xref: /linux/drivers/gpu/drm/xe/xe_guc_submit.c (revision 9112fc0109fc0037ac3b8b633a169e78b4e23ca1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_submit.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 
14 #include <drm/drm_managed.h>
15 
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_klvs_abi.h"
18 #include "regs/xe_lrc_layout.h"
19 #include "xe_assert.h"
20 #include "xe_devcoredump.h"
21 #include "xe_device.h"
22 #include "xe_exec_queue.h"
23 #include "xe_force_wake.h"
24 #include "xe_gpu_scheduler.h"
25 #include "xe_gt.h"
26 #include "xe_guc.h"
27 #include "xe_guc_ct.h"
28 #include "xe_guc_exec_queue_types.h"
29 #include "xe_guc_submit_types.h"
30 #include "xe_hw_engine.h"
31 #include "xe_hw_fence.h"
32 #include "xe_lrc.h"
33 #include "xe_macros.h"
34 #include "xe_map.h"
35 #include "xe_mocs.h"
36 #include "xe_ring_ops_types.h"
37 #include "xe_sched_job.h"
38 #include "xe_trace.h"
39 #include "xe_vm.h"
40 
41 static struct xe_guc *
42 exec_queue_to_guc(struct xe_exec_queue *q)
43 {
44 	return &q->gt->uc.guc;
45 }
46 
47 /*
48  * Helpers for engine state, using an atomic as some of the bits can transition
49  * as the same time (e.g. a suspend can be happning at the same time as schedule
50  * engine done being processed).
51  */
52 #define EXEC_QUEUE_STATE_REGISTERED		(1 << 0)
53 #define ENGINE_STATE_ENABLED		(1 << 1)
54 #define EXEC_QUEUE_STATE_PENDING_ENABLE	(1 << 2)
55 #define EXEC_QUEUE_STATE_PENDING_DISABLE	(1 << 3)
56 #define EXEC_QUEUE_STATE_DESTROYED		(1 << 4)
57 #define ENGINE_STATE_SUSPENDED		(1 << 5)
58 #define EXEC_QUEUE_STATE_RESET		(1 << 6)
59 #define ENGINE_STATE_KILLED		(1 << 7)
60 
61 static bool exec_queue_registered(struct xe_exec_queue *q)
62 {
63 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
64 }
65 
66 static void set_exec_queue_registered(struct xe_exec_queue *q)
67 {
68 	atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
69 }
70 
71 static void clear_exec_queue_registered(struct xe_exec_queue *q)
72 {
73 	atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
74 }
75 
76 static bool exec_queue_enabled(struct xe_exec_queue *q)
77 {
78 	return atomic_read(&q->guc->state) & ENGINE_STATE_ENABLED;
79 }
80 
81 static void set_exec_queue_enabled(struct xe_exec_queue *q)
82 {
83 	atomic_or(ENGINE_STATE_ENABLED, &q->guc->state);
84 }
85 
86 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
87 {
88 	atomic_and(~ENGINE_STATE_ENABLED, &q->guc->state);
89 }
90 
91 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
92 {
93 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
94 }
95 
96 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
97 {
98 	atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
99 }
100 
101 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
102 {
103 	atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
104 }
105 
106 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
107 {
108 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
109 }
110 
111 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
112 {
113 	atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
114 }
115 
116 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
117 {
118 	atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
119 }
120 
121 static bool exec_queue_destroyed(struct xe_exec_queue *q)
122 {
123 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
124 }
125 
126 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
127 {
128 	atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
129 }
130 
131 static bool exec_queue_banned(struct xe_exec_queue *q)
132 {
133 	return (q->flags & EXEC_QUEUE_FLAG_BANNED);
134 }
135 
136 static void set_exec_queue_banned(struct xe_exec_queue *q)
137 {
138 	q->flags |= EXEC_QUEUE_FLAG_BANNED;
139 }
140 
141 static bool exec_queue_suspended(struct xe_exec_queue *q)
142 {
143 	return atomic_read(&q->guc->state) & ENGINE_STATE_SUSPENDED;
144 }
145 
146 static void set_exec_queue_suspended(struct xe_exec_queue *q)
147 {
148 	atomic_or(ENGINE_STATE_SUSPENDED, &q->guc->state);
149 }
150 
151 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
152 {
153 	atomic_and(~ENGINE_STATE_SUSPENDED, &q->guc->state);
154 }
155 
156 static bool exec_queue_reset(struct xe_exec_queue *q)
157 {
158 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
159 }
160 
161 static void set_exec_queue_reset(struct xe_exec_queue *q)
162 {
163 	atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
164 }
165 
166 static bool exec_queue_killed(struct xe_exec_queue *q)
167 {
168 	return atomic_read(&q->guc->state) & ENGINE_STATE_KILLED;
169 }
170 
171 static void set_exec_queue_killed(struct xe_exec_queue *q)
172 {
173 	atomic_or(ENGINE_STATE_KILLED, &q->guc->state);
174 }
175 
176 static bool exec_queue_killed_or_banned(struct xe_exec_queue *q)
177 {
178 	return exec_queue_killed(q) || exec_queue_banned(q);
179 }
180 
181 #ifdef CONFIG_PROVE_LOCKING
182 static int alloc_submit_wq(struct xe_guc *guc)
183 {
184 	int i;
185 
186 	for (i = 0; i < NUM_SUBMIT_WQ; ++i) {
187 		guc->submission_state.submit_wq_pool[i] =
188 			alloc_ordered_workqueue("submit_wq", 0);
189 		if (!guc->submission_state.submit_wq_pool[i])
190 			goto err_free;
191 	}
192 
193 	return 0;
194 
195 err_free:
196 	while (i)
197 		destroy_workqueue(guc->submission_state.submit_wq_pool[--i]);
198 
199 	return -ENOMEM;
200 }
201 
202 static void free_submit_wq(struct xe_guc *guc)
203 {
204 	int i;
205 
206 	for (i = 0; i < NUM_SUBMIT_WQ; ++i)
207 		destroy_workqueue(guc->submission_state.submit_wq_pool[i]);
208 }
209 
210 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc)
211 {
212 	int idx = guc->submission_state.submit_wq_idx++ % NUM_SUBMIT_WQ;
213 
214 	return guc->submission_state.submit_wq_pool[idx];
215 }
216 #else
217 static int alloc_submit_wq(struct xe_guc *guc)
218 {
219 	return 0;
220 }
221 
222 static void free_submit_wq(struct xe_guc *guc)
223 {
224 
225 }
226 
227 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc)
228 {
229 	return NULL;
230 }
231 #endif
232 
233 static void guc_submit_fini(struct drm_device *drm, void *arg)
234 {
235 	struct xe_guc *guc = arg;
236 
237 	xa_destroy(&guc->submission_state.exec_queue_lookup);
238 	ida_destroy(&guc->submission_state.guc_ids);
239 	bitmap_free(guc->submission_state.guc_ids_bitmap);
240 	free_submit_wq(guc);
241 	mutex_destroy(&guc->submission_state.lock);
242 }
243 
244 #define GUC_ID_MAX		65535
245 #define GUC_ID_NUMBER_MLRC	4096
246 #define GUC_ID_NUMBER_SLRC	(GUC_ID_MAX - GUC_ID_NUMBER_MLRC)
247 #define GUC_ID_START_MLRC	GUC_ID_NUMBER_SLRC
248 
249 static const struct xe_exec_queue_ops guc_exec_queue_ops;
250 
251 static void primelockdep(struct xe_guc *guc)
252 {
253 	if (!IS_ENABLED(CONFIG_LOCKDEP))
254 		return;
255 
256 	fs_reclaim_acquire(GFP_KERNEL);
257 
258 	mutex_lock(&guc->submission_state.lock);
259 	might_lock(&guc->submission_state.suspend.lock);
260 	mutex_unlock(&guc->submission_state.lock);
261 
262 	fs_reclaim_release(GFP_KERNEL);
263 }
264 
265 int xe_guc_submit_init(struct xe_guc *guc)
266 {
267 	struct xe_device *xe = guc_to_xe(guc);
268 	struct xe_gt *gt = guc_to_gt(guc);
269 	int err;
270 
271 	guc->submission_state.guc_ids_bitmap =
272 		bitmap_zalloc(GUC_ID_NUMBER_MLRC, GFP_KERNEL);
273 	if (!guc->submission_state.guc_ids_bitmap)
274 		return -ENOMEM;
275 
276 	err = alloc_submit_wq(guc);
277 	if (err) {
278 		bitmap_free(guc->submission_state.guc_ids_bitmap);
279 		return err;
280 	}
281 
282 	gt->exec_queue_ops = &guc_exec_queue_ops;
283 
284 	mutex_init(&guc->submission_state.lock);
285 	xa_init(&guc->submission_state.exec_queue_lookup);
286 	ida_init(&guc->submission_state.guc_ids);
287 
288 	spin_lock_init(&guc->submission_state.suspend.lock);
289 	guc->submission_state.suspend.context = dma_fence_context_alloc(1);
290 
291 	primelockdep(guc);
292 
293 	err = drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
294 	if (err)
295 		return err;
296 
297 	return 0;
298 }
299 
300 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
301 {
302 	int i;
303 
304 	lockdep_assert_held(&guc->submission_state.lock);
305 
306 	for (i = 0; i < xa_count; ++i)
307 		xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
308 
309 	if (xe_exec_queue_is_parallel(q))
310 		bitmap_release_region(guc->submission_state.guc_ids_bitmap,
311 				      q->guc->id - GUC_ID_START_MLRC,
312 				      order_base_2(q->width));
313 	else
314 		ida_simple_remove(&guc->submission_state.guc_ids, q->guc->id);
315 }
316 
317 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
318 {
319 	int ret;
320 	void *ptr;
321 	int i;
322 
323 	/*
324 	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
325 	 * worse case user gets -ENOMEM on engine create and has to try again.
326 	 *
327 	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
328 	 * failure.
329 	 */
330 	lockdep_assert_held(&guc->submission_state.lock);
331 
332 	if (xe_exec_queue_is_parallel(q)) {
333 		void *bitmap = guc->submission_state.guc_ids_bitmap;
334 
335 		ret = bitmap_find_free_region(bitmap, GUC_ID_NUMBER_MLRC,
336 					      order_base_2(q->width));
337 	} else {
338 		ret = ida_simple_get(&guc->submission_state.guc_ids, 0,
339 				     GUC_ID_NUMBER_SLRC, GFP_NOWAIT);
340 	}
341 	if (ret < 0)
342 		return ret;
343 
344 	q->guc->id = ret;
345 	if (xe_exec_queue_is_parallel(q))
346 		q->guc->id += GUC_ID_START_MLRC;
347 
348 	for (i = 0; i < q->width; ++i) {
349 		ptr = xa_store(&guc->submission_state.exec_queue_lookup,
350 			       q->guc->id + i, q, GFP_NOWAIT);
351 		if (IS_ERR(ptr)) {
352 			ret = PTR_ERR(ptr);
353 			goto err_release;
354 		}
355 	}
356 
357 	return 0;
358 
359 err_release:
360 	__release_guc_id(guc, q, i);
361 
362 	return ret;
363 }
364 
365 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
366 {
367 	mutex_lock(&guc->submission_state.lock);
368 	__release_guc_id(guc, q, q->width);
369 	mutex_unlock(&guc->submission_state.lock);
370 }
371 
372 struct exec_queue_policy {
373 	u32 count;
374 	struct guc_update_exec_queue_policy h2g;
375 };
376 
377 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
378 {
379 	size_t bytes = sizeof(policy->h2g.header) +
380 		       (sizeof(policy->h2g.klv[0]) * policy->count);
381 
382 	return bytes / sizeof(u32);
383 }
384 
385 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
386 					      u16 guc_id)
387 {
388 	policy->h2g.header.action =
389 		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
390 	policy->h2g.header.guc_id = guc_id;
391 	policy->count = 0;
392 }
393 
394 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
395 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
396 					   u32 data) \
397 { \
398 	XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
399 \
400 	policy->h2g.klv[policy->count].kl = \
401 		FIELD_PREP(GUC_KLV_0_KEY, \
402 			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
403 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
404 	policy->h2g.klv[policy->count].value = data; \
405 	policy->count++; \
406 }
407 
408 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
409 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
410 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
411 #undef MAKE_EXEC_QUEUE_POLICY_ADD
412 
413 static const int xe_exec_queue_prio_to_guc[] = {
414 	[XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
415 	[XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
416 	[XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
417 	[XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
418 };
419 
420 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
421 {
422 	struct exec_queue_policy policy;
423 	struct xe_device *xe = guc_to_xe(guc);
424 	enum xe_exec_queue_priority prio = q->sched_props.priority;
425 	u32 timeslice_us = q->sched_props.timeslice_us;
426 	u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
427 
428 	xe_assert(xe, exec_queue_registered(q));
429 
430 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
431 	__guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
432 	__guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
433 	__guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
434 
435 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
436 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
437 }
438 
439 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
440 {
441 	struct exec_queue_policy policy;
442 
443 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
444 	__guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
445 
446 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
447 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
448 }
449 
450 #define parallel_read(xe_, map_, field_) \
451 	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
452 			field_)
453 #define parallel_write(xe_, map_, field_, val_) \
454 	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
455 			field_, val_)
456 
457 static void __register_mlrc_engine(struct xe_guc *guc,
458 				   struct xe_exec_queue *q,
459 				   struct guc_ctxt_registration_info *info)
460 {
461 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
462 	struct xe_device *xe = guc_to_xe(guc);
463 	u32 action[MAX_MLRC_REG_SIZE];
464 	int len = 0;
465 	int i;
466 
467 	xe_assert(xe, xe_exec_queue_is_parallel(q));
468 
469 	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
470 	action[len++] = info->flags;
471 	action[len++] = info->context_idx;
472 	action[len++] = info->engine_class;
473 	action[len++] = info->engine_submit_mask;
474 	action[len++] = info->wq_desc_lo;
475 	action[len++] = info->wq_desc_hi;
476 	action[len++] = info->wq_base_lo;
477 	action[len++] = info->wq_base_hi;
478 	action[len++] = info->wq_size;
479 	action[len++] = q->width;
480 	action[len++] = info->hwlrca_lo;
481 	action[len++] = info->hwlrca_hi;
482 
483 	for (i = 1; i < q->width; ++i) {
484 		struct xe_lrc *lrc = q->lrc + i;
485 
486 		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
487 		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
488 	}
489 
490 	xe_assert(xe, len <= MAX_MLRC_REG_SIZE);
491 #undef MAX_MLRC_REG_SIZE
492 
493 	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
494 }
495 
496 static void __register_engine(struct xe_guc *guc,
497 			      struct guc_ctxt_registration_info *info)
498 {
499 	u32 action[] = {
500 		XE_GUC_ACTION_REGISTER_CONTEXT,
501 		info->flags,
502 		info->context_idx,
503 		info->engine_class,
504 		info->engine_submit_mask,
505 		info->wq_desc_lo,
506 		info->wq_desc_hi,
507 		info->wq_base_lo,
508 		info->wq_base_hi,
509 		info->wq_size,
510 		info->hwlrca_lo,
511 		info->hwlrca_hi,
512 	};
513 
514 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
515 }
516 
517 static void register_engine(struct xe_exec_queue *q)
518 {
519 	struct xe_guc *guc = exec_queue_to_guc(q);
520 	struct xe_device *xe = guc_to_xe(guc);
521 	struct xe_lrc *lrc = q->lrc;
522 	struct guc_ctxt_registration_info info;
523 
524 	xe_assert(xe, !exec_queue_registered(q));
525 
526 	memset(&info, 0, sizeof(info));
527 	info.context_idx = q->guc->id;
528 	info.engine_class = xe_engine_class_to_guc_class(q->class);
529 	info.engine_submit_mask = q->logical_mask;
530 	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
531 	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
532 	info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
533 
534 	if (xe_exec_queue_is_parallel(q)) {
535 		u32 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
536 		struct iosys_map map = xe_lrc_parallel_map(lrc);
537 
538 		info.wq_desc_lo = lower_32_bits(ggtt_addr +
539 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
540 		info.wq_desc_hi = upper_32_bits(ggtt_addr +
541 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
542 		info.wq_base_lo = lower_32_bits(ggtt_addr +
543 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
544 		info.wq_base_hi = upper_32_bits(ggtt_addr +
545 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
546 		info.wq_size = WQ_SIZE;
547 
548 		q->guc->wqi_head = 0;
549 		q->guc->wqi_tail = 0;
550 		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
551 		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
552 	}
553 
554 	/*
555 	 * We must keep a reference for LR engines if engine is registered with
556 	 * the GuC as jobs signal immediately and can't destroy an engine if the
557 	 * GuC has a reference to it.
558 	 */
559 	if (xe_exec_queue_is_lr(q))
560 		xe_exec_queue_get(q);
561 
562 	set_exec_queue_registered(q);
563 	trace_xe_exec_queue_register(q);
564 	if (xe_exec_queue_is_parallel(q))
565 		__register_mlrc_engine(guc, q, &info);
566 	else
567 		__register_engine(guc, &info);
568 	init_policies(guc, q);
569 }
570 
571 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
572 {
573 	return (WQ_SIZE - q->guc->wqi_tail);
574 }
575 
576 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
577 {
578 	struct xe_guc *guc = exec_queue_to_guc(q);
579 	struct xe_device *xe = guc_to_xe(guc);
580 	struct iosys_map map = xe_lrc_parallel_map(q->lrc);
581 	unsigned int sleep_period_ms = 1;
582 
583 #define AVAILABLE_SPACE \
584 	CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
585 	if (wqi_size > AVAILABLE_SPACE) {
586 try_again:
587 		q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
588 		if (wqi_size > AVAILABLE_SPACE) {
589 			if (sleep_period_ms == 1024) {
590 				xe_gt_reset_async(q->gt);
591 				return -ENODEV;
592 			}
593 
594 			msleep(sleep_period_ms);
595 			sleep_period_ms <<= 1;
596 			goto try_again;
597 		}
598 	}
599 #undef AVAILABLE_SPACE
600 
601 	return 0;
602 }
603 
604 static int wq_noop_append(struct xe_exec_queue *q)
605 {
606 	struct xe_guc *guc = exec_queue_to_guc(q);
607 	struct xe_device *xe = guc_to_xe(guc);
608 	struct iosys_map map = xe_lrc_parallel_map(q->lrc);
609 	u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
610 
611 	if (wq_wait_for_space(q, wq_space_until_wrap(q)))
612 		return -ENODEV;
613 
614 	xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw));
615 
616 	parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
617 		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
618 		       FIELD_PREP(WQ_LEN_MASK, len_dw));
619 	q->guc->wqi_tail = 0;
620 
621 	return 0;
622 }
623 
624 static void wq_item_append(struct xe_exec_queue *q)
625 {
626 	struct xe_guc *guc = exec_queue_to_guc(q);
627 	struct xe_device *xe = guc_to_xe(guc);
628 	struct iosys_map map = xe_lrc_parallel_map(q->lrc);
629 #define WQ_HEADER_SIZE	4	/* Includes 1 LRC address too */
630 	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
631 	u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
632 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
633 	int i = 0, j;
634 
635 	if (wqi_size > wq_space_until_wrap(q)) {
636 		if (wq_noop_append(q))
637 			return;
638 	}
639 	if (wq_wait_for_space(q, wqi_size))
640 		return;
641 
642 	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
643 		FIELD_PREP(WQ_LEN_MASK, len_dw);
644 	wqi[i++] = xe_lrc_descriptor(q->lrc);
645 	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
646 		FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc->ring.tail / sizeof(u64));
647 	wqi[i++] = 0;
648 	for (j = 1; j < q->width; ++j) {
649 		struct xe_lrc *lrc = q->lrc + j;
650 
651 		wqi[i++] = lrc->ring.tail / sizeof(u64);
652 	}
653 
654 	xe_assert(xe, i == wqi_size / sizeof(u32));
655 
656 	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
657 				      wq[q->guc->wqi_tail / sizeof(u32)]));
658 	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
659 	q->guc->wqi_tail += wqi_size;
660 	xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE);
661 
662 	xe_device_wmb(xe);
663 
664 	map = xe_lrc_parallel_map(q->lrc);
665 	parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
666 }
667 
668 #define RESUME_PENDING	~0x0ull
669 static void submit_exec_queue(struct xe_exec_queue *q)
670 {
671 	struct xe_guc *guc = exec_queue_to_guc(q);
672 	struct xe_device *xe = guc_to_xe(guc);
673 	struct xe_lrc *lrc = q->lrc;
674 	u32 action[3];
675 	u32 g2h_len = 0;
676 	u32 num_g2h = 0;
677 	int len = 0;
678 	bool extra_submit = false;
679 
680 	xe_assert(xe, exec_queue_registered(q));
681 
682 	if (xe_exec_queue_is_parallel(q))
683 		wq_item_append(q);
684 	else
685 		xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, lrc->ring.tail);
686 
687 	if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
688 		return;
689 
690 	if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
691 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
692 		action[len++] = q->guc->id;
693 		action[len++] = GUC_CONTEXT_ENABLE;
694 		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
695 		num_g2h = 1;
696 		if (xe_exec_queue_is_parallel(q))
697 			extra_submit = true;
698 
699 		q->guc->resume_time = RESUME_PENDING;
700 		set_exec_queue_pending_enable(q);
701 		set_exec_queue_enabled(q);
702 		trace_xe_exec_queue_scheduling_enable(q);
703 	} else {
704 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
705 		action[len++] = q->guc->id;
706 		trace_xe_exec_queue_submit(q);
707 	}
708 
709 	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
710 
711 	if (extra_submit) {
712 		len = 0;
713 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
714 		action[len++] = q->guc->id;
715 		trace_xe_exec_queue_submit(q);
716 
717 		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
718 	}
719 }
720 
721 static struct dma_fence *
722 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
723 {
724 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
725 	struct xe_exec_queue *q = job->q;
726 	struct xe_guc *guc = exec_queue_to_guc(q);
727 	struct xe_device *xe = guc_to_xe(guc);
728 	bool lr = xe_exec_queue_is_lr(q);
729 
730 	xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
731 		  exec_queue_banned(q) || exec_queue_suspended(q));
732 
733 	trace_xe_sched_job_run(job);
734 
735 	if (!exec_queue_killed_or_banned(q) && !xe_sched_job_is_error(job)) {
736 		if (!exec_queue_registered(q))
737 			register_engine(q);
738 		if (!lr)	/* LR jobs are emitted in the exec IOCTL */
739 			q->ring_ops->emit_job(job);
740 		submit_exec_queue(q);
741 	}
742 
743 	if (lr) {
744 		xe_sched_job_set_error(job, -EOPNOTSUPP);
745 		return NULL;
746 	} else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) {
747 		return job->fence;
748 	} else {
749 		return dma_fence_get(job->fence);
750 	}
751 }
752 
753 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
754 {
755 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
756 
757 	trace_xe_sched_job_free(job);
758 	xe_sched_job_put(job);
759 }
760 
761 static int guc_read_stopped(struct xe_guc *guc)
762 {
763 	return atomic_read(&guc->submission_state.stopped);
764 }
765 
766 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)			\
767 	u32 action[] = {						\
768 		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
769 		q->guc->id,						\
770 		GUC_CONTEXT_##enable_disable,				\
771 	}
772 
773 static void disable_scheduling_deregister(struct xe_guc *guc,
774 					  struct xe_exec_queue *q)
775 {
776 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
777 	struct xe_device *xe = guc_to_xe(guc);
778 	int ret;
779 
780 	set_min_preemption_timeout(guc, q);
781 	smp_rmb();
782 	ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) ||
783 				 guc_read_stopped(guc), HZ * 5);
784 	if (!ret) {
785 		struct xe_gpu_scheduler *sched = &q->guc->sched;
786 
787 		drm_warn(&xe->drm, "Pending enable failed to respond");
788 		xe_sched_submission_start(sched);
789 		xe_gt_reset_async(q->gt);
790 		xe_sched_tdr_queue_imm(sched);
791 		return;
792 	}
793 
794 	clear_exec_queue_enabled(q);
795 	set_exec_queue_pending_disable(q);
796 	set_exec_queue_destroyed(q);
797 	trace_xe_exec_queue_scheduling_disable(q);
798 
799 	/*
800 	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
801 	 * handler and we are not allowed to reserved G2H space in handlers.
802 	 */
803 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
804 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
805 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
806 }
807 
808 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p);
809 
810 #if IS_ENABLED(CONFIG_DRM_XE_SIMPLE_ERROR_CAPTURE)
811 static void simple_error_capture(struct xe_exec_queue *q)
812 {
813 	struct xe_guc *guc = exec_queue_to_guc(q);
814 	struct drm_printer p = drm_err_printer("");
815 	struct xe_hw_engine *hwe;
816 	enum xe_hw_engine_id id;
817 	u32 adj_logical_mask = q->logical_mask;
818 	u32 width_mask = (0x1 << q->width) - 1;
819 	int i;
820 	bool cookie;
821 
822 	if (q->vm && !q->vm->error_capture.capture_once) {
823 		q->vm->error_capture.capture_once = true;
824 		cookie = dma_fence_begin_signalling();
825 		for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
826 			if (adj_logical_mask & BIT(i)) {
827 				adj_logical_mask |= width_mask << i;
828 				i += q->width;
829 			} else {
830 				++i;
831 			}
832 		}
833 
834 		xe_force_wake_get(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
835 		xe_guc_ct_print(&guc->ct, &p, true);
836 		guc_exec_queue_print(q, &p);
837 		for_each_hw_engine(hwe, guc_to_gt(guc), id) {
838 			if (hwe->class != q->hwe->class ||
839 			    !(BIT(hwe->logical_instance) & adj_logical_mask))
840 				continue;
841 			xe_hw_engine_print(hwe, &p);
842 		}
843 		xe_analyze_vm(&p, q->vm, q->gt->info.id);
844 		xe_force_wake_put(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
845 		dma_fence_end_signalling(cookie);
846 	}
847 }
848 #else
849 static void simple_error_capture(struct xe_exec_queue *q)
850 {
851 }
852 #endif
853 
854 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
855 {
856 	struct xe_guc *guc = exec_queue_to_guc(q);
857 	struct xe_device *xe = guc_to_xe(guc);
858 
859 	/** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
860 	wake_up_all(&xe->ufence_wq);
861 
862 	if (xe_exec_queue_is_lr(q))
863 		queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
864 	else
865 		xe_sched_tdr_queue_imm(&q->guc->sched);
866 }
867 
868 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
869 {
870 	struct xe_guc_exec_queue *ge =
871 		container_of(w, struct xe_guc_exec_queue, lr_tdr);
872 	struct xe_exec_queue *q = ge->q;
873 	struct xe_guc *guc = exec_queue_to_guc(q);
874 	struct xe_device *xe = guc_to_xe(guc);
875 	struct xe_gpu_scheduler *sched = &ge->sched;
876 
877 	xe_assert(xe, xe_exec_queue_is_lr(q));
878 	trace_xe_exec_queue_lr_cleanup(q);
879 
880 	/* Kill the run_job / process_msg entry points */
881 	xe_sched_submission_stop(sched);
882 
883 	/*
884 	 * Engine state now mostly stable, disable scheduling / deregister if
885 	 * needed. This cleanup routine might be called multiple times, where
886 	 * the actual async engine deregister drops the final engine ref.
887 	 * Calling disable_scheduling_deregister will mark the engine as
888 	 * destroyed and fire off the CT requests to disable scheduling /
889 	 * deregister, which we only want to do once. We also don't want to mark
890 	 * the engine as pending_disable again as this may race with the
891 	 * xe_guc_deregister_done_handler() which treats it as an unexpected
892 	 * state.
893 	 */
894 	if (exec_queue_registered(q) && !exec_queue_destroyed(q)) {
895 		struct xe_guc *guc = exec_queue_to_guc(q);
896 		int ret;
897 
898 		set_exec_queue_banned(q);
899 		disable_scheduling_deregister(guc, q);
900 
901 		/*
902 		 * Must wait for scheduling to be disabled before signalling
903 		 * any fences, if GT broken the GT reset code should signal us.
904 		 */
905 		ret = wait_event_timeout(guc->ct.wq,
906 					 !exec_queue_pending_disable(q) ||
907 					 guc_read_stopped(guc), HZ * 5);
908 		if (!ret) {
909 			drm_warn(&xe->drm, "Schedule disable failed to respond");
910 			xe_sched_submission_start(sched);
911 			xe_gt_reset_async(q->gt);
912 			return;
913 		}
914 	}
915 
916 	xe_sched_submission_start(sched);
917 }
918 
919 static enum drm_gpu_sched_stat
920 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
921 {
922 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
923 	struct xe_sched_job *tmp_job;
924 	struct xe_exec_queue *q = job->q;
925 	struct xe_gpu_scheduler *sched = &q->guc->sched;
926 	struct xe_device *xe = guc_to_xe(exec_queue_to_guc(q));
927 	int err = -ETIME;
928 	int i = 0;
929 
930 	if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
931 		xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_KERNEL));
932 		xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)));
933 
934 		drm_notice(&xe->drm, "Timedout job: seqno=%u, guc_id=%d, flags=0x%lx",
935 			   xe_sched_job_seqno(job), q->guc->id, q->flags);
936 		simple_error_capture(q);
937 		xe_devcoredump(q);
938 	} else {
939 		drm_dbg(&xe->drm, "Timedout signaled job: seqno=%u, guc_id=%d, flags=0x%lx",
940 			 xe_sched_job_seqno(job), q->guc->id, q->flags);
941 	}
942 	trace_xe_sched_job_timedout(job);
943 
944 	/* Kill the run_job entry point */
945 	xe_sched_submission_stop(sched);
946 
947 	/*
948 	 * Kernel jobs should never fail, nor should VM jobs if they do
949 	 * somethings has gone wrong and the GT needs a reset
950 	 */
951 	if (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
952 	    (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q))) {
953 		if (!xe_sched_invalidate_job(job, 2)) {
954 			xe_sched_add_pending_job(sched, job);
955 			xe_sched_submission_start(sched);
956 			xe_gt_reset_async(q->gt);
957 			goto out;
958 		}
959 	}
960 
961 	/* Engine state now stable, disable scheduling if needed */
962 	if (exec_queue_registered(q)) {
963 		struct xe_guc *guc = exec_queue_to_guc(q);
964 		int ret;
965 
966 		if (exec_queue_reset(q))
967 			err = -EIO;
968 		set_exec_queue_banned(q);
969 		if (!exec_queue_destroyed(q)) {
970 			xe_exec_queue_get(q);
971 			disable_scheduling_deregister(guc, q);
972 		}
973 
974 		/*
975 		 * Must wait for scheduling to be disabled before signalling
976 		 * any fences, if GT broken the GT reset code should signal us.
977 		 *
978 		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
979 		 * error) messages which can cause the schedule disable to get
980 		 * lost. If this occurs, trigger a GT reset to recover.
981 		 */
982 		smp_rmb();
983 		ret = wait_event_timeout(guc->ct.wq,
984 					 !exec_queue_pending_disable(q) ||
985 					 guc_read_stopped(guc), HZ * 5);
986 		if (!ret || guc_read_stopped(guc)) {
987 			drm_warn(&xe->drm, "Schedule disable failed to respond");
988 			xe_sched_add_pending_job(sched, job);
989 			xe_sched_submission_start(sched);
990 			xe_gt_reset_async(q->gt);
991 			xe_sched_tdr_queue_imm(sched);
992 			goto out;
993 		}
994 	}
995 
996 	/* Stop fence signaling */
997 	xe_hw_fence_irq_stop(q->fence_irq);
998 
999 	/*
1000 	 * Fence state now stable, stop / start scheduler which cleans up any
1001 	 * fences that are complete
1002 	 */
1003 	xe_sched_add_pending_job(sched, job);
1004 	xe_sched_submission_start(sched);
1005 	xe_guc_exec_queue_trigger_cleanup(q);
1006 
1007 	/* Mark all outstanding jobs as bad, thus completing them */
1008 	spin_lock(&sched->base.job_list_lock);
1009 	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1010 		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1011 	spin_unlock(&sched->base.job_list_lock);
1012 
1013 	/* Start fence signaling */
1014 	xe_hw_fence_irq_start(q->fence_irq);
1015 
1016 out:
1017 	return DRM_GPU_SCHED_STAT_NOMINAL;
1018 }
1019 
1020 static void __guc_exec_queue_fini_async(struct work_struct *w)
1021 {
1022 	struct xe_guc_exec_queue *ge =
1023 		container_of(w, struct xe_guc_exec_queue, fini_async);
1024 	struct xe_exec_queue *q = ge->q;
1025 	struct xe_guc *guc = exec_queue_to_guc(q);
1026 
1027 	trace_xe_exec_queue_destroy(q);
1028 
1029 	if (xe_exec_queue_is_lr(q))
1030 		cancel_work_sync(&ge->lr_tdr);
1031 	release_guc_id(guc, q);
1032 	xe_sched_entity_fini(&ge->entity);
1033 	xe_sched_fini(&ge->sched);
1034 
1035 	kfree(ge);
1036 	xe_exec_queue_fini(q);
1037 }
1038 
1039 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1040 {
1041 	INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1042 
1043 	/* We must block on kernel engines so slabs are empty on driver unload */
1044 	if (q->flags & EXEC_QUEUE_FLAG_PERMANENT)
1045 		__guc_exec_queue_fini_async(&q->guc->fini_async);
1046 	else
1047 		queue_work(system_wq, &q->guc->fini_async);
1048 }
1049 
1050 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1051 {
1052 	/*
1053 	 * Might be done from within the GPU scheduler, need to do async as we
1054 	 * fini the scheduler when the engine is fini'd, the scheduler can't
1055 	 * complete fini within itself (circular dependency). Async resolves
1056 	 * this we and don't really care when everything is fini'd, just that it
1057 	 * is.
1058 	 */
1059 	guc_exec_queue_fini_async(q);
1060 }
1061 
1062 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1063 {
1064 	struct xe_exec_queue *q = msg->private_data;
1065 	struct xe_guc *guc = exec_queue_to_guc(q);
1066 	struct xe_device *xe = guc_to_xe(guc);
1067 
1068 	xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1069 	trace_xe_exec_queue_cleanup_entity(q);
1070 
1071 	if (exec_queue_registered(q))
1072 		disable_scheduling_deregister(guc, q);
1073 	else
1074 		__guc_exec_queue_fini(guc, q);
1075 }
1076 
1077 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1078 {
1079 	return !exec_queue_killed_or_banned(q) && exec_queue_registered(q);
1080 }
1081 
1082 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1083 {
1084 	struct xe_exec_queue *q = msg->private_data;
1085 	struct xe_guc *guc = exec_queue_to_guc(q);
1086 
1087 	if (guc_exec_queue_allowed_to_change_state(q))
1088 		init_policies(guc, q);
1089 	kfree(msg);
1090 }
1091 
1092 static void suspend_fence_signal(struct xe_exec_queue *q)
1093 {
1094 	struct xe_guc *guc = exec_queue_to_guc(q);
1095 	struct xe_device *xe = guc_to_xe(guc);
1096 
1097 	xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) ||
1098 		  guc_read_stopped(guc));
1099 	xe_assert(xe, q->guc->suspend_pending);
1100 
1101 	q->guc->suspend_pending = false;
1102 	smp_wmb();
1103 	wake_up(&q->guc->suspend_wait);
1104 }
1105 
1106 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1107 {
1108 	struct xe_exec_queue *q = msg->private_data;
1109 	struct xe_guc *guc = exec_queue_to_guc(q);
1110 
1111 	if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1112 	    exec_queue_enabled(q)) {
1113 		wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING ||
1114 			   guc_read_stopped(guc));
1115 
1116 		if (!guc_read_stopped(guc)) {
1117 			MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1118 			s64 since_resume_ms =
1119 				ktime_ms_delta(ktime_get(),
1120 					       q->guc->resume_time);
1121 			s64 wait_ms = q->vm->preempt.min_run_period_ms -
1122 				since_resume_ms;
1123 
1124 			if (wait_ms > 0 && q->guc->resume_time)
1125 				msleep(wait_ms);
1126 
1127 			set_exec_queue_suspended(q);
1128 			clear_exec_queue_enabled(q);
1129 			set_exec_queue_pending_disable(q);
1130 			trace_xe_exec_queue_scheduling_disable(q);
1131 
1132 			xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1133 				       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1134 		}
1135 	} else if (q->guc->suspend_pending) {
1136 		set_exec_queue_suspended(q);
1137 		suspend_fence_signal(q);
1138 	}
1139 }
1140 
1141 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1142 {
1143 	struct xe_exec_queue *q = msg->private_data;
1144 	struct xe_guc *guc = exec_queue_to_guc(q);
1145 
1146 	if (guc_exec_queue_allowed_to_change_state(q)) {
1147 		MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
1148 
1149 		q->guc->resume_time = RESUME_PENDING;
1150 		clear_exec_queue_suspended(q);
1151 		set_exec_queue_pending_enable(q);
1152 		set_exec_queue_enabled(q);
1153 		trace_xe_exec_queue_scheduling_enable(q);
1154 
1155 		xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1156 			       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1157 	} else {
1158 		clear_exec_queue_suspended(q);
1159 	}
1160 }
1161 
1162 #define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1163 #define SET_SCHED_PROPS	2
1164 #define SUSPEND		3
1165 #define RESUME		4
1166 
1167 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1168 {
1169 	trace_xe_sched_msg_recv(msg);
1170 
1171 	switch (msg->opcode) {
1172 	case CLEANUP:
1173 		__guc_exec_queue_process_msg_cleanup(msg);
1174 		break;
1175 	case SET_SCHED_PROPS:
1176 		__guc_exec_queue_process_msg_set_sched_props(msg);
1177 		break;
1178 	case SUSPEND:
1179 		__guc_exec_queue_process_msg_suspend(msg);
1180 		break;
1181 	case RESUME:
1182 		__guc_exec_queue_process_msg_resume(msg);
1183 		break;
1184 	default:
1185 		XE_WARN_ON("Unknown message type");
1186 	}
1187 }
1188 
1189 static const struct drm_sched_backend_ops drm_sched_ops = {
1190 	.run_job = guc_exec_queue_run_job,
1191 	.free_job = guc_exec_queue_free_job,
1192 	.timedout_job = guc_exec_queue_timedout_job,
1193 };
1194 
1195 static const struct xe_sched_backend_ops xe_sched_ops = {
1196 	.process_msg = guc_exec_queue_process_msg,
1197 };
1198 
1199 static int guc_exec_queue_init(struct xe_exec_queue *q)
1200 {
1201 	struct xe_gpu_scheduler *sched;
1202 	struct xe_guc *guc = exec_queue_to_guc(q);
1203 	struct xe_device *xe = guc_to_xe(guc);
1204 	struct xe_guc_exec_queue *ge;
1205 	long timeout;
1206 	int err;
1207 
1208 	xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc)));
1209 
1210 	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1211 	if (!ge)
1212 		return -ENOMEM;
1213 
1214 	q->guc = ge;
1215 	ge->q = q;
1216 	init_waitqueue_head(&ge->suspend_wait);
1217 
1218 	timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1219 		  q->hwe->eclass->sched_props.job_timeout_ms;
1220 	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1221 			    get_submit_wq(guc),
1222 			    q->lrc[0].ring.size / MAX_JOB_SIZE_BYTES, 64,
1223 			    timeout, guc_to_gt(guc)->ordered_wq, NULL,
1224 			    q->name, gt_to_xe(q->gt)->drm.dev);
1225 	if (err)
1226 		goto err_free;
1227 
1228 	sched = &ge->sched;
1229 	err = xe_sched_entity_init(&ge->entity, sched);
1230 	if (err)
1231 		goto err_sched;
1232 
1233 	if (xe_exec_queue_is_lr(q))
1234 		INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1235 
1236 	mutex_lock(&guc->submission_state.lock);
1237 
1238 	err = alloc_guc_id(guc, q);
1239 	if (err)
1240 		goto err_entity;
1241 
1242 	q->entity = &ge->entity;
1243 
1244 	if (guc_read_stopped(guc))
1245 		xe_sched_stop(sched);
1246 
1247 	mutex_unlock(&guc->submission_state.lock);
1248 
1249 	xe_exec_queue_assign_name(q, q->guc->id);
1250 
1251 	trace_xe_exec_queue_create(q);
1252 
1253 	return 0;
1254 
1255 err_entity:
1256 	xe_sched_entity_fini(&ge->entity);
1257 err_sched:
1258 	xe_sched_fini(&ge->sched);
1259 err_free:
1260 	kfree(ge);
1261 
1262 	return err;
1263 }
1264 
1265 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1266 {
1267 	trace_xe_exec_queue_kill(q);
1268 	set_exec_queue_killed(q);
1269 	xe_guc_exec_queue_trigger_cleanup(q);
1270 }
1271 
1272 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1273 				   u32 opcode)
1274 {
1275 	INIT_LIST_HEAD(&msg->link);
1276 	msg->opcode = opcode;
1277 	msg->private_data = q;
1278 
1279 	trace_xe_sched_msg_add(msg);
1280 	xe_sched_add_msg(&q->guc->sched, msg);
1281 }
1282 
1283 #define STATIC_MSG_CLEANUP	0
1284 #define STATIC_MSG_SUSPEND	1
1285 #define STATIC_MSG_RESUME	2
1286 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1287 {
1288 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1289 
1290 	if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT))
1291 		guc_exec_queue_add_msg(q, msg, CLEANUP);
1292 	else
1293 		__guc_exec_queue_fini(exec_queue_to_guc(q), q);
1294 }
1295 
1296 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1297 				       enum xe_exec_queue_priority priority)
1298 {
1299 	struct xe_sched_msg *msg;
1300 
1301 	if (q->sched_props.priority == priority || exec_queue_killed_or_banned(q))
1302 		return 0;
1303 
1304 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1305 	if (!msg)
1306 		return -ENOMEM;
1307 
1308 	q->sched_props.priority = priority;
1309 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1310 
1311 	return 0;
1312 }
1313 
1314 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1315 {
1316 	struct xe_sched_msg *msg;
1317 
1318 	if (q->sched_props.timeslice_us == timeslice_us ||
1319 	    exec_queue_killed_or_banned(q))
1320 		return 0;
1321 
1322 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1323 	if (!msg)
1324 		return -ENOMEM;
1325 
1326 	q->sched_props.timeslice_us = timeslice_us;
1327 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1328 
1329 	return 0;
1330 }
1331 
1332 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1333 					      u32 preempt_timeout_us)
1334 {
1335 	struct xe_sched_msg *msg;
1336 
1337 	if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1338 	    exec_queue_killed_or_banned(q))
1339 		return 0;
1340 
1341 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1342 	if (!msg)
1343 		return -ENOMEM;
1344 
1345 	q->sched_props.preempt_timeout_us = preempt_timeout_us;
1346 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1347 
1348 	return 0;
1349 }
1350 
1351 static int guc_exec_queue_set_job_timeout(struct xe_exec_queue *q, u32 job_timeout_ms)
1352 {
1353 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1354 	struct xe_guc *guc = exec_queue_to_guc(q);
1355 	struct xe_device *xe = guc_to_xe(guc);
1356 
1357 	xe_assert(xe, !exec_queue_registered(q));
1358 	xe_assert(xe, !exec_queue_banned(q));
1359 	xe_assert(xe, !exec_queue_killed(q));
1360 
1361 	sched->base.timeout = job_timeout_ms;
1362 
1363 	return 0;
1364 }
1365 
1366 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1367 {
1368 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1369 
1370 	if (exec_queue_killed_or_banned(q) || q->guc->suspend_pending)
1371 		return -EINVAL;
1372 
1373 	q->guc->suspend_pending = true;
1374 	guc_exec_queue_add_msg(q, msg, SUSPEND);
1375 
1376 	return 0;
1377 }
1378 
1379 static void guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1380 {
1381 	struct xe_guc *guc = exec_queue_to_guc(q);
1382 
1383 	wait_event(q->guc->suspend_wait, !q->guc->suspend_pending ||
1384 		   guc_read_stopped(guc));
1385 }
1386 
1387 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1388 {
1389 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1390 	struct xe_guc *guc = exec_queue_to_guc(q);
1391 	struct xe_device *xe = guc_to_xe(guc);
1392 
1393 	xe_assert(xe, !q->guc->suspend_pending);
1394 
1395 	guc_exec_queue_add_msg(q, msg, RESUME);
1396 }
1397 
1398 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1399 {
1400 	return exec_queue_reset(q);
1401 }
1402 
1403 /*
1404  * All of these functions are an abstraction layer which other parts of XE can
1405  * use to trap into the GuC backend. All of these functions, aside from init,
1406  * really shouldn't do much other than trap into the DRM scheduler which
1407  * synchronizes these operations.
1408  */
1409 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1410 	.init = guc_exec_queue_init,
1411 	.kill = guc_exec_queue_kill,
1412 	.fini = guc_exec_queue_fini,
1413 	.set_priority = guc_exec_queue_set_priority,
1414 	.set_timeslice = guc_exec_queue_set_timeslice,
1415 	.set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1416 	.set_job_timeout = guc_exec_queue_set_job_timeout,
1417 	.suspend = guc_exec_queue_suspend,
1418 	.suspend_wait = guc_exec_queue_suspend_wait,
1419 	.resume = guc_exec_queue_resume,
1420 	.reset_status = guc_exec_queue_reset_status,
1421 };
1422 
1423 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1424 {
1425 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1426 
1427 	/* Stop scheduling + flush any DRM scheduler operations */
1428 	xe_sched_submission_stop(sched);
1429 
1430 	/* Clean up lost G2H + reset engine state */
1431 	if (exec_queue_registered(q)) {
1432 		if ((exec_queue_banned(q) && exec_queue_destroyed(q)) ||
1433 		    xe_exec_queue_is_lr(q))
1434 			xe_exec_queue_put(q);
1435 		else if (exec_queue_destroyed(q))
1436 			__guc_exec_queue_fini(guc, q);
1437 	}
1438 	if (q->guc->suspend_pending) {
1439 		set_exec_queue_suspended(q);
1440 		suspend_fence_signal(q);
1441 	}
1442 	atomic_and(EXEC_QUEUE_STATE_DESTROYED | ENGINE_STATE_SUSPENDED,
1443 		   &q->guc->state);
1444 	q->guc->resume_time = 0;
1445 	trace_xe_exec_queue_stop(q);
1446 
1447 	/*
1448 	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1449 	 * started but not complete job or if a job has gone through a GT reset
1450 	 * more than twice.
1451 	 */
1452 	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1453 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1454 
1455 		if (job) {
1456 			if ((xe_sched_job_started(job) &&
1457 			    !xe_sched_job_completed(job)) ||
1458 			    xe_sched_invalidate_job(job, 2)) {
1459 				trace_xe_sched_job_ban(job);
1460 				xe_sched_tdr_queue_imm(&q->guc->sched);
1461 				set_exec_queue_banned(q);
1462 			}
1463 		}
1464 	}
1465 }
1466 
1467 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1468 {
1469 	int ret;
1470 
1471 	/*
1472 	 * Using an atomic here rather than submission_state.lock as this
1473 	 * function can be called while holding the CT lock (engine reset
1474 	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1475 	 * Atomic is not ideal, but it works to prevent against concurrent reset
1476 	 * and releasing any TDRs waiting on guc->submission_state.stopped.
1477 	 */
1478 	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1479 	smp_wmb();
1480 	wake_up_all(&guc->ct.wq);
1481 
1482 	return ret;
1483 }
1484 
1485 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1486 {
1487 	wait_event(guc->ct.wq, !guc_read_stopped(guc));
1488 }
1489 
1490 int xe_guc_submit_stop(struct xe_guc *guc)
1491 {
1492 	struct xe_exec_queue *q;
1493 	unsigned long index;
1494 	struct xe_device *xe = guc_to_xe(guc);
1495 
1496 	xe_assert(xe, guc_read_stopped(guc) == 1);
1497 
1498 	mutex_lock(&guc->submission_state.lock);
1499 
1500 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1501 		guc_exec_queue_stop(guc, q);
1502 
1503 	mutex_unlock(&guc->submission_state.lock);
1504 
1505 	/*
1506 	 * No one can enter the backend at this point, aside from new engine
1507 	 * creation which is protected by guc->submission_state.lock.
1508 	 */
1509 
1510 	return 0;
1511 }
1512 
1513 static void guc_exec_queue_start(struct xe_exec_queue *q)
1514 {
1515 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1516 
1517 	if (!exec_queue_killed_or_banned(q)) {
1518 		int i;
1519 
1520 		trace_xe_exec_queue_resubmit(q);
1521 		for (i = 0; i < q->width; ++i)
1522 			xe_lrc_set_ring_head(q->lrc + i, q->lrc[i].ring.tail);
1523 		xe_sched_resubmit_jobs(sched);
1524 	}
1525 
1526 	xe_sched_submission_start(sched);
1527 }
1528 
1529 int xe_guc_submit_start(struct xe_guc *guc)
1530 {
1531 	struct xe_exec_queue *q;
1532 	unsigned long index;
1533 	struct xe_device *xe = guc_to_xe(guc);
1534 
1535 	xe_assert(xe, guc_read_stopped(guc) == 1);
1536 
1537 	mutex_lock(&guc->submission_state.lock);
1538 	atomic_dec(&guc->submission_state.stopped);
1539 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1540 		guc_exec_queue_start(q);
1541 	mutex_unlock(&guc->submission_state.lock);
1542 
1543 	wake_up_all(&guc->ct.wq);
1544 
1545 	return 0;
1546 }
1547 
1548 static struct xe_exec_queue *
1549 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1550 {
1551 	struct xe_device *xe = guc_to_xe(guc);
1552 	struct xe_exec_queue *q;
1553 
1554 	if (unlikely(guc_id >= GUC_ID_MAX)) {
1555 		drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1556 		return NULL;
1557 	}
1558 
1559 	q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1560 	if (unlikely(!q)) {
1561 		drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1562 		return NULL;
1563 	}
1564 
1565 	xe_assert(xe, guc_id >= q->guc->id);
1566 	xe_assert(xe, guc_id < (q->guc->id + q->width));
1567 
1568 	return q;
1569 }
1570 
1571 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1572 {
1573 	u32 action[] = {
1574 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1575 		q->guc->id,
1576 	};
1577 
1578 	trace_xe_exec_queue_deregister(q);
1579 
1580 	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1581 }
1582 
1583 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1584 {
1585 	struct xe_device *xe = guc_to_xe(guc);
1586 	struct xe_exec_queue *q;
1587 	u32 guc_id = msg[0];
1588 
1589 	if (unlikely(len < 2)) {
1590 		drm_err(&xe->drm, "Invalid length %u", len);
1591 		return -EPROTO;
1592 	}
1593 
1594 	q = g2h_exec_queue_lookup(guc, guc_id);
1595 	if (unlikely(!q))
1596 		return -EPROTO;
1597 
1598 	if (unlikely(!exec_queue_pending_enable(q) &&
1599 		     !exec_queue_pending_disable(q))) {
1600 		drm_err(&xe->drm, "Unexpected engine state 0x%04x",
1601 			atomic_read(&q->guc->state));
1602 		return -EPROTO;
1603 	}
1604 
1605 	trace_xe_exec_queue_scheduling_done(q);
1606 
1607 	if (exec_queue_pending_enable(q)) {
1608 		q->guc->resume_time = ktime_get();
1609 		clear_exec_queue_pending_enable(q);
1610 		smp_wmb();
1611 		wake_up_all(&guc->ct.wq);
1612 	} else {
1613 		clear_exec_queue_pending_disable(q);
1614 		if (q->guc->suspend_pending) {
1615 			suspend_fence_signal(q);
1616 		} else {
1617 			if (exec_queue_banned(q)) {
1618 				smp_wmb();
1619 				wake_up_all(&guc->ct.wq);
1620 			}
1621 			deregister_exec_queue(guc, q);
1622 		}
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1629 {
1630 	struct xe_device *xe = guc_to_xe(guc);
1631 	struct xe_exec_queue *q;
1632 	u32 guc_id = msg[0];
1633 
1634 	if (unlikely(len < 1)) {
1635 		drm_err(&xe->drm, "Invalid length %u", len);
1636 		return -EPROTO;
1637 	}
1638 
1639 	q = g2h_exec_queue_lookup(guc, guc_id);
1640 	if (unlikely(!q))
1641 		return -EPROTO;
1642 
1643 	if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1644 	    exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1645 		drm_err(&xe->drm, "Unexpected engine state 0x%04x",
1646 			atomic_read(&q->guc->state));
1647 		return -EPROTO;
1648 	}
1649 
1650 	trace_xe_exec_queue_deregister_done(q);
1651 
1652 	clear_exec_queue_registered(q);
1653 
1654 	if (exec_queue_banned(q) || xe_exec_queue_is_lr(q))
1655 		xe_exec_queue_put(q);
1656 	else
1657 		__guc_exec_queue_fini(guc, q);
1658 
1659 	return 0;
1660 }
1661 
1662 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1663 {
1664 	struct xe_device *xe = guc_to_xe(guc);
1665 	struct xe_exec_queue *q;
1666 	u32 guc_id = msg[0];
1667 
1668 	if (unlikely(len < 1)) {
1669 		drm_err(&xe->drm, "Invalid length %u", len);
1670 		return -EPROTO;
1671 	}
1672 
1673 	q = g2h_exec_queue_lookup(guc, guc_id);
1674 	if (unlikely(!q))
1675 		return -EPROTO;
1676 
1677 	drm_info(&xe->drm, "Engine reset: guc_id=%d", guc_id);
1678 
1679 	/* FIXME: Do error capture, most likely async */
1680 
1681 	trace_xe_exec_queue_reset(q);
1682 
1683 	/*
1684 	 * A banned engine is a NOP at this point (came from
1685 	 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
1686 	 * jobs by setting timeout of the job to the minimum value kicking
1687 	 * guc_exec_queue_timedout_job.
1688 	 */
1689 	set_exec_queue_reset(q);
1690 	if (!exec_queue_banned(q))
1691 		xe_guc_exec_queue_trigger_cleanup(q);
1692 
1693 	return 0;
1694 }
1695 
1696 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
1697 					       u32 len)
1698 {
1699 	struct xe_device *xe = guc_to_xe(guc);
1700 	struct xe_exec_queue *q;
1701 	u32 guc_id = msg[0];
1702 
1703 	if (unlikely(len < 1)) {
1704 		drm_err(&xe->drm, "Invalid length %u", len);
1705 		return -EPROTO;
1706 	}
1707 
1708 	q = g2h_exec_queue_lookup(guc, guc_id);
1709 	if (unlikely(!q))
1710 		return -EPROTO;
1711 
1712 	drm_dbg(&xe->drm, "Engine memory cat error: guc_id=%d", guc_id);
1713 	trace_xe_exec_queue_memory_cat_error(q);
1714 
1715 	/* Treat the same as engine reset */
1716 	set_exec_queue_reset(q);
1717 	if (!exec_queue_banned(q))
1718 		xe_guc_exec_queue_trigger_cleanup(q);
1719 
1720 	return 0;
1721 }
1722 
1723 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
1724 {
1725 	struct xe_device *xe = guc_to_xe(guc);
1726 	u8 guc_class, instance;
1727 	u32 reason;
1728 
1729 	if (unlikely(len != 3)) {
1730 		drm_err(&xe->drm, "Invalid length %u", len);
1731 		return -EPROTO;
1732 	}
1733 
1734 	guc_class = msg[0];
1735 	instance = msg[1];
1736 	reason = msg[2];
1737 
1738 	/* Unexpected failure of a hardware feature, log an actual error */
1739 	drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
1740 		guc_class, instance, reason);
1741 
1742 	xe_gt_reset_async(guc_to_gt(guc));
1743 
1744 	return 0;
1745 }
1746 
1747 static void
1748 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
1749 				   struct xe_guc_submit_exec_queue_snapshot *snapshot)
1750 {
1751 	struct xe_guc *guc = exec_queue_to_guc(q);
1752 	struct xe_device *xe = guc_to_xe(guc);
1753 	struct iosys_map map = xe_lrc_parallel_map(q->lrc);
1754 	int i;
1755 
1756 	snapshot->guc.wqi_head = q->guc->wqi_head;
1757 	snapshot->guc.wqi_tail = q->guc->wqi_tail;
1758 	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
1759 	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
1760 	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
1761 							  wq_desc.wq_status);
1762 
1763 	if (snapshot->parallel.wq_desc.head !=
1764 	    snapshot->parallel.wq_desc.tail) {
1765 		for (i = snapshot->parallel.wq_desc.head;
1766 		     i != snapshot->parallel.wq_desc.tail;
1767 		     i = (i + sizeof(u32)) % WQ_SIZE)
1768 			snapshot->parallel.wq[i / sizeof(u32)] =
1769 				parallel_read(xe, map, wq[i / sizeof(u32)]);
1770 	}
1771 }
1772 
1773 static void
1774 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
1775 				 struct drm_printer *p)
1776 {
1777 	int i;
1778 
1779 	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
1780 		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
1781 	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
1782 		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
1783 	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
1784 
1785 	if (snapshot->parallel.wq_desc.head !=
1786 	    snapshot->parallel.wq_desc.tail) {
1787 		for (i = snapshot->parallel.wq_desc.head;
1788 		     i != snapshot->parallel.wq_desc.tail;
1789 		     i = (i + sizeof(u32)) % WQ_SIZE)
1790 			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
1791 				   snapshot->parallel.wq[i / sizeof(u32)]);
1792 	}
1793 }
1794 
1795 /**
1796  * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
1797  * @q: Xe exec queue.
1798  *
1799  * This can be printed out in a later stage like during dev_coredump
1800  * analysis.
1801  *
1802  * Returns: a GuC Submit Engine snapshot object that must be freed by the
1803  * caller, using `xe_guc_exec_queue_snapshot_free`.
1804  */
1805 struct xe_guc_submit_exec_queue_snapshot *
1806 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
1807 {
1808 	struct xe_guc *guc = exec_queue_to_guc(q);
1809 	struct xe_device *xe = guc_to_xe(guc);
1810 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1811 	struct xe_sched_job *job;
1812 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
1813 	int i;
1814 
1815 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
1816 
1817 	if (!snapshot) {
1818 		drm_err(&xe->drm, "Skipping GuC Engine snapshot entirely.\n");
1819 		return NULL;
1820 	}
1821 
1822 	snapshot->guc.id = q->guc->id;
1823 	memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
1824 	snapshot->class = q->class;
1825 	snapshot->logical_mask = q->logical_mask;
1826 	snapshot->width = q->width;
1827 	snapshot->refcount = kref_read(&q->refcount);
1828 	snapshot->sched_timeout = sched->base.timeout;
1829 	snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
1830 	snapshot->sched_props.preempt_timeout_us =
1831 		q->sched_props.preempt_timeout_us;
1832 
1833 	snapshot->lrc = kmalloc_array(q->width, sizeof(struct lrc_snapshot),
1834 				      GFP_ATOMIC);
1835 
1836 	if (!snapshot->lrc) {
1837 		drm_err(&xe->drm, "Skipping GuC Engine LRC snapshot.\n");
1838 	} else {
1839 		for (i = 0; i < q->width; ++i) {
1840 			struct xe_lrc *lrc = q->lrc + i;
1841 
1842 			snapshot->lrc[i].context_desc =
1843 				lower_32_bits(xe_lrc_ggtt_addr(lrc));
1844 			snapshot->lrc[i].head = xe_lrc_ring_head(lrc);
1845 			snapshot->lrc[i].tail.internal = lrc->ring.tail;
1846 			snapshot->lrc[i].tail.memory =
1847 				xe_lrc_read_ctx_reg(lrc, CTX_RING_TAIL);
1848 			snapshot->lrc[i].start_seqno = xe_lrc_start_seqno(lrc);
1849 			snapshot->lrc[i].seqno = xe_lrc_seqno(lrc);
1850 		}
1851 	}
1852 
1853 	snapshot->schedule_state = atomic_read(&q->guc->state);
1854 	snapshot->exec_queue_flags = q->flags;
1855 
1856 	snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
1857 	if (snapshot->parallel_execution)
1858 		guc_exec_queue_wq_snapshot_capture(q, snapshot);
1859 
1860 	spin_lock(&sched->base.job_list_lock);
1861 	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
1862 	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
1863 					       sizeof(struct pending_list_snapshot),
1864 					       GFP_ATOMIC);
1865 
1866 	if (!snapshot->pending_list) {
1867 		drm_err(&xe->drm, "Skipping GuC Engine pending_list snapshot.\n");
1868 	} else {
1869 		i = 0;
1870 		list_for_each_entry(job, &sched->base.pending_list, drm.list) {
1871 			snapshot->pending_list[i].seqno =
1872 				xe_sched_job_seqno(job);
1873 			snapshot->pending_list[i].fence =
1874 				dma_fence_is_signaled(job->fence) ? 1 : 0;
1875 			snapshot->pending_list[i].finished =
1876 				dma_fence_is_signaled(&job->drm.s_fence->finished)
1877 				? 1 : 0;
1878 			i++;
1879 		}
1880 	}
1881 
1882 	spin_unlock(&sched->base.job_list_lock);
1883 
1884 	return snapshot;
1885 }
1886 
1887 /**
1888  * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
1889  * @snapshot: GuC Submit Engine snapshot object.
1890  * @p: drm_printer where it will be printed out.
1891  *
1892  * This function prints out a given GuC Submit Engine snapshot object.
1893  */
1894 void
1895 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
1896 				 struct drm_printer *p)
1897 {
1898 	int i;
1899 
1900 	if (!snapshot)
1901 		return;
1902 
1903 	drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id);
1904 	drm_printf(p, "\tName: %s\n", snapshot->name);
1905 	drm_printf(p, "\tClass: %d\n", snapshot->class);
1906 	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
1907 	drm_printf(p, "\tWidth: %d\n", snapshot->width);
1908 	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
1909 	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
1910 	drm_printf(p, "\tTimeslice: %u (us)\n",
1911 		   snapshot->sched_props.timeslice_us);
1912 	drm_printf(p, "\tPreempt timeout: %u (us)\n",
1913 		   snapshot->sched_props.preempt_timeout_us);
1914 
1915 	for (i = 0; snapshot->lrc && i < snapshot->width; ++i) {
1916 		drm_printf(p, "\tHW Context Desc: 0x%08x\n",
1917 			   snapshot->lrc[i].context_desc);
1918 		drm_printf(p, "\tLRC Head: (memory) %u\n",
1919 			   snapshot->lrc[i].head);
1920 		drm_printf(p, "\tLRC Tail: (internal) %u, (memory) %u\n",
1921 			   snapshot->lrc[i].tail.internal,
1922 			   snapshot->lrc[i].tail.memory);
1923 		drm_printf(p, "\tStart seqno: (memory) %d\n",
1924 			   snapshot->lrc[i].start_seqno);
1925 		drm_printf(p, "\tSeqno: (memory) %d\n", snapshot->lrc[i].seqno);
1926 	}
1927 	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
1928 	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
1929 
1930 	if (snapshot->parallel_execution)
1931 		guc_exec_queue_wq_snapshot_print(snapshot, p);
1932 
1933 	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
1934 	     i++)
1935 		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
1936 			   snapshot->pending_list[i].seqno,
1937 			   snapshot->pending_list[i].fence,
1938 			   snapshot->pending_list[i].finished);
1939 }
1940 
1941 /**
1942  * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
1943  * snapshot.
1944  * @snapshot: GuC Submit Engine snapshot object.
1945  *
1946  * This function free all the memory that needed to be allocated at capture
1947  * time.
1948  */
1949 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
1950 {
1951 	if (!snapshot)
1952 		return;
1953 
1954 	kfree(snapshot->lrc);
1955 	kfree(snapshot->pending_list);
1956 	kfree(snapshot);
1957 }
1958 
1959 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
1960 {
1961 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
1962 
1963 	snapshot = xe_guc_exec_queue_snapshot_capture(q);
1964 	xe_guc_exec_queue_snapshot_print(snapshot, p);
1965 	xe_guc_exec_queue_snapshot_free(snapshot);
1966 }
1967 
1968 /**
1969  * xe_guc_submit_print - GuC Submit Print.
1970  * @guc: GuC.
1971  * @p: drm_printer where it will be printed out.
1972  *
1973  * This function capture and prints snapshots of **all** GuC Engines.
1974  */
1975 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
1976 {
1977 	struct xe_exec_queue *q;
1978 	unsigned long index;
1979 
1980 	if (!xe_device_uc_enabled(guc_to_xe(guc)))
1981 		return;
1982 
1983 	mutex_lock(&guc->submission_state.lock);
1984 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1985 		guc_exec_queue_print(q, p);
1986 	mutex_unlock(&guc->submission_state.lock);
1987 }
1988