTE_YIELD);
372 	*emit++ = RC_YIELD_DURATION;
373 	*emit++ = RC_YIELD_RATIO;
374 
375 	return emit;
376 }
377 
378 #define SCHEDULING_POLICY_MAX_DWORDS 16
379 static int guc_init_global_schedule_policy(struct xe_guc *guc)
380 {
381 	u32 data[SCHEDULING_POLICY_MAX_DWORDS];
382 	u32 *emit = data;
383 	u32 count = 0;
384 	int ret;
385 
386 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
387 		return 0;
388 
389 	*emit++ = XE_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
390 
391 	if (CCS_MASK(guc_to_gt(guc)))
392 		emit = emit_render_compute_yield_klv(emit);
393 
394 	count = emit - data;
395 	if (count > 1) {
396 		xe_assert(guc_to_xe(guc), count <= SCHEDULING_POLICY_MAX_DWORDS);
397 
398 		ret = xe_guc_ct_send_block(&guc->ct, data, count);
399 		if (ret < 0) {
400 			xe_gt_err(guc_to_gt(guc),
401 				  "failed to enable GuC scheduling policies: %pe\n",
402 				  ERR_PTR(ret));
403 			return ret;
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 int xe_guc_submit_enable(struct xe_guc *guc)
411 {
412 	int ret;
413 
414 	ret = guc_init_global_schedule_policy(guc);
415 	if (ret)
416 		return ret;
417 
418 	guc->submission_state.enabled = true;
419 
420 	return 0;
421 }
422 
423 void xe_guc_submit_disable(struct xe_guc *guc)
424 {
425 	guc->submission_state.enabled = false;
426 }
427 
428 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
429 {
430 	int i;
431 
432 	lockdep_assert_held(&guc->submission_state.lock);
433 
434 	for (i = 0; i < xa_count; ++i)
435 		xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
436 
437 	xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
438 				     q->guc->id, q->width);
439 
440 	if (xa_empty(&guc->submission_state.exec_queue_lookup))
441 		wake_up(&guc->submission_state.fini_wq);
442 }
443 
444 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
445 {
446 	int ret;
447 	int i;
448 
449 	/*
450 	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
451 	 * worse case user gets -ENOMEM on engine create and has to try again.
452 	 *
453 	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
454 	 * failure.
455 	 */
456 	lockdep_assert_held(&guc->submission_state.lock);
457 
458 	ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
459 					   q->width);
460 	if (ret < 0)
461 		return ret;
462 
463 	q->guc->id = ret;
464 
465 	for (i = 0; i < q->width; ++i) {
466 		ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
467 				      q->guc->id + i, q, GFP_NOWAIT));
468 		if (ret)
469 			goto err_release;
470 	}
471 
472 	return 0;
473 
474 err_release:
475 	__release_guc_id(guc, q, i);
476 
477 	return ret;
478 }
479 
480 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
481 {
482 	mutex_lock(&guc->submission_state.lock);
483 	__release_guc_id(guc, q, q->width);
484 	mutex_unlock(&guc->submission_state.lock);
485 }
486 
487 struct exec_queue_policy {
488 	u32 count;
489 	struct guc_update_exec_queue_policy h2g;
490 };
491 
492 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
493 {
494 	size_t bytes = sizeof(policy->h2g.header) +
495 		       (sizeof(policy->h2g.klv[0]) * policy->count);
496 
497 	return bytes / sizeof(u32);
498 }
499 
500 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
501 					      u16 guc_id)
502 {
503 	policy->h2g.header.action =
504 		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
505 	policy->h2g.header.guc_id = guc_id;
506 	policy->count = 0;
507 }
508 
509 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
510 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
511 					   u32 data) \
512 { \
513 	XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
514 \
515 	policy->h2g.klv[policy->count].kl = \
516 		FIELD_PREP(GUC_KLV_0_KEY, \
517 			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
518 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
519 	policy->h2g.klv[policy->count].value = data; \
520 	policy->count++; \
521 }
522 
523 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
524 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
525 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
526 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY)
527 #undef MAKE_EXEC_QUEUE_POLICY_ADD
528 
529 static const int xe_exec_queue_prio_to_guc[] = {
530 	[XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
531 	[XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
532 	[XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
533 	[XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
534 };
535 
536 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
537 {
538 	struct exec_queue_policy policy;
539 	enum xe_exec_queue_priority prio = q->sched_props.priority;
540 	u32 timeslice_us = q->sched_props.timeslice_us;
541 	u32 slpc_exec_queue_freq_req = 0;
542 	u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
543 
544 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
545 
546 	if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY)
547 		slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
548 
549 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
550 	__guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
551 	__guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
552 	__guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
553 	__guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy,
554 							     slpc_exec_queue_freq_req);
555 
556 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
557 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
558 }
559 
560 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
561 {
562 	struct exec_queue_policy policy;
563 
564 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
565 	__guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
566 
567 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
568 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
569 }
570 
571 #define parallel_read(xe_, map_, field_) \
572 	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
573 			field_)
574 #define parallel_write(xe_, map_, field_, val_) \
575 	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
576 			field_, val_)
577 
578 static void __register_mlrc_exec_queue(struct xe_guc *guc,
579 				       struct xe_exec_queue *q,
580 				       struct guc_ctxt_registration_info *info)
581 {
582 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
583 	u32 action[MAX_MLRC_REG_SIZE];
584 	int len = 0;
585 	int i;
586 
587 	xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q));
588 
589 	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
590 	action[len++] = info->flags;
591 	action[len++] = info->context_idx;
592 	action[len++] = info->engine_class;
593 	action[len++] = info->engine_submit_mask;
594 	action[len++] = info->wq_desc_lo;
595 	action[len++] = info->wq_desc_hi;
596 	action[len++] = info->wq_base_lo;
597 	action[len++] = info->wq_base_hi;
598 	action[len++] = info->wq_size;
599 	action[len++] = q->width;
600 	action[len++] = info->hwlrca_lo;
601 	action[len++] = info->hwlrca_hi;
602 
603 	for (i = 1; i < q->width; ++i) {
604 		struct xe_lrc *lrc = q->lrc[i];
605 
606 		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
607 		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
608 	}
609 
610 	/* explicitly checks some fields that we might fixup later */
611 	xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo ==
612 		     action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER]);
613 	xe_gt_assert(guc_to_gt(guc), info->wq_base_lo ==
614 		     action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER]);
615 	xe_gt_assert(guc_to_gt(guc), q->width ==
616 		     action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS]);
617 	xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo ==
618 		     action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR]);
619 	xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE);
620 #undef MAX_MLRC_REG_SIZE
621 
622 	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
623 }
624 
625 static void __register_exec_queue(struct xe_guc *guc,
626 				  struct guc_ctxt_registration_info *info)
627 {
628 	u32 action[] = {
629 		XE_GUC_ACTION_REGISTER_CONTEXT,
630 		info->flags,
631 		info->context_idx,
632 		info->engine_class,
633 		info->engine_submit_mask,
634 		info->wq_desc_lo,
635 		info->wq_desc_hi,
636 		info->wq_base_lo,
637 		info->wq_base_hi,
638 		info->wq_size,
639 		info->hwlrca_lo,
640 		info->hwlrca_hi,
641 	};
642 
643 	/* explicitly checks some fields that we might fixup later */
644 	xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo ==
645 		     action[XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER]);
646 	xe_gt_assert(guc_to_gt(guc), info->wq_base_lo ==
647 		     action[XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER]);
648 	xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo ==
649 		     action[XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR]);
650 
651 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
652 }
653 
654 static void register_exec_queue(struct xe_exec_queue *q, int ctx_type)
655 {
656 	struct xe_guc *guc = exec_queue_to_guc(q);
657 	struct xe_device *xe = guc_to_xe(guc);
658 	struct xe_lrc *lrc = q->lrc[0];
659 	struct guc_ctxt_registration_info info;
660 
661 	xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q));
662 	xe_gt_assert(guc_to_gt(guc), ctx_type < GUC_CONTEXT_COUNT);
663 
664 	memset(&info, 0, sizeof(info));
665 	info.context_idx = q->guc->id;
666 	info.engine_class = xe_engine_class_to_guc_class(q->class);
667 	info.engine_submit_mask = q->logical_mask;
668 	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
669 	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
670 	info.flags = CONTEXT_REGISTRATION_FLAG_KMD |
671 		FIELD_PREP(CONTEXT_REGISTRATION_FLAG_TYPE, ctx_type);
672 
673 	if (xe_exec_queue_is_parallel(q)) {
674 		u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
675 		struct iosys_map map = xe_lrc_parallel_map(lrc);
676 
677 		info.wq_desc_lo = lower_32_bits(ggtt_addr +
678 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
679 		info.wq_desc_hi = upper_32_bits(ggtt_addr +
680 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
681 		info.wq_base_lo = lower_32_bits(ggtt_addr +
682 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
683 		info.wq_base_hi = upper_32_bits(ggtt_addr +
684 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
685 		info.wq_size = WQ_SIZE;
686 
687 		q->guc->wqi_head = 0;
688 		q->guc->wqi_tail = 0;
689 		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
690 		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
691 	}
692 
693 	/*
694 	 * We must keep a reference for LR engines if engine is registered with
695 	 * the GuC as jobs signal immediately and can't destroy an engine if the
696 	 * GuC has a reference to it.
697 	 */
698 	if (xe_exec_queue_is_lr(q))
699 		xe_exec_queue_get(q);
700 
701 	set_exec_queue_registered(q);
702 	trace_xe_exec_queue_register(q);
703 	if (xe_exec_queue_is_parallel(q))
704 		__register_mlrc_exec_queue(guc, q, &info);
705 	else
706 		__register_exec_queue(guc, &info);
707 	init_policies(guc, q);
708 }
709 
710 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
711 {
712 	return (WQ_SIZE - q->guc->wqi_tail);
713 }
714 
715 static bool vf_recovery(struct xe_guc *guc)
716 {
717 	return xe_gt_recovery_pending(guc_to_gt(guc));
718 }
719 
720 static inline void relaxed_ms_sleep(unsigned int delay_ms)
721 {
722 	unsigned long min_us, max_us;
723 
724 	if (!delay_ms)
725 		return;
726 
727 	if (delay_ms > 20) {
728 		msleep(delay_ms);
729 		return;
730 	}
731 
732 	min_us = mul_u32_u32(delay_ms, 1000);
733 	max_us = min_us + 500;
734 
735 	usleep_range(min_us, max_us);
736 }
737 
738 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
739 {
740 	struct xe_guc *guc = exec_queue_to_guc(q);
741 	struct xe_device *xe = guc_to_xe(guc);
742 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
743 	unsigned int sleep_period_ms = 1, sleep_total_ms = 0;
744 
745 #define AVAILABLE_SPACE \
746 	CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
747 	if (wqi_size > AVAILABLE_SPACE && !vf_recovery(guc)) {
748 try_again:
749 		q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
750 		if (wqi_size > AVAILABLE_SPACE && !vf_recovery(guc)) {
751 			if (sleep_total_ms > 2000) {
752 				xe_gt_reset_async(q->gt);
753 				return -ENODEV;
754 			}
755 
756 			msleep(sleep_period_ms);
757 			sleep_total_ms += sleep_period_ms;
758 			if (sleep_period_ms < 64)
759 				sleep_period_ms <<= 1;
760 			goto try_again;
761 		}
762 	}
763 #undef AVAILABLE_SPACE
764 
765 	return 0;
766 }
767 
768 static int wq_noop_append(struct xe_exec_queue *q)
769 {
770 	struct xe_guc *guc = exec_queue_to_guc(q);
771 	struct xe_device *xe = guc_to_xe(guc);
772 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
773 	u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
774 
775 	if (wq_wait_for_space(q, wq_space_until_wrap(q)))
776 		return -ENODEV;
777 
778 	xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw));
779 
780 	parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
781 		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
782 		       FIELD_PREP(WQ_LEN_MASK, len_dw));
783 	q->guc->wqi_tail = 0;
784 
785 	return 0;
786 }
787 
788 static void wq_item_append(struct xe_exec_queue *q)
789 {
790 	struct xe_guc *guc = exec_queue_to_guc(q);
791 	struct xe_device *xe = guc_to_xe(guc);
792 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
793 #define WQ_HEADER_SIZE	4	/* Includes 1 LRC address too */
794 	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
795 	u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
796 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
797 	int i = 0, j;
798 
799 	if (wqi_size > wq_space_until_wrap(q)) {
800 		if (wq_noop_append(q))
801 			return;
802 	}
803 	if (wq_wait_for_space(q, wqi_size))
804 		return;
805 
806 	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
807 		FIELD_PREP(WQ_LEN_MASK, len_dw);
808 	wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
809 	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
810 		FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
811 	wqi[i++] = 0;
812 	for (j = 1; j < q->width; ++j) {
813 		struct xe_lrc *lrc = q->lrc[j];
814 
815 		wqi[i++] = lrc->ring.tail / sizeof(u64);
816 	}
817 
818 	xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32));
819 
820 	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
821 				      wq[q->guc->wqi_tail / sizeof(u32)]));
822 	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
823 	q->guc->wqi_tail += wqi_size;
824 	xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE);
825 
826 	xe_device_wmb(xe);
827 
828 	map = xe_lrc_parallel_map(q->lrc[0]);
829 	parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
830 }
831 
832 #define RESUME_PENDING	~0x0ull
833 static void submit_exec_queue(struct xe_exec_queue *q, struct xe_sched_job *job)
834 {
835 	struct xe_guc *guc = exec_queue_to_guc(q);
836 	struct xe_lrc *lrc = q->lrc[0];
837 	u32 action[3];
838 	u32 g2h_len = 0;
839 	u32 num_g2h = 0;
840 	int len = 0;
841 	bool extra_submit = false;
842 
843 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
844 
845 	if (!job->restore_replay || job->last_replay) {
846 		if (xe_exec_queue_is_parallel(q))
847 			wq_item_append(q);
848 		else
849 			xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
850 		job->last_replay = false;
851 	}
852 
853 	if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
854 		return;
855 
856 	if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
857 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
858 		action[len++] = q->guc->id;
859 		action[len++] = GUC_CONTEXT_ENABLE;
860 		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
861 		num_g2h = 1;
862 		if (xe_exec_queue_is_parallel(q))
863 			extra_submit = true;
864 
865 		q->guc->resume_time = RESUME_PENDING;
866 		set_exec_queue_pending_enable(q);
867 		set_exec_queue_enabled(q);
868 		trace_xe_exec_queue_scheduling_enable(q);
869 	} else {
870 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
871 		action[len++] = q->guc->id;
872 		trace_xe_exec_queue_submit(q);
873 	}
874 
875 	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
876 
877 	if (extra_submit) {
878 		len = 0;
879 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
880 		action[len++] = q->guc->id;
881 		trace_xe_exec_queue_submit(q);
882 
883 		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
884 	}
885 }
886 
887 static struct dma_fence *
888 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
889 {
890 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
891 	struct xe_exec_queue *q = job->q;
892 	struct xe_guc *guc = exec_queue_to_guc(q);
893 	bool lr = xe_exec_queue_is_lr(q), killed_or_banned_or_wedged =
894 		exec_queue_killed_or_banned_or_wedged(q);
895 
896 	xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
897 		     exec_queue_banned(q) || exec_queue_suspended(q));
898 
899 	trace_xe_sched_job_run(job);
900 
901 	if (!killed_or_banned_or_wedged && !xe_sched_job_is_error(job)) {
902 		if (!exec_queue_registered(q))
903 			register_exec_queue(q, GUC_CONTEXT_NORMAL);
904 		if (!job->restore_replay)
905 			q->ring_ops->emit_job(job);
906 		submit_exec_queue(q, job);
907 		job->restore_replay = false;
908 	}
909 
910 	/*
911 	 * We don't care about job-fence ordering in LR VMs because these fences
912 	 * are never exported; they are used solely to keep jobs on the pending
913 	 * list. Once a queue enters an error state, there's no need to track
914 	 * them.
915 	 */
916 	if (killed_or_banned_or_wedged && lr)
917 		xe_sched_job_set_error(job, -ECANCELED);
918 
919 	return job->fence;
920 }
921 
922 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
923 {
924 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
925 
926 	trace_xe_sched_job_free(job);
927 	xe_sched_job_put(job);
928 }
929 
930 int xe_guc_read_stopped(struct xe_guc *guc)
931 {
932 	return atomic_read(&guc->submission_state.stopped);
933 }
934 
935 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)			\
936 	u32 action[] = {						\
937 		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
938 		q->guc->id,						\
939 		GUC_CONTEXT_##enable_disable,				\
940 	}
941 
942 static void disable_scheduling_deregister(struct xe_guc *guc,
943 					  struct xe_exec_queue *q)
944 {
945 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
946 	int ret;
947 
948 	set_min_preemption_timeout(guc, q);
949 	smp_rmb();
950 	ret = wait_event_timeout(guc->ct.wq,
951 				 (!exec_queue_pending_enable(q) &&
952 				  !exec_queue_pending_disable(q)) ||
953 					 xe_guc_read_stopped(guc) ||
954 					 vf_recovery(guc),
955 				 HZ * 5);
956 	if (!ret && !vf_recovery(guc)) {
957 		struct xe_gpu_scheduler *sched = &q->guc->sched;
958 
959 		xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n");
960 		xe_sched_submission_start(sched);
961 		xe_gt_reset_async(q->gt);
962 		if (!xe_exec_queue_is_lr(q))
963 			xe_sched_tdr_queue_imm(sched);
964 		return;
965 	}
966 
967 	clear_exec_queue_enabled(q);
968 	set_exec_queue_pending_disable(q);
969 	set_exec_queue_destroyed(q);
970 	trace_xe_exec_queue_scheduling_disable(q);
971 
972 	/*
973 	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
974 	 * handler and we are not allowed to reserved G2H space in handlers.
975 	 */
976 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
977 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
978 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
979 }
980 
981 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
982 {
983 	struct xe_guc *guc = exec_queue_to_guc(q);
984 	struct xe_device *xe = guc_to_xe(guc);
985 
986 	/** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
987 	wake_up_all(&xe->ufence_wq);
988 
989 	if (xe_exec_queue_is_lr(q))
990 		queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
991 	else
992 		xe_sched_tdr_queue_imm(&q->guc->sched);
993 }
994 
995 /**
996  * xe_guc_submit_wedge() - Wedge GuC submission
997  * @guc: the GuC object
998  *
999  * Save exec queue's registered with GuC state by taking a ref to each queue.
1000  * Register a DRMM handler to drop refs upon driver unload.
1001  */
1002 void xe_guc_submit_wedge(struct xe_guc *guc)
1003 {
1004 	struct xe_gt *gt = guc_to_gt(guc);
1005 	struct xe_exec_queue *q;
1006 	unsigned long index;
1007 	int err;
1008 
1009 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1010 
1011 	/*
1012 	 * If device is being wedged even before submission_state is
1013 	 * initialized, there's nothing to do here.
1014 	 */
1015 	if (!guc->submission_state.initialized)
1016 		return;
1017 
1018 	err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
1019 				       guc_submit_wedged_fini, guc);
1020 	if (err) {
1021 		xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; "
1022 			  "Although device is wedged.\n");
1023 		return;
1024 	}
1025 
1026 	mutex_lock(&guc->submission_state.lock);
1027 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1028 		if (xe_exec_queue_get_unless_zero(q))
1029 			set_exec_queue_wedged(q);
1030 	mutex_unlock(&guc->submission_state.lock);
1031 }
1032 
1033 static bool guc_submit_hint_wedged(struct xe_guc *guc)
1034 {
1035 	struct xe_device *xe = guc_to_xe(guc);
1036 
1037 	if (xe->wedged.mode != 2)
1038 		return false;
1039 
1040 	if (xe_device_wedged(xe))
1041 		return true;
1042 
1043 	xe_device_declare_wedged(xe);
1044 
1045 	return true;
1046 }
1047 
1048 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
1049 {
1050 	struct xe_guc_exec_queue *ge =
1051 		container_of(w, struct xe_guc_exec_queue, lr_tdr);
1052 	struct xe_exec_queue *q = ge->q;
1053 	struct xe_guc *guc = exec_queue_to_guc(q);
1054 	struct xe_gpu_scheduler *sched = &ge->sched;
1055 	struct xe_sched_job *job;
1056 	bool wedged = false;
1057 
1058 	xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q));
1059 
1060 	if (vf_recovery(guc))
1061 		return;
1062 
1063 	trace_xe_exec_queue_lr_cleanup(q);
1064 
1065 	if (!exec_queue_killed(q))
1066 		wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1067 
1068 	/* Kill the run_job / process_msg entry points */
1069 	xe_sched_submission_stop(sched);
1070 
1071 	/*
1072 	 * Engine state now mostly stable, disable scheduling / deregister if
1073 	 * needed. This cleanup routine might be called multiple times, where
1074 	 * the actual async engine deregister drops the final engine ref.
1075 	 * Calling disable_scheduling_deregister will mark the engine as
1076 	 * destroyed and fire off the CT requests to disable scheduling /
1077 	 * deregister, which we only want to do once. We also don't want to mark
1078 	 * the engine as pending_disable again as this may race with the
1079 	 * xe_guc_deregister_done_handler() which treats it as an unexpected
1080 	 * state.
1081 	 */
1082 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1083 		struct xe_guc *guc = exec_queue_to_guc(q);
1084 		int ret;
1085 
1086 		set_exec_queue_banned(q);
1087 		disable_scheduling_deregister(guc, q);
1088 
1089 		/*
1090 		 * Must wait for scheduling to be disabled before signalling
1091 		 * any fences, if GT broken the GT reset code should signal us.
1092 		 */
1093 		ret = wait_event_timeout(guc->ct.wq,
1094 					 !exec_queue_pending_disable(q) ||
1095 					 xe_guc_read_stopped(guc) ||
1096 					 vf_recovery(guc), HZ * 5);
1097 		if (vf_recovery(guc))
1098 			return;
1099 
1100 		if (!ret) {
1101 			xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n",
1102 				   q->guc->id);
1103 			xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n",
1104 				       q->guc->id);
1105 			xe_sched_submission_start(sched);
1106 			xe_gt_reset_async(q->gt);
1107 			return;
1108 		}
1109 	}
1110 
1111 	if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0]))
1112 		xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id);
1113 
1114 	xe_hw_fence_irq_stop(q->fence_irq);
1115 
1116 	xe_sched_submission_start(sched);
1117 
1118 	spin_lock(&sched->base.job_list_lock);
1119 	list_for_each_entry(job, &sched->base.pending_list, drm.list)
1120 		xe_sched_job_set_error(job, -ECANCELED);
1121 	spin_unlock(&sched->base.job_list_lock);
1122 
1123 	xe_hw_fence_irq_start(q->fence_irq);
1124 }
1125 
1126 #define ADJUST_FIVE_PERCENT(__t)	mul_u64_u32_div(__t, 105, 100)
1127 
1128 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
1129 {
1130 	struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
1131 	u32 ctx_timestamp, ctx_job_timestamp;
1132 	u32 timeout_ms = q->sched_props.job_timeout_ms;
1133 	u32 diff;
1134 	u64 running_time_ms;
1135 
1136 	if (!xe_sched_job_started(job)) {
1137 		xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
1138 			   xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1139 			   q->guc->id);
1140 
1141 		return xe_sched_invalidate_job(job, 2);
1142 	}
1143 
1144 	ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(q->lrc[0]));
1145 	ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
1146 
1147 	/*
1148 	 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
1149 	 * possible overflows with a high timeout.
1150 	 */
1151 	xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
1152 
1153 	diff = ctx_timestamp - ctx_job_timestamp;
1154 
1155 	/*
1156 	 * Ensure timeout is within 5% to account for an GuC scheduling latency
1157 	 */
1158 	running_time_ms =
1159 		ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
1160 
1161 	xe_gt_dbg(gt,
1162 		  "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
1163 		  xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1164 		  q->guc->id, running_time_ms, timeout_ms, diff);
1165 
1166 	return running_time_ms >= timeout_ms;
1167 }
1168 
1169 static void enable_scheduling(struct xe_exec_queue *q)
1170 {
1171 	MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
1172 	struct xe_guc *guc = exec_queue_to_guc(q);
1173 	int ret;
1174 
1175 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1176 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1177 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1178 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1179 
1180 	set_exec_queue_pending_enable(q);
1181 	set_exec_queue_enabled(q);
1182 	trace_xe_exec_queue_scheduling_enable(q);
1183 
1184 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1185 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1186 
1187 	ret = wait_event_timeout(guc->ct.wq,
1188 				 !exec_queue_pending_enable(q) ||
1189 				 xe_guc_read_stopped(guc) ||
1190 				 vf_recovery(guc), HZ * 5);
1191 	if ((!ret && !vf_recovery(guc)) || xe_guc_read_stopped(guc)) {
1192 		xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
1193 		set_exec_queue_banned(q);
1194 		xe_gt_reset_async(q->gt);
1195 		if (!xe_exec_queue_is_lr(q))
1196 			xe_sched_tdr_queue_imm(&q->guc->sched);
1197 	}
1198 }
1199 
1200 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
1201 {
1202 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1203 	struct xe_guc *guc = exec_queue_to_guc(q);
1204 
1205 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1206 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1207 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1208 
1209 	if (immediate)
1210 		set_min_preemption_timeout(guc, q);
1211 	clear_exec_queue_enabled(q);
1212 	set_exec_queue_pending_disable(q);
1213 	trace_xe_exec_queue_scheduling_disable(q);
1214 
1215 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1216 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1217 }
1218 
1219 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1220 {
1221 	u32 action[] = {
1222 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1223 		q->guc->id,
1224 	};
1225 
1226 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1227 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1228 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1229 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1230 
1231 	set_exec_queue_destroyed(q);
1232 	trace_xe_exec_queue_deregister(q);
1233 
1234 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1235 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1236 }
1237 
1238 static enum drm_gpu_sched_stat
1239 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1240 {
1241 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
1242 	struct xe_sched_job *tmp_job;
1243 	struct xe_exec_queue *q = job->q;
1244 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1245 	struct xe_guc *guc = exec_queue_to_guc(q);
1246 	const char *process_name = "no process";
1247 	struct xe_device *xe = guc_to_xe(guc);
1248 	unsigned int fw_ref;
1249 	int err = -ETIME;
1250 	pid_t pid = -1;
1251 	int i = 0;
1252 	bool wedged = false, skip_timeout_check;
1253 
1254 	xe_gt_assert(guc_to_gt(guc), !xe_exec_queue_is_lr(q));
1255 
1256 	/*
1257 	 * TDR has fired before free job worker. Common if exec queue
1258 	 * immediately closed after last fence signaled. Add back to pending
1259 	 * list so job can be freed and kick scheduler ensuring free job is not
1260 	 * lost.
1261 	 */
1262 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags) ||
1263 	    vf_recovery(guc))
1264 		return DRM_GPU_SCHED_STAT_NO_HANG;
1265 
1266 	/* Kill the run_job entry point */
1267 	xe_sched_submission_stop(sched);
1268 
1269 	/* Must check all state after stopping scheduler */
1270 	skip_timeout_check = exec_queue_reset(q) ||
1271 		exec_queue_killed_or_banned_or_wedged(q) ||
1272 		exec_queue_destroyed(q);
1273 
1274 	/*
1275 	 * If devcoredump not captured and GuC capture for the job is not ready
1276 	 * do manual capture first and decide later if we need to use it
1277 	 */
1278 	if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1279 	    !xe_guc_capture_get_matching_and_lock(q)) {
1280 		/* take force wake before engine register manual capture */
1281 		fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1282 		if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1283 			xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1284 
1285 		xe_engine_snapshot_capture_for_queue(q);
1286 
1287 		xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1288 	}
1289 
1290 	/*
1291 	 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1292 	 * modify scheduling state to read timestamp. We could read the
1293 	 * timestamp from a register to accumulate current running time but this
1294 	 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1295 	 * genuine timeouts.
1296 	 */
1297 	if (!exec_queue_killed(q))
1298 		wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1299 
1300 	/* Engine state now stable, disable scheduling to check timestamp */
1301 	if (!wedged && exec_queue_registered(q)) {
1302 		int ret;
1303 
1304 		if (exec_queue_reset(q))
1305 			err = -EIO;
1306 
1307 		if (!exec_queue_destroyed(q)) {
1308 			/*
1309 			 * Wait for any pending G2H to flush out before
1310 			 * modifying state
1311 			 */
1312 			ret = wait_event_timeout(guc->ct.wq,
1313 						 (!exec_queue_pending_enable(q) &&
1314 						  !exec_queue_pending_disable(q)) ||
1315 						 xe_guc_read_stopped(guc) ||
1316 						 vf_recovery(guc), HZ * 5);
1317 			if (vf_recovery(guc))
1318 				goto handle_vf_resume;
1319 			if (!ret || xe_guc_read_stopped(guc))
1320 				goto trigger_reset;
1321 
1322 			/*
1323 			 * Flag communicates to G2H handler that schedule
1324 			 * disable originated from a timeout check. The G2H then
1325 			 * avoid triggering cleanup or deregistering the exec
1326 			 * queue.
1327 			 */
1328 			set_exec_queue_check_timeout(q);
1329 			disable_scheduling(q, skip_timeout_check);
1330 		}
1331 
1332 		/*
1333 		 * Must wait for scheduling to be disabled before signalling
1334 		 * any fences, if GT broken the GT reset code should signal us.
1335 		 *
1336 		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1337 		 * error) messages which can cause the schedule disable to get
1338 		 * lost. If this occurs, trigger a GT reset to recover.
1339 		 */
1340 		smp_rmb();
1341 		ret = wait_event_timeout(guc->ct.wq,
1342 					 !exec_queue_pending_disable(q) ||
1343 					 xe_guc_read_stopped(guc) ||
1344 					 vf_recovery(guc), HZ * 5);
1345 		if (vf_recovery(guc))
1346 			goto handle_vf_resume;
1347 		if (!ret || xe_guc_read_stopped(guc)) {
1348 trigger_reset:
1349 			if (!ret)
1350 				xe_gt_warn(guc_to_gt(guc),
1351 					   "Schedule disable failed to respond, guc_id=%d",
1352 					   q->guc->id);
1353 			xe_devcoredump(q, job,
1354 				       "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d",
1355 				       q->guc->id, ret, xe_guc_read_stopped(guc));
1356 			set_exec_queue_extra_ref(q);
1357 			xe_exec_queue_get(q);	/* GT reset owns this */
1358 			set_exec_queue_banned(q);
1359 			xe_gt_reset_async(q->gt);
1360 			xe_sched_tdr_queue_imm(sched);
1361 			goto rearm;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Check if job is actually timed out, if so restart job execution and TDR
1367 	 */
1368 	if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1369 	    !exec_queue_reset(q) && exec_queue_registered(q)) {
1370 		clear_exec_queue_check_timeout(q);
1371 		goto sched_enable;
1372 	}
1373 
1374 	if (q->vm && q->vm->xef) {
1375 		process_name = q->vm->xef->process_name;
1376 		pid = q->vm->xef->pid;
1377 	}
1378 
1379 	if (!exec_queue_killed(q))
1380 		xe_gt_notice(guc_to_gt(guc),
1381 			     "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1382 			     xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1383 			     q->guc->id, q->flags, process_name, pid);
1384 
1385 	trace_xe_sched_job_timedout(job);
1386 
1387 	if (!exec_queue_killed(q))
1388 		xe_devcoredump(q, job,
1389 			       "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx",
1390 			       xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1391 			       q->guc->id, q->flags);
1392 
1393 	/*
1394 	 * Kernel jobs should never fail, nor should VM jobs if they do
1395 	 * somethings has gone wrong and the GT needs a reset
1396 	 */
1397 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1398 		   "Kernel-submitted job timed out\n");
1399 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1400 		   "VM job timed out on non-killed execqueue\n");
1401 	if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1402 			(q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1403 		if (!xe_sched_invalidate_job(job, 2)) {
1404 			clear_exec_queue_check_timeout(q);
1405 			xe_gt_reset_async(q->gt);
1406 			goto rearm;
1407 		}
1408 	}
1409 
1410 	/* Finish cleaning up exec queue via deregister */
1411 	set_exec_queue_banned(q);
1412 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1413 		set_exec_queue_extra_ref(q);
1414 		xe_exec_queue_get(q);
1415 		__deregister_exec_queue(guc, q);
1416 	}
1417 
1418 	/* Stop fence signaling */
1419 	xe_hw_fence_irq_stop(q->fence_irq);
1420 
1421 	/*
1422 	 * Fence state now stable, stop / start scheduler which cleans up any
1423 	 * fences that are complete
1424 	 */
1425 	xe_sched_add_pending_job(sched, job);
1426 	xe_sched_submission_start(sched);
1427 
1428 	xe_guc_exec_queue_trigger_cleanup(q);
1429 
1430 	/* Mark all outstanding jobs as bad, thus completing them */
1431 	spin_lock(&sched->base.job_list_lock);
1432 	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1433 		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1434 	spin_unlock(&sched->base.job_list_lock);
1435 
1436 	/* Start fence signaling */
1437 	xe_hw_fence_irq_start(q->fence_irq);
1438 
1439 	return DRM_GPU_SCHED_STAT_RESET;
1440 
1441 sched_enable:
1442 	set_exec_queue_pending_tdr_exit(q);
1443 	enable_scheduling(q);
1444 rearm:
1445 	/*
1446 	 * XXX: Ideally want to adjust timeout based on current execution time
1447 	 * but there is not currently an easy way to do in DRM scheduler. With
1448 	 * some thought, do this in a follow up.
1449 	 */
1450 	xe_sched_submission_start(sched);
1451 handle_vf_resume:
1452 	return DRM_GPU_SCHED_STAT_NO_HANG;
1453 }
1454 
1455 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1456 {
1457 	struct xe_guc_exec_queue *ge = q->guc;
1458 	struct xe_guc *guc = exec_queue_to_guc(q);
1459 
1460 	release_guc_id(guc, q);
1461 	xe_sched_entity_fini(&ge->entity);
1462 	xe_sched_fini(&ge->sched);
1463 
1464 	/*
1465 	 * RCU free due sched being exported via DRM scheduler fences
1466 	 * (timeline name).
1467 	 */
1468 	kfree_rcu(ge, rcu);
1469 }
1470 
1471 static void __guc_exec_queue_destroy_async(struct work_struct *w)
1472 {
1473 	struct xe_guc_exec_queue *ge =
1474 		container_of(w, struct xe_guc_exec_queue, destroy_async);
1475 	struct xe_exec_queue *q = ge->q;
1476 	struct xe_guc *guc = exec_queue_to_guc(q);
1477 
1478 	xe_pm_runtime_get(guc_to_xe(guc));
1479 	trace_xe_exec_queue_destroy(q);
1480 
1481 	if (xe_exec_queue_is_lr(q))
1482 		cancel_work_sync(&ge->lr_tdr);
1483 	/* Confirm no work left behind accessing device structures */
1484 	cancel_delayed_work_sync(&ge->sched.base.work_tdr);
1485 
1486 	xe_exec_queue_fini(q);
1487 
1488 	xe_pm_runtime_put(guc_to_xe(guc));
1489 }
1490 
1491 static void guc_exec_queue_destroy_async(struct xe_exec_queue *q)
1492 {
1493 	struct xe_guc *guc = exec_queue_to_guc(q);
1494 	struct xe_device *xe = guc_to_xe(guc);
1495 
1496 	INIT_WORK(&q->guc->destroy_async, __guc_exec_queue_destroy_async);
1497 
1498 	/* We must block on kernel engines so slabs are empty on driver unload */
1499 	if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1500 		__guc_exec_queue_destroy_async(&q->guc->destroy_async);
1501 	else
1502 		queue_work(xe->destroy_wq, &q->guc->destroy_async);
1503 }
1504 
1505 static void __guc_exec_queue_destroy(struct xe_guc *guc, struct xe_exec_queue *q)
1506 {
1507 	/*
1508 	 * Might be done from within the GPU scheduler, need to do async as we
1509 	 * fini the scheduler when the engine is fini'd, the scheduler can't
1510 	 * complete fini within itself (circular dependency). Async resolves
1511 	 * this we and don't really care when everything is fini'd, just that it
1512 	 * is.
1513 	 */
1514 	guc_exec_queue_destroy_async(q);
1515 }
1516 
1517 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1518 {
1519 	struct xe_exec_queue *q = msg->private_data;
1520 	struct xe_guc *guc = exec_queue_to_guc(q);
1521 
1522 	xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1523 	trace_xe_exec_queue_cleanup_entity(q);
1524 
1525 	/*
1526 	 * Expected state transitions for cleanup:
1527 	 * - If the exec queue is registered and GuC firmware is running, we must first
1528 	 *   disable scheduling and deregister the queue to ensure proper teardown and
1529 	 *   resource release in the GuC, then destroy the exec queue on driver side.
1530 	 * - If the GuC is already stopped (e.g., during driver unload or GPU reset),
1531 	 *   we cannot expect a response for the deregister request. In this case,
1532 	 *   it is safe to directly destroy the exec queue on driver side, as the GuC
1533 	 *   will not process further requests and all resources must be cleaned up locally.
1534 	 */
1535 	if (exec_queue_registered(q) && xe_uc_fw_is_running(&guc->fw))
1536 		disable_scheduling_deregister(guc, q);
1537 	else
1538 		__guc_exec_queue_destroy(guc, q);
1539 }
1540 
1541 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1542 {
1543 	return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1544 }
1545 
1546 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1547 {
1548 	struct xe_exec_queue *q = msg->private_data;
1549 	struct xe_guc *guc = exec_queue_to_guc(q);
1550 
1551 	if (guc_exec_queue_allowed_to_change_state(q))
1552 		init_policies(guc, q);
1553 	kfree(msg);
1554 }
1555 
1556 static void __suspend_fence_signal(struct xe_exec_queue *q)
1557 {
1558 	struct xe_guc *guc = exec_queue_to_guc(q);
1559 	struct xe_device *xe = guc_to_xe(guc);
1560 
1561 	if (!q->guc->suspend_pending)
1562 		return;
1563 
1564 	WRITE_ONCE(q->guc->suspend_pending, false);
1565 
1566 	/*
1567 	 * We use a GuC shared wait queue for VFs because the VF resfix start
1568 	 * interrupt must be able to wake all instances of suspend_wait. This
1569 	 * prevents the VF migration worker from being starved during
1570 	 * scheduling.
1571 	 */
1572 	if (IS_SRIOV_VF(xe))
1573 		wake_up_all(&guc->ct.wq);
1574 	else
1575 		wake_up(&q->guc->suspend_wait);
1576 }
1577 
1578 static void suspend_fence_signal(struct xe_exec_queue *q)
1579 {
1580 	struct xe_guc *guc = exec_queue_to_guc(q);
1581 
1582 	xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) ||
1583 		     xe_guc_read_stopped(guc));
1584 	xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending);
1585 
1586 	__suspend_fence_signal(q);
1587 }
1588 
1589 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1590 {
1591 	struct xe_exec_queue *q = msg->private_data;
1592 	struct xe_guc *guc = exec_queue_to_guc(q);
1593 
1594 	if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1595 	    exec_queue_enabled(q)) {
1596 		wait_event(guc->ct.wq, vf_recovery(guc) ||
1597 			   ((q->guc->resume_time != RESUME_PENDING ||
1598 			   xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q)));
1599 
1600 		if (!xe_guc_read_stopped(guc)) {
1601 			s64 since_resume_ms =
1602 				ktime_ms_delta(ktime_get(),
1603 					       q->guc->resume_time);
1604 			s64 wait_ms = q->vm->preempt.min_run_period_ms -
1605 				since_resume_ms;
1606 
1607 			if (wait_ms > 0 && q->guc->resume_time)
1608 				relaxed_ms_sleep(wait_ms);
1609 
1610 			set_exec_queue_suspended(q);
1611 			disable_scheduling(q, false);
1612 		}
1613 	} else if (q->guc->suspend_pending) {
1614 		set_exec_queue_suspended(q);
1615 		suspend_fence_signal(q);
1616 	}
1617 }
1618 
1619 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1620 {
1621 	struct xe_exec_queue *q = msg->private_data;
1622 
1623 	if (guc_exec_queue_allowed_to_change_state(q)) {
1624 		clear_exec_queue_suspended(q);
1625 		if (!exec_queue_enabled(q)) {
1626 			q->guc->resume_time = RESUME_PENDING;
1627 			set_exec_queue_pending_resume(q);
1628 			enable_scheduling(q);
1629 		}
1630 	} else {
1631 		clear_exec_queue_suspended(q);
1632 	}
1633 }
1634 
1635 #define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1636 #define SET_SCHED_PROPS	2
1637 #define SUSPEND		3
1638 #define RESUME		4
1639 #define OPCODE_MASK	0xf
1640 #define MSG_LOCKED	BIT(8)
1641 #define MSG_HEAD	BIT(9)
1642 
1643 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1644 {
1645 	struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1646 
1647 	trace_xe_sched_msg_recv(msg);
1648 
1649 	switch (msg->opcode) {
1650 	case CLEANUP:
1651 		__guc_exec_queue_process_msg_cleanup(msg);
1652 		break;
1653 	case SET_SCHED_PROPS:
1654 		__guc_exec_queue_process_msg_set_sched_props(msg);
1655 		break;
1656 	case SUSPEND:
1657 		__guc_exec_queue_process_msg_suspend(msg);
1658 		break;
1659 	case RESUME:
1660 		__guc_exec_queue_process_msg_resume(msg);
1661 		break;
1662 	default:
1663 		XE_WARN_ON("Unknown message type");
1664 	}
1665 
1666 	xe_pm_runtime_put(xe);
1667 }
1668 
1669 static const struct drm_sched_backend_ops drm_sched_ops = {
1670 	.run_job = guc_exec_queue_run_job,
1671 	.free_job = guc_exec_queue_free_job,
1672 	.timedout_job = guc_exec_queue_timedout_job,
1673 };
1674 
1675 static const struct xe_sched_backend_ops xe_sched_ops = {
1676 	.process_msg = guc_exec_queue_process_msg,
1677 };
1678 
1679 static int guc_exec_queue_init(struct xe_exec_queue *q)
1680 {
1681 	struct xe_gpu_scheduler *sched;
1682 	struct xe_guc *guc = exec_queue_to_guc(q);
1683 	struct xe_guc_exec_queue *ge;
1684 	long timeout;
1685 	int err, i;
1686 
1687 	xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc)));
1688 
1689 	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1690 	if (!ge)
1691 		return -ENOMEM;
1692 
1693 	q->guc = ge;
1694 	ge->q = q;
1695 	init_rcu_head(&ge->rcu);
1696 	init_waitqueue_head(&ge->suspend_wait);
1697 
1698 	for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1699 		INIT_LIST_HEAD(&ge->static_msgs[i].link);
1700 
1701 	timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1702 		  msecs_to_jiffies(q->sched_props.job_timeout_ms);
1703 	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1704 			    NULL, xe_lrc_ring_size() / MAX_JOB_SIZE_BYTES, 64,
1705 			    timeout, guc_to_gt(guc)->ordered_wq, NULL,
1706 			    q->name, gt_to_xe(q->gt)->drm.dev);
1707 	if (err)
1708 		goto err_free;
1709 
1710 	sched = &ge->sched;
1711 	err = xe_sched_entity_init(&ge->entity, sched);
1712 	if (err)
1713 		goto err_sched;
1714 
1715 	if (xe_exec_queue_is_lr(q))
1716 		INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1717 
1718 	mutex_lock(&guc->submission_state.lock);
1719 
1720 	err = alloc_guc_id(guc, q);
1721 	if (err)
1722 		goto err_entity;
1723 
1724 	q->entity = &ge->entity;
1725 
1726 	if (xe_guc_read_stopped(guc) || vf_recovery(guc))
1727 		xe_sched_stop(sched);
1728 
1729 	mutex_unlock(&guc->submission_state.lock);
1730 
1731 	xe_exec_queue_assign_name(q, q->guc->id);
1732 
1733 	trace_xe_exec_queue_create(q);
1734 
1735 	return 0;
1736 
1737 err_entity:
1738 	mutex_unlock(&guc->submission_state.lock);
1739 	xe_sched_entity_fini(&ge->entity);
1740 err_sched:
1741 	xe_sched_fini(&ge->sched);
1742 err_free:
1743 	kfree(ge);
1744 
1745 	return err;
1746 }
1747 
1748 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1749 {
1750 	trace_xe_exec_queue_kill(q);
1751 	set_exec_queue_killed(q);
1752 	__suspend_fence_signal(q);
1753 	xe_guc_exec_queue_trigger_cleanup(q);
1754 }
1755 
1756 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1757 				   u32 opcode)
1758 {
1759 	xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1760 
1761 	INIT_LIST_HEAD(&msg->link);
1762 	msg->opcode = opcode & OPCODE_MASK;
1763 	msg->private_data = q;
1764 
1765 	trace_xe_sched_msg_add(msg);
1766 	if (opcode & MSG_HEAD)
1767 		xe_sched_add_msg_head(&q->guc->sched, msg);
1768 	else if (opcode & MSG_LOCKED)
1769 		xe_sched_add_msg_locked(&q->guc->sched, msg);
1770 	else
1771 		xe_sched_add_msg(&q->guc->sched, msg);
1772 }
1773 
1774 static void guc_exec_queue_try_add_msg_head(struct xe_exec_queue *q,
1775 					    struct xe_sched_msg *msg,
1776 					    u32 opcode)
1777 {
1778 	if (!list_empty(&msg->link))
1779 		return;
1780 
1781 	guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED | MSG_HEAD);
1782 }
1783 
1784 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1785 				       struct xe_sched_msg *msg,
1786 				       u32 opcode)
1787 {
1788 	if (!list_empty(&msg->link))
1789 		return false;
1790 
1791 	guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1792 
1793 	return true;
1794 }
1795 
1796 #define STATIC_MSG_CLEANUP	0
1797 #define STATIC_MSG_SUSPEND	1
1798 #define STATIC_MSG_RESUME	2
1799 static void guc_exec_queue_destroy(struct xe_exec_queue *q)
1800 {
1801 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1802 
1803 	if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1804 		guc_exec_queue_add_msg(q, msg, CLEANUP);
1805 	else
1806 		__guc_exec_queue_destroy(exec_queue_to_guc(q), q);
1807 }
1808 
1809 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1810 				       enum xe_exec_queue_priority priority)
1811 {
1812 	struct xe_sched_msg *msg;
1813 
1814 	if (q->sched_props.priority == priority ||
1815 	    exec_queue_killed_or_banned_or_wedged(q))
1816 		return 0;
1817 
1818 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1819 	if (!msg)
1820 		return -ENOMEM;
1821 
1822 	q->sched_props.priority = priority;
1823 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1824 
1825 	return 0;
1826 }
1827 
1828 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1829 {
1830 	struct xe_sched_msg *msg;
1831 
1832 	if (q->sched_props.timeslice_us == timeslice_us ||
1833 	    exec_queue_killed_or_banned_or_wedged(q))
1834 		return 0;
1835 
1836 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1837 	if (!msg)
1838 		return -ENOMEM;
1839 
1840 	q->sched_props.timeslice_us = timeslice_us;
1841 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1842 
1843 	return 0;
1844 }
1845 
1846 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1847 					      u32 preempt_timeout_us)
1848 {
1849 	struct xe_sched_msg *msg;
1850 
1851 	if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1852 	    exec_queue_killed_or_banned_or_wedged(q))
1853 		return 0;
1854 
1855 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1856 	if (!msg)
1857 		return -ENOMEM;
1858 
1859 	q->sched_props.preempt_timeout_us = preempt_timeout_us;
1860 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1861 
1862 	return 0;
1863 }
1864 
1865 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1866 {
1867 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1868 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1869 
1870 	if (exec_queue_killed_or_banned_or_wedged(q))
1871 		return -EINVAL;
1872 
1873 	xe_sched_msg_lock(sched);
1874 	if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1875 		q->guc->suspend_pending = true;
1876 	xe_sched_msg_unlock(sched);
1877 
1878 	return 0;
1879 }
1880 
1881 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1882 {
1883 	struct xe_guc *guc = exec_queue_to_guc(q);
1884 	struct xe_device *xe = guc_to_xe(guc);
1885 	int ret;
1886 
1887 	/*
1888 	 * Likely don't need to check exec_queue_killed() as we clear
1889 	 * suspend_pending upon kill but to be paranoid but races in which
1890 	 * suspend_pending is set after kill also check kill here.
1891 	 */
1892 #define WAIT_COND \
1893 	(!READ_ONCE(q->guc->suspend_pending) ||	exec_queue_killed(q) || \
1894 	 xe_guc_read_stopped(guc))
1895 
1896 retry:
1897 	if (IS_SRIOV_VF(xe))
1898 		ret = wait_event_interruptible_timeout(guc->ct.wq, WAIT_COND ||
1899 						       vf_recovery(guc),
1900 						       HZ * 5);
1901 	else
1902 		ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1903 						       WAIT_COND, HZ * 5);
1904 
1905 	if (vf_recovery(guc) && !xe_device_wedged((guc_to_xe(guc))))
1906 		return -EAGAIN;
1907 
1908 	if (!ret) {
1909 		xe_gt_warn(guc_to_gt(guc),
1910 			   "Suspend fence, guc_id=%d, failed to respond",
1911 			   q->guc->id);
1912 		/* XXX: Trigger GT reset? */
1913 		return -ETIME;
1914 	} else if (IS_SRIOV_VF(xe) && !WAIT_COND) {
1915 		/* Corner case on RESFIX DONE where vf_recovery() changes */
1916 		goto retry;
1917 	}
1918 
1919 #undef WAIT_COND
1920 
1921 	return ret < 0 ? ret : 0;
1922 }
1923 
1924 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1925 {
1926 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1927 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1928 	struct xe_guc *guc = exec_queue_to_guc(q);
1929 
1930 	xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending);
1931 
1932 	xe_sched_msg_lock(sched);
1933 	guc_exec_queue_try_add_msg(q, msg, RESUME);
1934 	xe_sched_msg_unlock(sched);
1935 }
1936 
1937 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1938 {
1939 	return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1940 }
1941 
1942 /*
1943  * All of these functions are an abstraction layer which other parts of Xe can
1944  * use to trap into the GuC backend. All of these functions, aside from init,
1945  * really shouldn't do much other than trap into the DRM scheduler which
1946  * synchronizes these operations.
1947  */
1948 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1949 	.init = guc_exec_queue_init,
1950 	.kill = guc_exec_queue_kill,
1951 	.fini = guc_exec_queue_fini,
1952 	.destroy = guc_exec_queue_destroy,
1953 	.set_priority = guc_exec_queue_set_priority,
1954 	.set_timeslice = guc_exec_queue_set_timeslice,
1955 	.set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1956 	.suspend = guc_exec_queue_suspend,
1957 	.suspend_wait = guc_exec_queue_suspend_wait,
1958 	.resume = guc_exec_queue_resume,
1959 	.reset_status = guc_exec_queue_reset_status,
1960 };
1961 
1962 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1963 {
1964 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1965 
1966 	/* Stop scheduling + flush any DRM scheduler operations */
1967 	xe_sched_submission_stop(sched);
1968 
1969 	/* Clean up lost G2H + reset engine state */
1970 	if (exec_queue_registered(q)) {
1971 		if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1972 			xe_exec_queue_put(q);
1973 		else if (exec_queue_destroyed(q))
1974 			__guc_exec_queue_destroy(guc, q);
1975 	}
1976 	if (q->guc->suspend_pending) {
1977 		set_exec_queue_suspended(q);
1978 		suspend_fence_signal(q);
1979 	}
1980 	atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1981 		   EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1982 		   EXEC_QUEUE_STATE_SUSPENDED,
1983 		   &q->guc->state);
1984 	q->guc->resume_time = 0;
1985 	trace_xe_exec_queue_stop(q);
1986 
1987 	/*
1988 	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1989 	 * started but not complete job or if a job has gone through a GT reset
1990 	 * more than twice.
1991 	 */
1992 	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1993 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1994 		bool ban = false;
1995 
1996 		if (job) {
1997 			if ((xe_sched_job_started(job) &&
1998 			    !xe_sched_job_completed(job)) ||
1999 			    xe_sched_invalidate_job(job, 2)) {
2000 				trace_xe_sched_job_ban(job);
2001 				ban = true;
2002 			}
2003 		} else if (xe_exec_queue_is_lr(q) &&
2004 			   !xe_lrc_ring_is_idle(q->lrc[0])) {
2005 			ban = true;
2006 		}
2007 
2008 		if (ban) {
2009 			set_exec_queue_banned(q);
2010 			xe_guc_exec_queue_trigger_cleanup(q);
2011 		}
2012 	}
2013 }
2014 
2015 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
2016 {
2017 	int ret;
2018 
2019 	if (xe_gt_WARN_ON(guc_to_gt(guc), vf_recovery(guc)))
2020 		return 0;
2021 
2022 	if (!guc->submission_state.initialized)
2023 		return 0;
2024 
2025 	/*
2026 	 * Using an atomic here rather than submission_state.lock as this
2027 	 * function can be called while holding the CT lock (engine reset
2028 	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
2029 	 * Atomic is not ideal, but it works to prevent against concurrent reset
2030 	 * and releasing any TDRs waiting on guc->submission_state.stopped.
2031 	 */
2032 	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
2033 	smp_wmb();
2034 	wake_up_all(&guc->ct.wq);
2035 
2036 	return ret;
2037 }
2038 
2039 void xe_guc_submit_reset_wait(struct xe_guc *guc)
2040 {
2041 	wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
2042 		   !xe_guc_read_stopped(guc));
2043 }
2044 
2045 void xe_guc_submit_stop(struct xe_guc *guc)
2046 {
2047 	struct xe_exec_queue *q;
2048 	unsigned long index;
2049 
2050 	xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
2051 
2052 	mutex_lock(&guc->submission_state.lock);
2053 
2054 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
2055 		/* Prevent redundant attempts to stop parallel queues */
2056 		if (q->guc->id != index)
2057 			continue;
2058 
2059 		guc_exec_queue_stop(guc, q);
2060 	}
2061 
2062 	mutex_unlock(&guc->submission_state.lock);
2063 
2064 	/*
2065 	 * No one can enter the backend at this point, aside from new engine
2066 	 * creation which is protected by guc->submission_state.lock.
2067 	 */
2068 
2069 }
2070 
2071 static void guc_exec_queue_revert_pending_state_change(struct xe_guc *guc,
2072 						       struct xe_exec_queue *q)
2073 {
2074 	bool pending_enable, pending_disable, pending_resume;
2075 
2076 	pending_enable = exec_queue_pending_enable(q);
2077 	pending_resume = exec_queue_pending_resume(q);
2078 
2079 	if (pending_enable && pending_resume) {
2080 		q->guc->needs_resume = true;
2081 		xe_gt_dbg(guc_to_gt(guc), "Replay RESUME - guc_id=%d",
2082 			  q->guc->id);
2083 	}
2084 
2085 	if (pending_enable && !pending_resume &&
2086 	    !exec_queue_pending_tdr_exit(q)) {
2087 		clear_exec_queue_registered(q);
2088 		if (xe_exec_queue_is_lr(q))
2089 			xe_exec_queue_put(q);
2090 		xe_gt_dbg(guc_to_gt(guc), "Replay REGISTER - guc_id=%d",
2091 			  q->guc->id);
2092 	}
2093 
2094 	if (pending_enable) {
2095 		clear_exec_queue_enabled(q);
2096 		clear_exec_queue_pending_resume(q);
2097 		clear_exec_queue_pending_tdr_exit(q);
2098 		clear_exec_queue_pending_enable(q);
2099 		xe_gt_dbg(guc_to_gt(guc), "Replay ENABLE - guc_id=%d",
2100 			  q->guc->id);
2101 	}
2102 
2103 	if (exec_queue_destroyed(q) && exec_queue_registered(q)) {
2104 		clear_exec_queue_destroyed(q);
2105 		if (exec_queue_extra_ref(q))
2106 			xe_exec_queue_put(q);
2107 		else
2108 			q->guc->needs_cleanup = true;
2109 		clear_exec_queue_extra_ref(q);
2110 		xe_gt_dbg(guc_to_gt(guc), "Replay CLEANUP - guc_id=%d",
2111 			  q->guc->id);
2112 	}
2113 
2114 	pending_disable = exec_queue_pending_disable(q);
2115 
2116 	if (pending_disable && exec_queue_suspended(q)) {
2117 		clear_exec_queue_suspended(q);
2118 		q->guc->needs_suspend = true;
2119 		xe_gt_dbg(guc_to_gt(guc), "Replay SUSPEND - guc_id=%d",
2120 			  q->guc->id);
2121 	}
2122 
2123 	if (pending_disable) {
2124 		if (!pending_enable)
2125 			set_exec_queue_enabled(q);
2126 		clear_exec_queue_pending_disable(q);
2127 		clear_exec_queue_check_timeout(q);
2128 		xe_gt_dbg(guc_to_gt(guc), "Replay DISABLE - guc_id=%d",
2129 			  q->guc->id);
2130 	}
2131 
2132 	q->guc->resume_time = 0;
2133 }
2134 
2135 static void lrc_parallel_clear(struct xe_lrc *lrc)
2136 {
2137 	struct xe_device *xe = gt_to_xe(lrc->gt);
2138 	struct iosys_map map = xe_lrc_parallel_map(lrc);
2139 	int i;
2140 
2141 	for (i = 0; i < WQ_SIZE / sizeof(u32); ++i)
2142 		parallel_write(xe, map, wq[i],
2143 			       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
2144 			       FIELD_PREP(WQ_LEN_MASK, 0));
2145 }
2146 
2147 /*
2148  * This function is quite complex but only real way to ensure no state is lost
2149  * during VF resume flows. The function scans the queue state, make adjustments
2150  * as needed, and queues jobs / messages which replayed upon unpause.
2151  */
2152 static void guc_exec_queue_pause(struct xe_guc *guc, struct xe_exec_queue *q)
2153 {
2154 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2155 	struct xe_sched_job *job;
2156 	int i;
2157 
2158 	lockdep_assert_held(&guc->submission_state.lock);
2159 
2160 	/* Stop scheduling + flush any DRM scheduler operations */
2161 	xe_sched_submission_stop(sched);
2162 	if (xe_exec_queue_is_lr(q))
2163 		cancel_work_sync(&q->guc->lr_tdr);
2164 	else
2165 		cancel_delayed_work_sync(&sched->base.work_tdr);
2166 
2167 	guc_exec_queue_revert_pending_state_change(guc, q);
2168 
2169 	if (xe_exec_queue_is_parallel(q)) {
2170 		/* Pairs with WRITE_ONCE in __xe_exec_queue_init  */
2171 		struct xe_lrc *lrc = READ_ONCE(q->lrc[0]);
2172 
2173 		/*
2174 		 * NOP existing WQ commands that may contain stale GGTT
2175 		 * addresses. These will be replayed upon unpause. The hardware
2176 		 * seems to get confused if the WQ head/tail pointers are
2177 		 * adjusted.
2178 		 */
2179 		if (lrc)
2180 			lrc_parallel_clear(lrc);
2181 	}
2182 
2183 	job = xe_sched_first_pending_job(sched);
2184 	if (job) {
2185 		job->restore_replay = true;
2186 
2187 		/*
2188 		 * Adjust software tail so jobs submitted overwrite previous
2189 		 * position in ring buffer with new GGTT addresses.
2190 		 */
2191 		for (i = 0; i < q->width; ++i)
2192 			q->lrc[i]->ring.tail = job->ptrs[i].head;
2193 	}
2194 }
2195 
2196 /**
2197  * xe_guc_submit_pause - Stop further runs of submission tasks on given GuC.
2198  * @guc: the &xe_guc struct instance whose scheduler is to be disabled
2199  */
2200 void xe_guc_submit_pause(struct xe_guc *guc)
2201 {
2202 	struct xe_exec_queue *q;
2203 	unsigned long index;
2204 
2205 	xe_gt_assert(guc_to_gt(guc), vf_recovery(guc));
2206 
2207 	mutex_lock(&guc->submission_state.lock);
2208 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
2209 		/* Prevent redundant attempts to stop parallel queues */
2210 		if (q->guc->id != index)
2211 			continue;
2212 
2213 		guc_exec_queue_pause(guc, q);
2214 	}
2215 	mutex_unlock(&guc->submission_state.lock);
2216 }
2217 
2218 static void guc_exec_queue_start(struct xe_exec_queue *q)
2219 {
2220 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2221 
2222 	if (!exec_queue_killed_or_banned_or_wedged(q)) {
2223 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
2224 		int i;
2225 
2226 		trace_xe_exec_queue_resubmit(q);
2227 		if (job) {
2228 			for (i = 0; i < q->width; ++i) {
2229 				/*
2230 				 * The GuC context is unregistered at this point
2231 				 * time, adjusting software ring tail ensures
2232 				 * jobs are rewritten in original placement,
2233 				 * adjusting LRC tail ensures the newly loaded
2234 				 * GuC / contexts only view the LRC tail
2235 				 * increasing as jobs are written out.
2236 				 */
2237 				q->lrc[i]->ring.tail = job->ptrs[i].head;
2238 				xe_lrc_set_ring_tail(q->lrc[i],
2239 						     xe_lrc_ring_head(q->lrc[i]));
2240 			}
2241 		}
2242 		xe_sched_resubmit_jobs(sched);
2243 	}
2244 
2245 	xe_sched_submission_start(sched);
2246 	xe_sched_submission_resume_tdr(sched);
2247 }
2248 
2249 int xe_guc_submit_start(struct xe_guc *guc)
2250 {
2251 	struct xe_exec_queue *q;
2252 	unsigned long index;
2253 
2254 	xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
2255 
2256 	mutex_lock(&guc->submission_state.lock);
2257 	atomic_dec(&guc->submission_state.stopped);
2258 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
2259 		/* Prevent redundant attempts to start parallel queues */
2260 		if (q->guc->id != index)
2261 			continue;
2262 
2263 		guc_exec_queue_start(q);
2264 	}
2265 	mutex_unlock(&guc->submission_state.lock);
2266 
2267 	wake_up_all(&guc->ct.wq);
2268 
2269 	return 0;
2270 }
2271 
2272 static void guc_exec_queue_unpause_prepare(struct xe_guc *guc,
2273 					   struct xe_exec_queue *q)
2274 {
2275 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2276 	struct xe_sched_job *job = NULL, *__job;
2277 	bool restore_replay = false;
2278 
2279 	list_for_each_entry(__job, &sched->base.pending_list, drm.list) {
2280 		job = __job;
2281 		restore_replay |= job->restore_replay;
2282 		if (restore_replay) {
2283 			xe_gt_dbg(guc_to_gt(guc), "Replay JOB - guc_id=%d, seqno=%d",
2284 				  q->guc->id, xe_sched_job_seqno(job));
2285 
2286 			q->ring_ops->emit_job(job);
2287 			job->restore_replay = true;
2288 		}
2289 	}
2290 
2291 	if (job)
2292 		job->last_replay = true;
2293 }
2294 
2295 /**
2296  * xe_guc_submit_unpause_prepare - Prepare unpause submission tasks on given GuC.
2297  * @guc: the &xe_guc struct instance whose scheduler is to be prepared for unpause
2298  */
2299 void xe_guc_submit_unpause_prepare(struct xe_guc *guc)
2300 {
2301 	struct xe_exec_queue *q;
2302 	unsigned long index;
2303 
2304 	xe_gt_assert(guc_to_gt(guc), vf_recovery(guc));
2305 
2306 	mutex_lock(&guc->submission_state.lock);
2307 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
2308 		/* Prevent redundant attempts to stop parallel queues */
2309 		if (q->guc->id != index)
2310 			continue;
2311 
2312 		guc_exec_queue_unpause_prepare(guc, q);
2313 	}
2314 	mutex_unlock(&guc->submission_state.lock);
2315 }
2316 
2317 static void guc_exec_queue_replay_pending_state_change(struct xe_exec_queue *q)
2318 {
2319 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2320 	struct xe_sched_msg *msg;
2321 
2322 	if (q->guc->needs_cleanup) {
2323 		msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
2324 
2325 		guc_exec_queue_add_msg(q, msg, CLEANUP);
2326 		q->guc->needs_cleanup = false;
2327 	}
2328 
2329 	if (q->guc->needs_suspend) {
2330 		msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
2331 
2332 		xe_sched_msg_lock(sched);
2333 		guc_exec_queue_try_add_msg_head(q, msg, SUSPEND);
2334 		xe_sched_msg_unlock(sched);
2335 
2336 		q->guc->needs_suspend = false;
2337 	}
2338 
2339 	/*
2340 	 * The resume must be in the message queue before the suspend as it is
2341 	 * not possible for a resume to be issued if a suspend pending is, but
2342 	 * the inverse is possible.
2343 	 */
2344 	if (q->guc->needs_resume) {
2345 		msg = q->guc->static_msgs + STATIC_MSG_RESUME;
2346 
2347 		xe_sched_msg_lock(sched);
2348 		guc_exec_queue_try_add_msg_head(q, msg, RESUME);
2349 		xe_sched_msg_unlock(sched);
2350 
2351 		q->guc->needs_resume = false;
2352 	}
2353 }
2354 
2355 static void guc_exec_queue_unpause(struct xe_guc *guc, struct xe_exec_queue *q)
2356 {
2357 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2358 	bool needs_tdr = exec_queue_killed_or_banned_or_wedged(q);
2359 
2360 	lockdep_assert_held(&guc->submission_state.lock);
2361 
2362 	xe_sched_resubmit_jobs(sched);
2363 	guc_exec_queue_replay_pending_state_change(q);
2364 	xe_sched_submission_start(sched);
2365 	if (needs_tdr)
2366 		xe_guc_exec_queue_trigger_cleanup(q);
2367 	xe_sched_submission_resume_tdr(sched);
2368 }
2369 
2370 /**
2371  * xe_guc_submit_unpause - Allow further runs of submission tasks on given GuC.
2372  * @guc: the &xe_guc struct instance whose scheduler is to be enabled
2373  */
2374 void xe_guc_submit_unpause(struct xe_guc *guc)
2375 {
2376 	struct xe_exec_queue *q;
2377 	unsigned long index;
2378 
2379 	mutex_lock(&guc->submission_state.lock);
2380 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
2381 		/*
2382 		 * Prevent redundant attempts to stop parallel queues, or queues
2383 		 * created after resfix done.
2384 		 */
2385 		if (q->guc->id != index ||
2386 		    !READ_ONCE(q->guc->sched.base.pause_submit))
2387 			continue;
2388 
2389 		guc_exec_queue_unpause(guc, q);
2390 	}
2391 	mutex_unlock(&guc->submission_state.lock);
2392 }
2393 
2394 /**
2395  * xe_guc_submit_pause_abort - Abort all paused submission task on given GuC.
2396  * @guc: the &xe_guc struct instance whose scheduler is to be aborted
2397  */
2398 void xe_guc_submit_pause_abort(struct xe_guc *guc)
2399 {
2400 	struct xe_exec_queue *q;
2401 	unsigned long index;
2402 
2403 	mutex_lock(&guc->submission_state.lock);
2404 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
2405 		struct xe_gpu_scheduler *sched = &q->guc->sched;
2406 
2407 		/* Prevent redundant attempts to stop parallel queues */
2408 		if (q->guc->id != index)
2409 			continue;
2410 
2411 		xe_sched_submission_start(sched);
2412 		if (exec_queue_killed_or_banned_or_wedged(q))
2413 			xe_guc_exec_queue_trigger_cleanup(q);
2414 	}
2415 	mutex_unlock(&guc->submission_state.lock);
2416 }
2417 
2418 static struct xe_exec_queue *
2419 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
2420 {
2421 	struct xe_gt *gt = guc_to_gt(guc);
2422 	struct xe_exec_queue *q;
2423 
2424 	if (unlikely(guc_id >= GUC_ID_MAX)) {
2425 		xe_gt_err(gt, "Invalid guc_id %u\n", guc_id);
2426 		return NULL;
2427 	}
2428 
2429 	q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
2430 	if (unlikely(!q)) {
2431 		xe_gt_err(gt, "No exec queue found for guc_id %u\n", guc_id);
2432 		return NULL;
2433 	}
2434 
2435 	xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id);
2436 	xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width));
2437 
2438 	return q;
2439 }
2440 
2441 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
2442 {
2443 	u32 action[] = {
2444 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
2445 		q->guc->id,
2446 	};
2447 
2448 	xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
2449 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
2450 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
2451 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
2452 
2453 	trace_xe_exec_queue_deregister(q);
2454 
2455 	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
2456 }
2457 
2458 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
2459 			      u32 runnable_state)
2460 {
2461 	trace_xe_exec_queue_scheduling_done(q);
2462 
2463 	if (runnable_state == 1) {
2464 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
2465 
2466 		q->guc->resume_time = ktime_get();
2467 		clear_exec_queue_pending_resume(q);
2468 		clear_exec_queue_pending_tdr_exit(q);
2469 		clear_exec_queue_pending_enable(q);
2470 		smp_wmb();
2471 		wake_up_all(&guc->ct.wq);
2472 	} else {
2473 		bool check_timeout = exec_queue_check_timeout(q);
2474 
2475 		xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
2476 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
2477 
2478 		if (q->guc->suspend_pending) {
2479 			suspend_fence_signal(q);
2480 			clear_exec_queue_pending_disable(q);
2481 		} else {
2482 			if (exec_queue_banned(q) || check_timeout) {
2483 				smp_wmb();
2484 				wake_up_all(&guc->ct.wq);
2485 			}
2486 			if (!check_timeout && exec_queue_destroyed(q)) {
2487 				/*
2488 				 * Make sure to clear the pending_disable only
2489 				 * after sampling the destroyed state. We want
2490 				 * to ensure we don't trigger the unregister too
2491 				 * early with something intending to only
2492 				 * disable scheduling. The caller doing the
2493 				 * destroy must wait for an ongoing
2494 				 * pending_disable before marking as destroyed.
2495 				 */
2496 				clear_exec_queue_pending_disable(q);
2497 				deregister_exec_queue(guc, q);
2498 			} else {
2499 				clear_exec_queue_pending_disable(q);
2500 			}
2501 		}
2502 	}
2503 }
2504 
2505 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
2506 {
2507 	struct xe_exec_queue *q;
2508 	u32 guc_id, runnable_state;
2509 
2510 	if (unlikely(len < 2))
2511 		return -EPROTO;
2512 
2513 	guc_id = msg[0];
2514 	runnable_state = msg[1];
2515 
2516 	q = g2h_exec_queue_lookup(guc, guc_id);
2517 	if (unlikely(!q))
2518 		return -EPROTO;
2519 
2520 	if (unlikely(!exec_queue_pending_enable(q) &&
2521 		     !exec_queue_pending_disable(q))) {
2522 		xe_gt_err(guc_to_gt(guc),
2523 			  "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
2524 			  atomic_read(&q->guc->state), q->guc->id,
2525 			  runnable_state);
2526 		return -EPROTO;
2527 	}
2528 
2529 	handle_sched_done(guc, q, runnable_state);
2530 
2531 	return 0;
2532 }
2533 
2534 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
2535 {
2536 	trace_xe_exec_queue_deregister_done(q);
2537 
2538 	clear_exec_queue_registered(q);
2539 
2540 	if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
2541 		xe_exec_queue_put(q);
2542 	else
2543 		__guc_exec_queue_destroy(guc, q);
2544 }
2545 
2546 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
2547 {
2548 	struct xe_exec_queue *q;
2549 	u32 guc_id;
2550 
2551 	if (unlikely(len < 1))
2552 		return -EPROTO;
2553 
2554 	guc_id = msg[0];
2555 
2556 	q = g2h_exec_queue_lookup(guc, guc_id);
2557 	if (unlikely(!q))
2558 		return -EPROTO;
2559 
2560 	if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
2561 	    exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
2562 		xe_gt_err(guc_to_gt(guc),
2563 			  "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
2564 			  atomic_read(&q->guc->state), q->guc->id);
2565 		return -EPROTO;
2566 	}
2567 
2568 	handle_deregister_done(guc, q);
2569 
2570 	return 0;
2571 }
2572 
2573 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
2574 {
2575 	struct xe_gt *gt = guc_to_gt(guc);
2576 	struct xe_exec_queue *q;
2577 	u32 guc_id;
2578 
2579 	if (unlikely(len < 1))
2580 		return -EPROTO;
2581 
2582 	guc_id = msg[0];
2583 
2584 	q = g2h_exec_queue_lookup(guc, guc_id);
2585 	if (unlikely(!q))
2586 		return -EPROTO;
2587 
2588 	xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2589 		   xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2590 
2591 	trace_xe_exec_queue_reset(q);
2592 
2593 	/*
2594 	 * A banned engine is a NOP at this point (came from
2595 	 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
2596 	 * jobs by setting timeout of the job to the minimum value kicking
2597 	 * guc_exec_queue_timedout_job.
2598 	 */
2599 	set_exec_queue_reset(q);
2600 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2601 		xe_guc_exec_queue_trigger_cleanup(q);
2602 
2603 	return 0;
2604 }
2605 
2606 /*
2607  * xe_guc_error_capture_handler - Handler of GuC captured message
2608  * @guc: The GuC object
2609  * @msg: Point to the message
2610  * @len: The message length
2611  *
2612  * When GuC captured data is ready, GuC will send message
2613  * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
2614  * called 1st to check status before process the data comes with the message.
2615  *
2616  * Returns: error code. 0 if success
2617  */
2618 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2619 {
2620 	u32 status;
2621 
2622 	if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN))
2623 		return -EPROTO;
2624 
2625 	status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2626 	if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2627 		xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2628 
2629 	xe_guc_capture_process(guc);
2630 
2631 	return 0;
2632 }
2633 
2634 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2635 					       u32 len)
2636 {
2637 	struct xe_gt *gt = guc_to_gt(guc);
2638 	struct xe_exec_queue *q;
2639 	u32 guc_id;
2640 	u32 type = XE_GUC_CAT_ERR_TYPE_INVALID;
2641 
2642 	if (unlikely(!len || len > 2))
2643 		return -EPROTO;
2644 
2645 	guc_id = msg[0];
2646 
2647 	if (len == 2)
2648 		type = msg[1];
2649 
2650 	if (guc_id == GUC_ID_UNKNOWN) {
2651 		/*
2652 		 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF
2653 		 * context. In such case only PF will be notified about that fault.
2654 		 */
2655 		xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n");
2656 		return 0;
2657 	}
2658 
2659 	q = g2h_exec_queue_lookup(guc, guc_id);
2660 	if (unlikely(!q))
2661 		return -EPROTO;
2662 
2663 	/*
2664 	 * The type is HW-defined and changes based on platform, so we don't
2665 	 * decode it in the kernel and only check if it is valid.
2666 	 * See bspec 54047 and 72187 for details.
2667 	 */
2668 	if (type != XE_GUC_CAT_ERR_TYPE_INVALID)
2669 		xe_gt_dbg(gt,
2670 			  "Engine memory CAT error [%u]: class=%s, logical_mask: 0x%x, guc_id=%d",
2671 			  type, xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2672 	else
2673 		xe_gt_dbg(gt,
2674 			  "Engine memory CAT error: class=%s, logical_mask: 0x%x, guc_id=%d",
2675 			  xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2676 
2677 	trace_xe_exec_queue_memory_cat_error(q);
2678 
2679 	/* Treat the same as engine reset */
2680 	set_exec_queue_reset(q);
2681 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2682 		xe_guc_exec_queue_trigger_cleanup(q);
2683 
2684 	return 0;
2685 }
2686 
2687 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2688 {
2689 	struct xe_gt *gt = guc_to_gt(guc);
2690 	u8 guc_class, instance;
2691 	u32 reason;
2692 
2693 	if (unlikely(len != 3))
2694 		return -EPROTO;
2695 
2696 	guc_class = msg[0];
2697 	instance = msg[1];
2698 	reason = msg[2];
2699 
2700 	/* Unexpected failure of a hardware feature, log an actual error */
2701 	xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X",
2702 		  guc_class, instance, reason);
2703 
2704 	xe_gt_reset_async(gt);
2705 
2706 	return 0;
2707 }
2708 
2709 static void
2710 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2711 				   struct xe_guc_submit_exec_queue_snapshot *snapshot)
2712 {
2713 	struct xe_guc *guc = exec_queue_to_guc(q);
2714 	struct xe_device *xe = guc_to_xe(guc);
2715 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2716 	int i;
2717 
2718 	snapshot->guc.wqi_head = q->guc->wqi_head;
2719 	snapshot->guc.wqi_tail = q->guc->wqi_tail;
2720 	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2721 	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2722 	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2723 							  wq_desc.wq_status);
2724 
2725 	if (snapshot->parallel.wq_desc.head !=
2726 	    snapshot->parallel.wq_desc.tail) {
2727 		for (i = snapshot->parallel.wq_desc.head;
2728 		     i != snapshot->parallel.wq_desc.tail;
2729 		     i = (i + sizeof(u32)) % WQ_SIZE)
2730 			snapshot->parallel.wq[i / sizeof(u32)] =
2731 				parallel_read(xe, map, wq[i / sizeof(u32)]);
2732 	}
2733 }
2734 
2735 static void
2736 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2737 				 struct drm_printer *p)
2738 {
2739 	int i;
2740 
2741 	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2742 		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2743 	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2744 		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2745 	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2746 
2747 	if (snapshot->parallel.wq_desc.head !=
2748 	    snapshot->parallel.wq_desc.tail) {
2749 		for (i = snapshot->parallel.wq_desc.head;
2750 		     i != snapshot->parallel.wq_desc.tail;
2751 		     i = (i + sizeof(u32)) % WQ_SIZE)
2752 			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2753 				   snapshot->parallel.wq[i / sizeof(u32)]);
2754 	}
2755 }
2756 
2757 /**
2758  * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2759  * @q: faulty exec queue
2760  *
2761  * This can be printed out in a later stage like during dev_coredump
2762  * analysis.
2763  *
2764  * Returns: a GuC Submit Engine snapshot object that must be freed by the
2765  * caller, using `xe_guc_exec_queue_snapshot_free`.
2766  */
2767 struct xe_guc_submit_exec_queue_snapshot *
2768 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2769 {
2770 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2771 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2772 	int i;
2773 
2774 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2775 
2776 	if (!snapshot)
2777 		return NULL;
2778 
2779 	snapshot->guc.id = q->guc->id;
2780 	memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2781 	snapshot->class = q->class;
2782 	snapshot->logical_mask = q->logical_mask;
2783 	snapshot->width = q->width;
2784 	snapshot->refcount = kref_read(&q->refcount);
2785 	snapshot->sched_timeout = sched->base.timeout;
2786 	snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2787 	snapshot->sched_props.preempt_timeout_us =
2788 		q->sched_props.preempt_timeout_us;
2789 
2790 	snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2791 				      GFP_ATOMIC);
2792 
2793 	if (snapshot->lrc) {
2794 		for (i = 0; i < q->width; ++i) {
2795 			struct xe_lrc *lrc = q->lrc[i];
2796 
2797 			snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2798 		}
2799 	}
2800 
2801 	snapshot->schedule_state = atomic_read(&q->guc->state);
2802 	snapshot->exec_queue_flags = q->flags;
2803 
2804 	snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2805 	if (snapshot->parallel_execution)
2806 		guc_exec_queue_wq_snapshot_capture(q, snapshot);
2807 
2808 	spin_lock(&sched->base.job_list_lock);
2809 	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2810 	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2811 					       sizeof(struct pending_list_snapshot),
2812 					       GFP_ATOMIC);
2813 
2814 	if (snapshot->pending_list) {
2815 		struct xe_sched_job *job_iter;
2816 
2817 		i = 0;
2818 		list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2819 			snapshot->pending_list[i].seqno =
2820 				xe_sched_job_seqno(job_iter);
2821 			snapshot->pending_list[i].fence =
2822 				dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2823 			snapshot->pending_list[i].finished =
2824 				dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2825 				? 1 : 0;
2826 			i++;
2827 		}
2828 	}
2829 
2830 	spin_unlock(&sched->base.job_list_lock);
2831 
2832 	return snapshot;
2833 }
2834 
2835 /**
2836  * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2837  * @snapshot: Previously captured snapshot of job.
2838  *
2839  * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2840  */
2841 void
2842 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2843 {
2844 	int i;
2845 
2846 	if (!snapshot || !snapshot->lrc)
2847 		return;
2848 
2849 	for (i = 0; i < snapshot->width; ++i)
2850 		xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2851 }
2852 
2853 /**
2854  * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2855  * @snapshot: GuC Submit Engine snapshot object.
2856  * @p: drm_printer where it will be printed out.
2857  *
2858  * This function prints out a given GuC Submit Engine snapshot object.
2859  */
2860 void
2861 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2862 				 struct drm_printer *p)
2863 {
2864 	int i;
2865 
2866 	if (!snapshot)
2867 		return;
2868 
2869 	drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2870 	drm_printf(p, "\tName: %s\n", snapshot->name);
2871 	drm_printf(p, "\tClass: %d\n", snapshot->class);
2872 	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2873 	drm_printf(p, "\tWidth: %d\n", snapshot->width);
2874 	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2875 	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2876 	drm_printf(p, "\tTimeslice: %u (us)\n",
2877 		   snapshot->sched_props.timeslice_us);
2878 	drm_printf(p, "\tPreempt timeout: %u (us)\n",
2879 		   snapshot->sched_props.preempt_timeout_us);
2880 
2881 	for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2882 		xe_lrc_snapshot_print(snapshot->lrc[i], p);
2883 
2884 	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2885 	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2886 
2887 	if (snapshot->parallel_execution)
2888 		guc_exec_queue_wq_snapshot_print(snapshot, p);
2889 
2890 	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2891 	     i++)
2892 		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2893 			   snapshot->pending_list[i].seqno,
2894 			   snapshot->pending_list[i].fence,
2895 			   snapshot->pending_list[i].finished);
2896 }
2897 
2898 /**
2899  * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2900  * snapshot.
2901  * @snapshot: GuC Submit Engine snapshot object.
2902  *
2903  * This function free all the memory that needed to be allocated at capture
2904  * time.
2905  */
2906 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2907 {
2908 	int i;
2909 
2910 	if (!snapshot)
2911 		return;
2912 
2913 	if (snapshot->lrc) {
2914 		for (i = 0; i < snapshot->width; i++)
2915 			xe_lrc_snapshot_free(snapshot->lrc[i]);
2916 		kfree(snapshot->lrc);
2917 	}
2918 	kfree(snapshot->pending_list);
2919 	kfree(snapshot);
2920 }
2921 
2922 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2923 {
2924 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2925 
2926 	snapshot = xe_guc_exec_queue_snapshot_capture(q);
2927 	xe_guc_exec_queue_snapshot_print(snapshot, p);
2928 	xe_guc_exec_queue_snapshot_free(snapshot);
2929 }
2930 
2931 /**
2932  * xe_guc_register_vf_exec_queue - Register exec queue for a given context type.
2933  * @q: Execution queue
2934  * @ctx_type: Type of the context
2935  *
2936  * This function registers the execution queue with the guc. Special context
2937  * types like GUC_CONTEXT_COMPRESSION_SAVE and GUC_CONTEXT_COMPRESSION_RESTORE
2938  * are only applicable for IGPU and in the VF.
2939  * Submits the execution queue to GUC after registering it.
2940  *
2941  * Returns - None.
2942  */
2943 void xe_guc_register_vf_exec_queue(struct xe_exec_queue *q, int ctx_type)
2944 {
2945 	struct xe_guc *guc = exec_queue_to_guc(q);
2946 	struct xe_device *xe = guc_to_xe(guc);
2947 	struct xe_gt *gt = guc_to_gt(guc);
2948 
2949 	xe_gt_assert(gt, IS_SRIOV_VF(xe));
2950 	xe_gt_assert(gt, !IS_DGFX(xe));
2951 	xe_gt_assert(gt, ctx_type == GUC_CONTEXT_COMPRESSION_SAVE ||
2952 		     ctx_type == GUC_CONTEXT_COMPRESSION_RESTORE);
2953 	xe_gt_assert(gt, GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 23, 0));
2954 
2955 	register_exec_queue(q, ctx_type);
2956 	enable_scheduling(q);
2957 }
2958 
2959 /**
2960  * xe_guc_submit_print - GuC Submit Print.
2961  * @guc: GuC.
2962  * @p: drm_printer where it will be printed out.
2963  *
2964  * This function capture and prints snapshots of **all** GuC Engines.
2965  */
2966 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2967 {
2968 	struct xe_exec_queue *q;
2969 	unsigned long index;
2970 
2971 	if (!xe_device_uc_enabled(guc_to_xe(guc)))
2972 		return;
2973 
2974 	mutex_lock(&guc->submission_state.lock);
2975 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2976 		guc_exec_queue_print(q, p);
2977 	mutex_unlock(&guc->submission_state.lock);
2978 }
2979 
2980 /**
2981  * xe_guc_contexts_hwsp_rebase - Re-compute GGTT references within all
2982  * exec queues registered to given GuC.
2983  * @guc: the &xe_guc struct instance
2984  * @scratch: scratch buffer to be used as temporary storage
2985  *
2986  * Returns: zero on success, negative error code on failure.
2987  */
2988 int xe_guc_contexts_hwsp_rebase(struct xe_guc *guc, void *scratch)
2989 {
2990 	struct xe_exec_queue *q;
2991 	unsigned long index;
2992 	int err = 0;
2993 
2994 	mutex_lock(&guc->submission_state.lock);
2995 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
2996 		/* Prevent redundant attempts to stop parallel queues */
2997 		if (q->guc->id != index)
2998 			continue;
2999 
3000 		err = xe_exec_queue_contexts_hwsp_rebase(q, scratch);
3001 		if (err)
3002 			break;
3003 	}
3004 	mutex_unlock(&guc->submission_state.lock);
3005 
3006 	return err;
3007 }
3008