xref: /linux/drivers/gpu/drm/xe/xe_guc_submit.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_submit.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "regs/xe_lrc_layout.h"
20 #include "xe_assert.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_exec_queue.h"
24 #include "xe_force_wake.h"
25 #include "xe_gpu_scheduler.h"
26 #include "xe_gt.h"
27 #include "xe_gt_clock.h"
28 #include "xe_gt_printk.h"
29 #include "xe_guc.h"
30 #include "xe_guc_capture.h"
31 #include "xe_guc_ct.h"
32 #include "xe_guc_exec_queue_types.h"
33 #include "xe_guc_id_mgr.h"
34 #include "xe_guc_submit_types.h"
35 #include "xe_hw_engine.h"
36 #include "xe_hw_fence.h"
37 #include "xe_lrc.h"
38 #include "xe_macros.h"
39 #include "xe_map.h"
40 #include "xe_mocs.h"
41 #include "xe_pm.h"
42 #include "xe_ring_ops_types.h"
43 #include "xe_sched_job.h"
44 #include "xe_trace.h"
45 #include "xe_vm.h"
46 
47 static struct xe_guc *
48 exec_queue_to_guc(struct xe_exec_queue *q)
49 {
50 	return &q->gt->uc.guc;
51 }
52 
53 /*
54  * Helpers for engine state, using an atomic as some of the bits can transition
55  * as the same time (e.g. a suspend can be happning at the same time as schedule
56  * engine done being processed).
57  */
58 #define EXEC_QUEUE_STATE_REGISTERED		(1 << 0)
59 #define EXEC_QUEUE_STATE_ENABLED		(1 << 1)
60 #define EXEC_QUEUE_STATE_PENDING_ENABLE		(1 << 2)
61 #define EXEC_QUEUE_STATE_PENDING_DISABLE	(1 << 3)
62 #define EXEC_QUEUE_STATE_DESTROYED		(1 << 4)
63 #define EXEC_QUEUE_STATE_SUSPENDED		(1 << 5)
64 #define EXEC_QUEUE_STATE_RESET			(1 << 6)
65 #define EXEC_QUEUE_STATE_KILLED			(1 << 7)
66 #define EXEC_QUEUE_STATE_WEDGED			(1 << 8)
67 #define EXEC_QUEUE_STATE_BANNED			(1 << 9)
68 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT		(1 << 10)
69 #define EXEC_QUEUE_STATE_EXTRA_REF		(1 << 11)
70 
71 static bool exec_queue_registered(struct xe_exec_queue *q)
72 {
73 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
74 }
75 
76 static void set_exec_queue_registered(struct xe_exec_queue *q)
77 {
78 	atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
79 }
80 
81 static void clear_exec_queue_registered(struct xe_exec_queue *q)
82 {
83 	atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
84 }
85 
86 static bool exec_queue_enabled(struct xe_exec_queue *q)
87 {
88 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
89 }
90 
91 static void set_exec_queue_enabled(struct xe_exec_queue *q)
92 {
93 	atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
94 }
95 
96 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
97 {
98 	atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
99 }
100 
101 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
102 {
103 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
104 }
105 
106 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
107 {
108 	atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
109 }
110 
111 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
112 {
113 	atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
114 }
115 
116 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
117 {
118 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
119 }
120 
121 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
122 {
123 	atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
124 }
125 
126 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
127 {
128 	atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
129 }
130 
131 static bool exec_queue_destroyed(struct xe_exec_queue *q)
132 {
133 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
134 }
135 
136 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
137 {
138 	atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
139 }
140 
141 static bool exec_queue_banned(struct xe_exec_queue *q)
142 {
143 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
144 }
145 
146 static void set_exec_queue_banned(struct xe_exec_queue *q)
147 {
148 	atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
149 }
150 
151 static bool exec_queue_suspended(struct xe_exec_queue *q)
152 {
153 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
154 }
155 
156 static void set_exec_queue_suspended(struct xe_exec_queue *q)
157 {
158 	atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
159 }
160 
161 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
162 {
163 	atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
164 }
165 
166 static bool exec_queue_reset(struct xe_exec_queue *q)
167 {
168 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
169 }
170 
171 static void set_exec_queue_reset(struct xe_exec_queue *q)
172 {
173 	atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
174 }
175 
176 static bool exec_queue_killed(struct xe_exec_queue *q)
177 {
178 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
179 }
180 
181 static void set_exec_queue_killed(struct xe_exec_queue *q)
182 {
183 	atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
184 }
185 
186 static bool exec_queue_wedged(struct xe_exec_queue *q)
187 {
188 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
189 }
190 
191 static void set_exec_queue_wedged(struct xe_exec_queue *q)
192 {
193 	atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
194 }
195 
196 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
197 {
198 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
199 }
200 
201 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
202 {
203 	atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
204 }
205 
206 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
207 {
208 	atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
209 }
210 
211 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
212 {
213 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
214 }
215 
216 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
217 {
218 	atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
219 }
220 
221 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
222 {
223 	return (atomic_read(&q->guc->state) &
224 		(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
225 		 EXEC_QUEUE_STATE_BANNED));
226 }
227 
228 static void guc_submit_fini(struct drm_device *drm, void *arg)
229 {
230 	struct xe_guc *guc = arg;
231 
232 	xa_destroy(&guc->submission_state.exec_queue_lookup);
233 }
234 
235 static void guc_submit_wedged_fini(void *arg)
236 {
237 	struct xe_guc *guc = arg;
238 	struct xe_exec_queue *q;
239 	unsigned long index;
240 
241 	mutex_lock(&guc->submission_state.lock);
242 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
243 		if (exec_queue_wedged(q)) {
244 			mutex_unlock(&guc->submission_state.lock);
245 			xe_exec_queue_put(q);
246 			mutex_lock(&guc->submission_state.lock);
247 		}
248 	}
249 	mutex_unlock(&guc->submission_state.lock);
250 }
251 
252 static const struct xe_exec_queue_ops guc_exec_queue_ops;
253 
254 static void primelockdep(struct xe_guc *guc)
255 {
256 	if (!IS_ENABLED(CONFIG_LOCKDEP))
257 		return;
258 
259 	fs_reclaim_acquire(GFP_KERNEL);
260 
261 	mutex_lock(&guc->submission_state.lock);
262 	mutex_unlock(&guc->submission_state.lock);
263 
264 	fs_reclaim_release(GFP_KERNEL);
265 }
266 
267 /**
268  * xe_guc_submit_init() - Initialize GuC submission.
269  * @guc: the &xe_guc to initialize
270  * @num_ids: number of GuC context IDs to use
271  *
272  * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
273  * GuC context IDs supported by the GuC firmware should be used for submission.
274  *
275  * Only VF drivers will have to provide explicit number of GuC context IDs
276  * that they can use for submission.
277  *
278  * Return: 0 on success or a negative error code on failure.
279  */
280 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
281 {
282 	struct xe_device *xe = guc_to_xe(guc);
283 	struct xe_gt *gt = guc_to_gt(guc);
284 	int err;
285 
286 	err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
287 	if (err)
288 		return err;
289 
290 	err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
291 	if (err)
292 		return err;
293 
294 	gt->exec_queue_ops = &guc_exec_queue_ops;
295 
296 	xa_init(&guc->submission_state.exec_queue_lookup);
297 
298 	init_waitqueue_head(&guc->submission_state.fini_wq);
299 
300 	primelockdep(guc);
301 
302 	return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
303 }
304 
305 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
306 {
307 	int i;
308 
309 	lockdep_assert_held(&guc->submission_state.lock);
310 
311 	for (i = 0; i < xa_count; ++i)
312 		xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
313 
314 	xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
315 				     q->guc->id, q->width);
316 
317 	if (xa_empty(&guc->submission_state.exec_queue_lookup))
318 		wake_up(&guc->submission_state.fini_wq);
319 }
320 
321 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
322 {
323 	int ret;
324 	int i;
325 
326 	/*
327 	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
328 	 * worse case user gets -ENOMEM on engine create and has to try again.
329 	 *
330 	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
331 	 * failure.
332 	 */
333 	lockdep_assert_held(&guc->submission_state.lock);
334 
335 	ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
336 					   q->width);
337 	if (ret < 0)
338 		return ret;
339 
340 	q->guc->id = ret;
341 
342 	for (i = 0; i < q->width; ++i) {
343 		ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
344 				      q->guc->id + i, q, GFP_NOWAIT));
345 		if (ret)
346 			goto err_release;
347 	}
348 
349 	return 0;
350 
351 err_release:
352 	__release_guc_id(guc, q, i);
353 
354 	return ret;
355 }
356 
357 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
358 {
359 	mutex_lock(&guc->submission_state.lock);
360 	__release_guc_id(guc, q, q->width);
361 	mutex_unlock(&guc->submission_state.lock);
362 }
363 
364 struct exec_queue_policy {
365 	u32 count;
366 	struct guc_update_exec_queue_policy h2g;
367 };
368 
369 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
370 {
371 	size_t bytes = sizeof(policy->h2g.header) +
372 		       (sizeof(policy->h2g.klv[0]) * policy->count);
373 
374 	return bytes / sizeof(u32);
375 }
376 
377 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
378 					      u16 guc_id)
379 {
380 	policy->h2g.header.action =
381 		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
382 	policy->h2g.header.guc_id = guc_id;
383 	policy->count = 0;
384 }
385 
386 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
387 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
388 					   u32 data) \
389 { \
390 	XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
391 \
392 	policy->h2g.klv[policy->count].kl = \
393 		FIELD_PREP(GUC_KLV_0_KEY, \
394 			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
395 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
396 	policy->h2g.klv[policy->count].value = data; \
397 	policy->count++; \
398 }
399 
400 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
401 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
402 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
403 #undef MAKE_EXEC_QUEUE_POLICY_ADD
404 
405 static const int xe_exec_queue_prio_to_guc[] = {
406 	[XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
407 	[XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
408 	[XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
409 	[XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
410 };
411 
412 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
413 {
414 	struct exec_queue_policy policy;
415 	struct xe_device *xe = guc_to_xe(guc);
416 	enum xe_exec_queue_priority prio = q->sched_props.priority;
417 	u32 timeslice_us = q->sched_props.timeslice_us;
418 	u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
419 
420 	xe_assert(xe, exec_queue_registered(q));
421 
422 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
423 	__guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
424 	__guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
425 	__guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
426 
427 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
428 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
429 }
430 
431 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
432 {
433 	struct exec_queue_policy policy;
434 
435 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
436 	__guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
437 
438 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
439 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
440 }
441 
442 #define parallel_read(xe_, map_, field_) \
443 	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
444 			field_)
445 #define parallel_write(xe_, map_, field_, val_) \
446 	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
447 			field_, val_)
448 
449 static void __register_mlrc_exec_queue(struct xe_guc *guc,
450 				       struct xe_exec_queue *q,
451 				       struct guc_ctxt_registration_info *info)
452 {
453 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
454 	struct xe_device *xe = guc_to_xe(guc);
455 	u32 action[MAX_MLRC_REG_SIZE];
456 	int len = 0;
457 	int i;
458 
459 	xe_assert(xe, xe_exec_queue_is_parallel(q));
460 
461 	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
462 	action[len++] = info->flags;
463 	action[len++] = info->context_idx;
464 	action[len++] = info->engine_class;
465 	action[len++] = info->engine_submit_mask;
466 	action[len++] = info->wq_desc_lo;
467 	action[len++] = info->wq_desc_hi;
468 	action[len++] = info->wq_base_lo;
469 	action[len++] = info->wq_base_hi;
470 	action[len++] = info->wq_size;
471 	action[len++] = q->width;
472 	action[len++] = info->hwlrca_lo;
473 	action[len++] = info->hwlrca_hi;
474 
475 	for (i = 1; i < q->width; ++i) {
476 		struct xe_lrc *lrc = q->lrc[i];
477 
478 		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
479 		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
480 	}
481 
482 	xe_assert(xe, len <= MAX_MLRC_REG_SIZE);
483 #undef MAX_MLRC_REG_SIZE
484 
485 	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
486 }
487 
488 static void __register_exec_queue(struct xe_guc *guc,
489 				  struct guc_ctxt_registration_info *info)
490 {
491 	u32 action[] = {
492 		XE_GUC_ACTION_REGISTER_CONTEXT,
493 		info->flags,
494 		info->context_idx,
495 		info->engine_class,
496 		info->engine_submit_mask,
497 		info->wq_desc_lo,
498 		info->wq_desc_hi,
499 		info->wq_base_lo,
500 		info->wq_base_hi,
501 		info->wq_size,
502 		info->hwlrca_lo,
503 		info->hwlrca_hi,
504 	};
505 
506 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
507 }
508 
509 static void register_exec_queue(struct xe_exec_queue *q)
510 {
511 	struct xe_guc *guc = exec_queue_to_guc(q);
512 	struct xe_device *xe = guc_to_xe(guc);
513 	struct xe_lrc *lrc = q->lrc[0];
514 	struct guc_ctxt_registration_info info;
515 
516 	xe_assert(xe, !exec_queue_registered(q));
517 
518 	memset(&info, 0, sizeof(info));
519 	info.context_idx = q->guc->id;
520 	info.engine_class = xe_engine_class_to_guc_class(q->class);
521 	info.engine_submit_mask = q->logical_mask;
522 	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
523 	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
524 	info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
525 
526 	if (xe_exec_queue_is_parallel(q)) {
527 		u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
528 		struct iosys_map map = xe_lrc_parallel_map(lrc);
529 
530 		info.wq_desc_lo = lower_32_bits(ggtt_addr +
531 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
532 		info.wq_desc_hi = upper_32_bits(ggtt_addr +
533 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
534 		info.wq_base_lo = lower_32_bits(ggtt_addr +
535 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
536 		info.wq_base_hi = upper_32_bits(ggtt_addr +
537 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
538 		info.wq_size = WQ_SIZE;
539 
540 		q->guc->wqi_head = 0;
541 		q->guc->wqi_tail = 0;
542 		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
543 		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
544 	}
545 
546 	/*
547 	 * We must keep a reference for LR engines if engine is registered with
548 	 * the GuC as jobs signal immediately and can't destroy an engine if the
549 	 * GuC has a reference to it.
550 	 */
551 	if (xe_exec_queue_is_lr(q))
552 		xe_exec_queue_get(q);
553 
554 	set_exec_queue_registered(q);
555 	trace_xe_exec_queue_register(q);
556 	if (xe_exec_queue_is_parallel(q))
557 		__register_mlrc_exec_queue(guc, q, &info);
558 	else
559 		__register_exec_queue(guc, &info);
560 	init_policies(guc, q);
561 }
562 
563 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
564 {
565 	return (WQ_SIZE - q->guc->wqi_tail);
566 }
567 
568 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
569 {
570 	struct xe_guc *guc = exec_queue_to_guc(q);
571 	struct xe_device *xe = guc_to_xe(guc);
572 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
573 	unsigned int sleep_period_ms = 1;
574 
575 #define AVAILABLE_SPACE \
576 	CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
577 	if (wqi_size > AVAILABLE_SPACE) {
578 try_again:
579 		q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
580 		if (wqi_size > AVAILABLE_SPACE) {
581 			if (sleep_period_ms == 1024) {
582 				xe_gt_reset_async(q->gt);
583 				return -ENODEV;
584 			}
585 
586 			msleep(sleep_period_ms);
587 			sleep_period_ms <<= 1;
588 			goto try_again;
589 		}
590 	}
591 #undef AVAILABLE_SPACE
592 
593 	return 0;
594 }
595 
596 static int wq_noop_append(struct xe_exec_queue *q)
597 {
598 	struct xe_guc *guc = exec_queue_to_guc(q);
599 	struct xe_device *xe = guc_to_xe(guc);
600 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
601 	u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
602 
603 	if (wq_wait_for_space(q, wq_space_until_wrap(q)))
604 		return -ENODEV;
605 
606 	xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw));
607 
608 	parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
609 		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
610 		       FIELD_PREP(WQ_LEN_MASK, len_dw));
611 	q->guc->wqi_tail = 0;
612 
613 	return 0;
614 }
615 
616 static void wq_item_append(struct xe_exec_queue *q)
617 {
618 	struct xe_guc *guc = exec_queue_to_guc(q);
619 	struct xe_device *xe = guc_to_xe(guc);
620 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
621 #define WQ_HEADER_SIZE	4	/* Includes 1 LRC address too */
622 	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
623 	u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
624 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
625 	int i = 0, j;
626 
627 	if (wqi_size > wq_space_until_wrap(q)) {
628 		if (wq_noop_append(q))
629 			return;
630 	}
631 	if (wq_wait_for_space(q, wqi_size))
632 		return;
633 
634 	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
635 		FIELD_PREP(WQ_LEN_MASK, len_dw);
636 	wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
637 	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
638 		FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
639 	wqi[i++] = 0;
640 	for (j = 1; j < q->width; ++j) {
641 		struct xe_lrc *lrc = q->lrc[j];
642 
643 		wqi[i++] = lrc->ring.tail / sizeof(u64);
644 	}
645 
646 	xe_assert(xe, i == wqi_size / sizeof(u32));
647 
648 	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
649 				      wq[q->guc->wqi_tail / sizeof(u32)]));
650 	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
651 	q->guc->wqi_tail += wqi_size;
652 	xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE);
653 
654 	xe_device_wmb(xe);
655 
656 	map = xe_lrc_parallel_map(q->lrc[0]);
657 	parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
658 }
659 
660 #define RESUME_PENDING	~0x0ull
661 static void submit_exec_queue(struct xe_exec_queue *q)
662 {
663 	struct xe_guc *guc = exec_queue_to_guc(q);
664 	struct xe_device *xe = guc_to_xe(guc);
665 	struct xe_lrc *lrc = q->lrc[0];
666 	u32 action[3];
667 	u32 g2h_len = 0;
668 	u32 num_g2h = 0;
669 	int len = 0;
670 	bool extra_submit = false;
671 
672 	xe_assert(xe, exec_queue_registered(q));
673 
674 	if (xe_exec_queue_is_parallel(q))
675 		wq_item_append(q);
676 	else
677 		xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
678 
679 	if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
680 		return;
681 
682 	if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
683 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
684 		action[len++] = q->guc->id;
685 		action[len++] = GUC_CONTEXT_ENABLE;
686 		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
687 		num_g2h = 1;
688 		if (xe_exec_queue_is_parallel(q))
689 			extra_submit = true;
690 
691 		q->guc->resume_time = RESUME_PENDING;
692 		set_exec_queue_pending_enable(q);
693 		set_exec_queue_enabled(q);
694 		trace_xe_exec_queue_scheduling_enable(q);
695 	} else {
696 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
697 		action[len++] = q->guc->id;
698 		trace_xe_exec_queue_submit(q);
699 	}
700 
701 	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
702 
703 	if (extra_submit) {
704 		len = 0;
705 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
706 		action[len++] = q->guc->id;
707 		trace_xe_exec_queue_submit(q);
708 
709 		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
710 	}
711 }
712 
713 static struct dma_fence *
714 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
715 {
716 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
717 	struct xe_exec_queue *q = job->q;
718 	struct xe_guc *guc = exec_queue_to_guc(q);
719 	struct xe_device *xe = guc_to_xe(guc);
720 	struct dma_fence *fence = NULL;
721 	bool lr = xe_exec_queue_is_lr(q);
722 
723 	xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
724 		  exec_queue_banned(q) || exec_queue_suspended(q));
725 
726 	trace_xe_sched_job_run(job);
727 
728 	if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
729 		if (!exec_queue_registered(q))
730 			register_exec_queue(q);
731 		if (!lr)	/* LR jobs are emitted in the exec IOCTL */
732 			q->ring_ops->emit_job(job);
733 		submit_exec_queue(q);
734 	}
735 
736 	if (lr) {
737 		xe_sched_job_set_error(job, -EOPNOTSUPP);
738 		dma_fence_put(job->fence);	/* Drop ref from xe_sched_job_arm */
739 	} else {
740 		fence = job->fence;
741 	}
742 
743 	return fence;
744 }
745 
746 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
747 {
748 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
749 
750 	trace_xe_sched_job_free(job);
751 	xe_sched_job_put(job);
752 }
753 
754 int xe_guc_read_stopped(struct xe_guc *guc)
755 {
756 	return atomic_read(&guc->submission_state.stopped);
757 }
758 
759 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)			\
760 	u32 action[] = {						\
761 		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
762 		q->guc->id,						\
763 		GUC_CONTEXT_##enable_disable,				\
764 	}
765 
766 static void disable_scheduling_deregister(struct xe_guc *guc,
767 					  struct xe_exec_queue *q)
768 {
769 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
770 	struct xe_device *xe = guc_to_xe(guc);
771 	int ret;
772 
773 	set_min_preemption_timeout(guc, q);
774 	smp_rmb();
775 	ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) ||
776 				 xe_guc_read_stopped(guc), HZ * 5);
777 	if (!ret) {
778 		struct xe_gpu_scheduler *sched = &q->guc->sched;
779 
780 		drm_warn(&xe->drm, "Pending enable failed to respond");
781 		xe_sched_submission_start(sched);
782 		xe_gt_reset_async(q->gt);
783 		xe_sched_tdr_queue_imm(sched);
784 		return;
785 	}
786 
787 	clear_exec_queue_enabled(q);
788 	set_exec_queue_pending_disable(q);
789 	set_exec_queue_destroyed(q);
790 	trace_xe_exec_queue_scheduling_disable(q);
791 
792 	/*
793 	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
794 	 * handler and we are not allowed to reserved G2H space in handlers.
795 	 */
796 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
797 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
798 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
799 }
800 
801 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
802 {
803 	struct xe_guc *guc = exec_queue_to_guc(q);
804 	struct xe_device *xe = guc_to_xe(guc);
805 
806 	/** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
807 	wake_up_all(&xe->ufence_wq);
808 
809 	if (xe_exec_queue_is_lr(q))
810 		queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
811 	else
812 		xe_sched_tdr_queue_imm(&q->guc->sched);
813 }
814 
815 /**
816  * xe_guc_submit_wedge() - Wedge GuC submission
817  * @guc: the GuC object
818  *
819  * Save exec queue's registered with GuC state by taking a ref to each queue.
820  * Register a DRMM handler to drop refs upon driver unload.
821  */
822 void xe_guc_submit_wedge(struct xe_guc *guc)
823 {
824 	struct xe_device *xe = guc_to_xe(guc);
825 	struct xe_exec_queue *q;
826 	unsigned long index;
827 	int err;
828 
829 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
830 
831 	err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
832 				       guc_submit_wedged_fini, guc);
833 	if (err) {
834 		drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n");
835 		return;
836 	}
837 
838 	mutex_lock(&guc->submission_state.lock);
839 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
840 		if (xe_exec_queue_get_unless_zero(q))
841 			set_exec_queue_wedged(q);
842 	mutex_unlock(&guc->submission_state.lock);
843 }
844 
845 static bool guc_submit_hint_wedged(struct xe_guc *guc)
846 {
847 	struct xe_device *xe = guc_to_xe(guc);
848 
849 	if (xe->wedged.mode != 2)
850 		return false;
851 
852 	if (xe_device_wedged(xe))
853 		return true;
854 
855 	xe_device_declare_wedged(xe);
856 
857 	return true;
858 }
859 
860 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
861 {
862 	struct xe_guc_exec_queue *ge =
863 		container_of(w, struct xe_guc_exec_queue, lr_tdr);
864 	struct xe_exec_queue *q = ge->q;
865 	struct xe_guc *guc = exec_queue_to_guc(q);
866 	struct xe_device *xe = guc_to_xe(guc);
867 	struct xe_gpu_scheduler *sched = &ge->sched;
868 	bool wedged;
869 
870 	xe_assert(xe, xe_exec_queue_is_lr(q));
871 	trace_xe_exec_queue_lr_cleanup(q);
872 
873 	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
874 
875 	/* Kill the run_job / process_msg entry points */
876 	xe_sched_submission_stop(sched);
877 
878 	/*
879 	 * Engine state now mostly stable, disable scheduling / deregister if
880 	 * needed. This cleanup routine might be called multiple times, where
881 	 * the actual async engine deregister drops the final engine ref.
882 	 * Calling disable_scheduling_deregister will mark the engine as
883 	 * destroyed and fire off the CT requests to disable scheduling /
884 	 * deregister, which we only want to do once. We also don't want to mark
885 	 * the engine as pending_disable again as this may race with the
886 	 * xe_guc_deregister_done_handler() which treats it as an unexpected
887 	 * state.
888 	 */
889 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
890 		struct xe_guc *guc = exec_queue_to_guc(q);
891 		int ret;
892 
893 		set_exec_queue_banned(q);
894 		disable_scheduling_deregister(guc, q);
895 
896 		/*
897 		 * Must wait for scheduling to be disabled before signalling
898 		 * any fences, if GT broken the GT reset code should signal us.
899 		 */
900 		ret = wait_event_timeout(guc->ct.wq,
901 					 !exec_queue_pending_disable(q) ||
902 					 xe_guc_read_stopped(guc), HZ * 5);
903 		if (!ret) {
904 			drm_warn(&xe->drm, "Schedule disable failed to respond");
905 			xe_sched_submission_start(sched);
906 			xe_gt_reset_async(q->gt);
907 			return;
908 		}
909 	}
910 
911 	xe_sched_submission_start(sched);
912 }
913 
914 #define ADJUST_FIVE_PERCENT(__t)	mul_u64_u32_div(__t, 105, 100)
915 
916 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
917 {
918 	struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
919 	u32 ctx_timestamp, ctx_job_timestamp;
920 	u32 timeout_ms = q->sched_props.job_timeout_ms;
921 	u32 diff;
922 	u64 running_time_ms;
923 
924 	if (!xe_sched_job_started(job)) {
925 		xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
926 			   xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
927 			   q->guc->id);
928 
929 		return xe_sched_invalidate_job(job, 2);
930 	}
931 
932 	ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]);
933 	ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
934 
935 	/*
936 	 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
937 	 * possible overflows with a high timeout.
938 	 */
939 	xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
940 
941 	if (ctx_timestamp < ctx_job_timestamp)
942 		diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
943 	else
944 		diff = ctx_timestamp - ctx_job_timestamp;
945 
946 	/*
947 	 * Ensure timeout is within 5% to account for an GuC scheduling latency
948 	 */
949 	running_time_ms =
950 		ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
951 
952 	xe_gt_dbg(gt,
953 		  "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
954 		  xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
955 		  q->guc->id, running_time_ms, timeout_ms, diff);
956 
957 	return running_time_ms >= timeout_ms;
958 }
959 
960 static void enable_scheduling(struct xe_exec_queue *q)
961 {
962 	MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
963 	struct xe_guc *guc = exec_queue_to_guc(q);
964 	int ret;
965 
966 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
967 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
968 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
969 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
970 
971 	set_exec_queue_pending_enable(q);
972 	set_exec_queue_enabled(q);
973 	trace_xe_exec_queue_scheduling_enable(q);
974 
975 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
976 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
977 
978 	ret = wait_event_timeout(guc->ct.wq,
979 				 !exec_queue_pending_enable(q) ||
980 				 xe_guc_read_stopped(guc), HZ * 5);
981 	if (!ret || xe_guc_read_stopped(guc)) {
982 		xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
983 		set_exec_queue_banned(q);
984 		xe_gt_reset_async(q->gt);
985 		xe_sched_tdr_queue_imm(&q->guc->sched);
986 	}
987 }
988 
989 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
990 {
991 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
992 	struct xe_guc *guc = exec_queue_to_guc(q);
993 
994 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
995 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
996 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
997 
998 	if (immediate)
999 		set_min_preemption_timeout(guc, q);
1000 	clear_exec_queue_enabled(q);
1001 	set_exec_queue_pending_disable(q);
1002 	trace_xe_exec_queue_scheduling_disable(q);
1003 
1004 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1005 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1006 }
1007 
1008 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1009 {
1010 	u32 action[] = {
1011 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1012 		q->guc->id,
1013 	};
1014 
1015 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1016 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1017 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1018 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1019 
1020 	set_exec_queue_destroyed(q);
1021 	trace_xe_exec_queue_deregister(q);
1022 
1023 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1024 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1025 }
1026 
1027 static enum drm_gpu_sched_stat
1028 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1029 {
1030 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
1031 	struct xe_sched_job *tmp_job;
1032 	struct xe_exec_queue *q = job->q;
1033 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1034 	struct xe_guc *guc = exec_queue_to_guc(q);
1035 	const char *process_name = "no process";
1036 	struct xe_device *xe = guc_to_xe(guc);
1037 	unsigned int fw_ref;
1038 	int err = -ETIME;
1039 	pid_t pid = -1;
1040 	int i = 0;
1041 	bool wedged, skip_timeout_check;
1042 
1043 	/*
1044 	 * TDR has fired before free job worker. Common if exec queue
1045 	 * immediately closed after last fence signaled. Add back to pending
1046 	 * list so job can be freed and kick scheduler ensuring free job is not
1047 	 * lost.
1048 	 */
1049 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1050 		xe_sched_add_pending_job(sched, job);
1051 		xe_sched_submission_start(sched);
1052 
1053 		return DRM_GPU_SCHED_STAT_NOMINAL;
1054 	}
1055 
1056 	/* Kill the run_job entry point */
1057 	xe_sched_submission_stop(sched);
1058 
1059 	/* Must check all state after stopping scheduler */
1060 	skip_timeout_check = exec_queue_reset(q) ||
1061 		exec_queue_killed_or_banned_or_wedged(q) ||
1062 		exec_queue_destroyed(q);
1063 
1064 	/*
1065 	 * If devcoredump not captured and GuC capture for the job is not ready
1066 	 * do manual capture first and decide later if we need to use it
1067 	 */
1068 	if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1069 	    !xe_guc_capture_get_matching_and_lock(job)) {
1070 		/* take force wake before engine register manual capture */
1071 		fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1072 		if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1073 			xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1074 
1075 		xe_engine_snapshot_capture_for_job(job);
1076 
1077 		xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1078 	}
1079 
1080 	/*
1081 	 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1082 	 * modify scheduling state to read timestamp. We could read the
1083 	 * timestamp from a register to accumulate current running time but this
1084 	 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1085 	 * genuine timeouts.
1086 	 */
1087 	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1088 
1089 	/* Engine state now stable, disable scheduling to check timestamp */
1090 	if (!wedged && exec_queue_registered(q)) {
1091 		int ret;
1092 
1093 		if (exec_queue_reset(q))
1094 			err = -EIO;
1095 
1096 		if (!exec_queue_destroyed(q)) {
1097 			/*
1098 			 * Wait for any pending G2H to flush out before
1099 			 * modifying state
1100 			 */
1101 			ret = wait_event_timeout(guc->ct.wq,
1102 						 !exec_queue_pending_enable(q) ||
1103 						 xe_guc_read_stopped(guc), HZ * 5);
1104 			if (!ret || xe_guc_read_stopped(guc))
1105 				goto trigger_reset;
1106 
1107 			/*
1108 			 * Flag communicates to G2H handler that schedule
1109 			 * disable originated from a timeout check. The G2H then
1110 			 * avoid triggering cleanup or deregistering the exec
1111 			 * queue.
1112 			 */
1113 			set_exec_queue_check_timeout(q);
1114 			disable_scheduling(q, skip_timeout_check);
1115 		}
1116 
1117 		/*
1118 		 * Must wait for scheduling to be disabled before signalling
1119 		 * any fences, if GT broken the GT reset code should signal us.
1120 		 *
1121 		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1122 		 * error) messages which can cause the schedule disable to get
1123 		 * lost. If this occurs, trigger a GT reset to recover.
1124 		 */
1125 		smp_rmb();
1126 		ret = wait_event_timeout(guc->ct.wq,
1127 					 !exec_queue_pending_disable(q) ||
1128 					 xe_guc_read_stopped(guc), HZ * 5);
1129 		if (!ret || xe_guc_read_stopped(guc)) {
1130 trigger_reset:
1131 			if (!ret)
1132 				xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond");
1133 			set_exec_queue_extra_ref(q);
1134 			xe_exec_queue_get(q);	/* GT reset owns this */
1135 			set_exec_queue_banned(q);
1136 			xe_gt_reset_async(q->gt);
1137 			xe_sched_tdr_queue_imm(sched);
1138 			goto rearm;
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * Check if job is actually timed out, if so restart job execution and TDR
1144 	 */
1145 	if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1146 	    !exec_queue_reset(q) && exec_queue_registered(q)) {
1147 		clear_exec_queue_check_timeout(q);
1148 		goto sched_enable;
1149 	}
1150 
1151 	if (q->vm && q->vm->xef) {
1152 		process_name = q->vm->xef->process_name;
1153 		pid = q->vm->xef->pid;
1154 	}
1155 	xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1156 		     xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1157 		     q->guc->id, q->flags, process_name, pid);
1158 
1159 	trace_xe_sched_job_timedout(job);
1160 
1161 	if (!exec_queue_killed(q))
1162 		xe_devcoredump(job);
1163 
1164 	/*
1165 	 * Kernel jobs should never fail, nor should VM jobs if they do
1166 	 * somethings has gone wrong and the GT needs a reset
1167 	 */
1168 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1169 		   "Kernel-submitted job timed out\n");
1170 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1171 		   "VM job timed out on non-killed execqueue\n");
1172 	if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1173 			(q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1174 		if (!xe_sched_invalidate_job(job, 2)) {
1175 			clear_exec_queue_check_timeout(q);
1176 			xe_gt_reset_async(q->gt);
1177 			goto rearm;
1178 		}
1179 	}
1180 
1181 	/* Finish cleaning up exec queue via deregister */
1182 	set_exec_queue_banned(q);
1183 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1184 		set_exec_queue_extra_ref(q);
1185 		xe_exec_queue_get(q);
1186 		__deregister_exec_queue(guc, q);
1187 	}
1188 
1189 	/* Stop fence signaling */
1190 	xe_hw_fence_irq_stop(q->fence_irq);
1191 
1192 	/*
1193 	 * Fence state now stable, stop / start scheduler which cleans up any
1194 	 * fences that are complete
1195 	 */
1196 	xe_sched_add_pending_job(sched, job);
1197 	xe_sched_submission_start(sched);
1198 
1199 	xe_guc_exec_queue_trigger_cleanup(q);
1200 
1201 	/* Mark all outstanding jobs as bad, thus completing them */
1202 	spin_lock(&sched->base.job_list_lock);
1203 	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1204 		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1205 	spin_unlock(&sched->base.job_list_lock);
1206 
1207 	/* Start fence signaling */
1208 	xe_hw_fence_irq_start(q->fence_irq);
1209 
1210 	return DRM_GPU_SCHED_STAT_NOMINAL;
1211 
1212 sched_enable:
1213 	enable_scheduling(q);
1214 rearm:
1215 	/*
1216 	 * XXX: Ideally want to adjust timeout based on current exection time
1217 	 * but there is not currently an easy way to do in DRM scheduler. With
1218 	 * some thought, do this in a follow up.
1219 	 */
1220 	xe_sched_add_pending_job(sched, job);
1221 	xe_sched_submission_start(sched);
1222 
1223 	return DRM_GPU_SCHED_STAT_NOMINAL;
1224 }
1225 
1226 static void __guc_exec_queue_fini_async(struct work_struct *w)
1227 {
1228 	struct xe_guc_exec_queue *ge =
1229 		container_of(w, struct xe_guc_exec_queue, fini_async);
1230 	struct xe_exec_queue *q = ge->q;
1231 	struct xe_guc *guc = exec_queue_to_guc(q);
1232 
1233 	xe_pm_runtime_get(guc_to_xe(guc));
1234 	trace_xe_exec_queue_destroy(q);
1235 
1236 	if (xe_exec_queue_is_lr(q))
1237 		cancel_work_sync(&ge->lr_tdr);
1238 	release_guc_id(guc, q);
1239 	xe_sched_entity_fini(&ge->entity);
1240 	xe_sched_fini(&ge->sched);
1241 
1242 	kfree(ge);
1243 	xe_exec_queue_fini(q);
1244 	xe_pm_runtime_put(guc_to_xe(guc));
1245 }
1246 
1247 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1248 {
1249 	struct xe_guc *guc = exec_queue_to_guc(q);
1250 	struct xe_device *xe = guc_to_xe(guc);
1251 
1252 	INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1253 
1254 	/* We must block on kernel engines so slabs are empty on driver unload */
1255 	if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1256 		__guc_exec_queue_fini_async(&q->guc->fini_async);
1257 	else
1258 		queue_work(xe->destroy_wq, &q->guc->fini_async);
1259 }
1260 
1261 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1262 {
1263 	/*
1264 	 * Might be done from within the GPU scheduler, need to do async as we
1265 	 * fini the scheduler when the engine is fini'd, the scheduler can't
1266 	 * complete fini within itself (circular dependency). Async resolves
1267 	 * this we and don't really care when everything is fini'd, just that it
1268 	 * is.
1269 	 */
1270 	guc_exec_queue_fini_async(q);
1271 }
1272 
1273 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1274 {
1275 	struct xe_exec_queue *q = msg->private_data;
1276 	struct xe_guc *guc = exec_queue_to_guc(q);
1277 	struct xe_device *xe = guc_to_xe(guc);
1278 
1279 	xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1280 	trace_xe_exec_queue_cleanup_entity(q);
1281 
1282 	if (exec_queue_registered(q))
1283 		disable_scheduling_deregister(guc, q);
1284 	else
1285 		__guc_exec_queue_fini(guc, q);
1286 }
1287 
1288 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1289 {
1290 	return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1291 }
1292 
1293 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1294 {
1295 	struct xe_exec_queue *q = msg->private_data;
1296 	struct xe_guc *guc = exec_queue_to_guc(q);
1297 
1298 	if (guc_exec_queue_allowed_to_change_state(q))
1299 		init_policies(guc, q);
1300 	kfree(msg);
1301 }
1302 
1303 static void __suspend_fence_signal(struct xe_exec_queue *q)
1304 {
1305 	if (!q->guc->suspend_pending)
1306 		return;
1307 
1308 	WRITE_ONCE(q->guc->suspend_pending, false);
1309 	wake_up(&q->guc->suspend_wait);
1310 }
1311 
1312 static void suspend_fence_signal(struct xe_exec_queue *q)
1313 {
1314 	struct xe_guc *guc = exec_queue_to_guc(q);
1315 	struct xe_device *xe = guc_to_xe(guc);
1316 
1317 	xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) ||
1318 		  xe_guc_read_stopped(guc));
1319 	xe_assert(xe, q->guc->suspend_pending);
1320 
1321 	__suspend_fence_signal(q);
1322 }
1323 
1324 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1325 {
1326 	struct xe_exec_queue *q = msg->private_data;
1327 	struct xe_guc *guc = exec_queue_to_guc(q);
1328 
1329 	if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1330 	    exec_queue_enabled(q)) {
1331 		wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING ||
1332 			   xe_guc_read_stopped(guc));
1333 
1334 		if (!xe_guc_read_stopped(guc)) {
1335 			s64 since_resume_ms =
1336 				ktime_ms_delta(ktime_get(),
1337 					       q->guc->resume_time);
1338 			s64 wait_ms = q->vm->preempt.min_run_period_ms -
1339 				since_resume_ms;
1340 
1341 			if (wait_ms > 0 && q->guc->resume_time)
1342 				msleep(wait_ms);
1343 
1344 			set_exec_queue_suspended(q);
1345 			disable_scheduling(q, false);
1346 		}
1347 	} else if (q->guc->suspend_pending) {
1348 		set_exec_queue_suspended(q);
1349 		suspend_fence_signal(q);
1350 	}
1351 }
1352 
1353 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1354 {
1355 	struct xe_exec_queue *q = msg->private_data;
1356 
1357 	if (guc_exec_queue_allowed_to_change_state(q)) {
1358 		clear_exec_queue_suspended(q);
1359 		if (!exec_queue_enabled(q)) {
1360 			q->guc->resume_time = RESUME_PENDING;
1361 			enable_scheduling(q);
1362 		}
1363 	} else {
1364 		clear_exec_queue_suspended(q);
1365 	}
1366 }
1367 
1368 #define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1369 #define SET_SCHED_PROPS	2
1370 #define SUSPEND		3
1371 #define RESUME		4
1372 #define OPCODE_MASK	0xf
1373 #define MSG_LOCKED	BIT(8)
1374 
1375 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1376 {
1377 	struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1378 
1379 	trace_xe_sched_msg_recv(msg);
1380 
1381 	switch (msg->opcode) {
1382 	case CLEANUP:
1383 		__guc_exec_queue_process_msg_cleanup(msg);
1384 		break;
1385 	case SET_SCHED_PROPS:
1386 		__guc_exec_queue_process_msg_set_sched_props(msg);
1387 		break;
1388 	case SUSPEND:
1389 		__guc_exec_queue_process_msg_suspend(msg);
1390 		break;
1391 	case RESUME:
1392 		__guc_exec_queue_process_msg_resume(msg);
1393 		break;
1394 	default:
1395 		XE_WARN_ON("Unknown message type");
1396 	}
1397 
1398 	xe_pm_runtime_put(xe);
1399 }
1400 
1401 static const struct drm_sched_backend_ops drm_sched_ops = {
1402 	.run_job = guc_exec_queue_run_job,
1403 	.free_job = guc_exec_queue_free_job,
1404 	.timedout_job = guc_exec_queue_timedout_job,
1405 };
1406 
1407 static const struct xe_sched_backend_ops xe_sched_ops = {
1408 	.process_msg = guc_exec_queue_process_msg,
1409 };
1410 
1411 static int guc_exec_queue_init(struct xe_exec_queue *q)
1412 {
1413 	struct xe_gpu_scheduler *sched;
1414 	struct xe_guc *guc = exec_queue_to_guc(q);
1415 	struct xe_device *xe = guc_to_xe(guc);
1416 	struct xe_guc_exec_queue *ge;
1417 	long timeout;
1418 	int err, i;
1419 
1420 	xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc)));
1421 
1422 	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1423 	if (!ge)
1424 		return -ENOMEM;
1425 
1426 	q->guc = ge;
1427 	ge->q = q;
1428 	init_waitqueue_head(&ge->suspend_wait);
1429 
1430 	for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1431 		INIT_LIST_HEAD(&ge->static_msgs[i].link);
1432 
1433 	timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1434 		  msecs_to_jiffies(q->sched_props.job_timeout_ms);
1435 	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1436 			    NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1437 			    timeout, guc_to_gt(guc)->ordered_wq, NULL,
1438 			    q->name, gt_to_xe(q->gt)->drm.dev);
1439 	if (err)
1440 		goto err_free;
1441 
1442 	sched = &ge->sched;
1443 	err = xe_sched_entity_init(&ge->entity, sched);
1444 	if (err)
1445 		goto err_sched;
1446 
1447 	if (xe_exec_queue_is_lr(q))
1448 		INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1449 
1450 	mutex_lock(&guc->submission_state.lock);
1451 
1452 	err = alloc_guc_id(guc, q);
1453 	if (err)
1454 		goto err_entity;
1455 
1456 	q->entity = &ge->entity;
1457 
1458 	if (xe_guc_read_stopped(guc))
1459 		xe_sched_stop(sched);
1460 
1461 	mutex_unlock(&guc->submission_state.lock);
1462 
1463 	xe_exec_queue_assign_name(q, q->guc->id);
1464 
1465 	trace_xe_exec_queue_create(q);
1466 
1467 	return 0;
1468 
1469 err_entity:
1470 	mutex_unlock(&guc->submission_state.lock);
1471 	xe_sched_entity_fini(&ge->entity);
1472 err_sched:
1473 	xe_sched_fini(&ge->sched);
1474 err_free:
1475 	kfree(ge);
1476 
1477 	return err;
1478 }
1479 
1480 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1481 {
1482 	trace_xe_exec_queue_kill(q);
1483 	set_exec_queue_killed(q);
1484 	__suspend_fence_signal(q);
1485 	xe_guc_exec_queue_trigger_cleanup(q);
1486 }
1487 
1488 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1489 				   u32 opcode)
1490 {
1491 	xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1492 
1493 	INIT_LIST_HEAD(&msg->link);
1494 	msg->opcode = opcode & OPCODE_MASK;
1495 	msg->private_data = q;
1496 
1497 	trace_xe_sched_msg_add(msg);
1498 	if (opcode & MSG_LOCKED)
1499 		xe_sched_add_msg_locked(&q->guc->sched, msg);
1500 	else
1501 		xe_sched_add_msg(&q->guc->sched, msg);
1502 }
1503 
1504 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1505 				       struct xe_sched_msg *msg,
1506 				       u32 opcode)
1507 {
1508 	if (!list_empty(&msg->link))
1509 		return false;
1510 
1511 	guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1512 
1513 	return true;
1514 }
1515 
1516 #define STATIC_MSG_CLEANUP	0
1517 #define STATIC_MSG_SUSPEND	1
1518 #define STATIC_MSG_RESUME	2
1519 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1520 {
1521 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1522 
1523 	if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1524 		guc_exec_queue_add_msg(q, msg, CLEANUP);
1525 	else
1526 		__guc_exec_queue_fini(exec_queue_to_guc(q), q);
1527 }
1528 
1529 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1530 				       enum xe_exec_queue_priority priority)
1531 {
1532 	struct xe_sched_msg *msg;
1533 
1534 	if (q->sched_props.priority == priority ||
1535 	    exec_queue_killed_or_banned_or_wedged(q))
1536 		return 0;
1537 
1538 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1539 	if (!msg)
1540 		return -ENOMEM;
1541 
1542 	q->sched_props.priority = priority;
1543 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1544 
1545 	return 0;
1546 }
1547 
1548 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1549 {
1550 	struct xe_sched_msg *msg;
1551 
1552 	if (q->sched_props.timeslice_us == timeslice_us ||
1553 	    exec_queue_killed_or_banned_or_wedged(q))
1554 		return 0;
1555 
1556 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1557 	if (!msg)
1558 		return -ENOMEM;
1559 
1560 	q->sched_props.timeslice_us = timeslice_us;
1561 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1562 
1563 	return 0;
1564 }
1565 
1566 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1567 					      u32 preempt_timeout_us)
1568 {
1569 	struct xe_sched_msg *msg;
1570 
1571 	if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1572 	    exec_queue_killed_or_banned_or_wedged(q))
1573 		return 0;
1574 
1575 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1576 	if (!msg)
1577 		return -ENOMEM;
1578 
1579 	q->sched_props.preempt_timeout_us = preempt_timeout_us;
1580 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1581 
1582 	return 0;
1583 }
1584 
1585 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1586 {
1587 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1588 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1589 
1590 	if (exec_queue_killed_or_banned_or_wedged(q))
1591 		return -EINVAL;
1592 
1593 	xe_sched_msg_lock(sched);
1594 	if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1595 		q->guc->suspend_pending = true;
1596 	xe_sched_msg_unlock(sched);
1597 
1598 	return 0;
1599 }
1600 
1601 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1602 {
1603 	struct xe_guc *guc = exec_queue_to_guc(q);
1604 	int ret;
1605 
1606 	/*
1607 	 * Likely don't need to check exec_queue_killed() as we clear
1608 	 * suspend_pending upon kill but to be paranoid but races in which
1609 	 * suspend_pending is set after kill also check kill here.
1610 	 */
1611 	ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1612 					       !READ_ONCE(q->guc->suspend_pending) ||
1613 					       exec_queue_killed(q) ||
1614 					       xe_guc_read_stopped(guc),
1615 					       HZ * 5);
1616 
1617 	if (!ret) {
1618 		xe_gt_warn(guc_to_gt(guc),
1619 			   "Suspend fence, guc_id=%d, failed to respond",
1620 			   q->guc->id);
1621 		/* XXX: Trigger GT reset? */
1622 		return -ETIME;
1623 	}
1624 
1625 	return ret < 0 ? ret : 0;
1626 }
1627 
1628 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1629 {
1630 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1631 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1632 	struct xe_guc *guc = exec_queue_to_guc(q);
1633 	struct xe_device *xe = guc_to_xe(guc);
1634 
1635 	xe_assert(xe, !q->guc->suspend_pending);
1636 
1637 	xe_sched_msg_lock(sched);
1638 	guc_exec_queue_try_add_msg(q, msg, RESUME);
1639 	xe_sched_msg_unlock(sched);
1640 }
1641 
1642 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1643 {
1644 	return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1645 }
1646 
1647 /*
1648  * All of these functions are an abstraction layer which other parts of XE can
1649  * use to trap into the GuC backend. All of these functions, aside from init,
1650  * really shouldn't do much other than trap into the DRM scheduler which
1651  * synchronizes these operations.
1652  */
1653 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1654 	.init = guc_exec_queue_init,
1655 	.kill = guc_exec_queue_kill,
1656 	.fini = guc_exec_queue_fini,
1657 	.set_priority = guc_exec_queue_set_priority,
1658 	.set_timeslice = guc_exec_queue_set_timeslice,
1659 	.set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1660 	.suspend = guc_exec_queue_suspend,
1661 	.suspend_wait = guc_exec_queue_suspend_wait,
1662 	.resume = guc_exec_queue_resume,
1663 	.reset_status = guc_exec_queue_reset_status,
1664 };
1665 
1666 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1667 {
1668 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1669 
1670 	/* Stop scheduling + flush any DRM scheduler operations */
1671 	xe_sched_submission_stop(sched);
1672 
1673 	/* Clean up lost G2H + reset engine state */
1674 	if (exec_queue_registered(q)) {
1675 		if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1676 			xe_exec_queue_put(q);
1677 		else if (exec_queue_destroyed(q))
1678 			__guc_exec_queue_fini(guc, q);
1679 	}
1680 	if (q->guc->suspend_pending) {
1681 		set_exec_queue_suspended(q);
1682 		suspend_fence_signal(q);
1683 	}
1684 	atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1685 		   EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1686 		   EXEC_QUEUE_STATE_SUSPENDED,
1687 		   &q->guc->state);
1688 	q->guc->resume_time = 0;
1689 	trace_xe_exec_queue_stop(q);
1690 
1691 	/*
1692 	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1693 	 * started but not complete job or if a job has gone through a GT reset
1694 	 * more than twice.
1695 	 */
1696 	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1697 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1698 		bool ban = false;
1699 
1700 		if (job) {
1701 			if ((xe_sched_job_started(job) &&
1702 			    !xe_sched_job_completed(job)) ||
1703 			    xe_sched_invalidate_job(job, 2)) {
1704 				trace_xe_sched_job_ban(job);
1705 				ban = true;
1706 			}
1707 		} else if (xe_exec_queue_is_lr(q) &&
1708 			   (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) {
1709 			ban = true;
1710 		}
1711 
1712 		if (ban) {
1713 			set_exec_queue_banned(q);
1714 			xe_guc_exec_queue_trigger_cleanup(q);
1715 		}
1716 	}
1717 }
1718 
1719 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1720 {
1721 	int ret;
1722 
1723 	/*
1724 	 * Using an atomic here rather than submission_state.lock as this
1725 	 * function can be called while holding the CT lock (engine reset
1726 	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1727 	 * Atomic is not ideal, but it works to prevent against concurrent reset
1728 	 * and releasing any TDRs waiting on guc->submission_state.stopped.
1729 	 */
1730 	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1731 	smp_wmb();
1732 	wake_up_all(&guc->ct.wq);
1733 
1734 	return ret;
1735 }
1736 
1737 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1738 {
1739 	wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1740 		   !xe_guc_read_stopped(guc));
1741 }
1742 
1743 void xe_guc_submit_stop(struct xe_guc *guc)
1744 {
1745 	struct xe_exec_queue *q;
1746 	unsigned long index;
1747 	struct xe_device *xe = guc_to_xe(guc);
1748 
1749 	xe_assert(xe, xe_guc_read_stopped(guc) == 1);
1750 
1751 	mutex_lock(&guc->submission_state.lock);
1752 
1753 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1754 		/* Prevent redundant attempts to stop parallel queues */
1755 		if (q->guc->id != index)
1756 			continue;
1757 
1758 		guc_exec_queue_stop(guc, q);
1759 	}
1760 
1761 	mutex_unlock(&guc->submission_state.lock);
1762 
1763 	/*
1764 	 * No one can enter the backend at this point, aside from new engine
1765 	 * creation which is protected by guc->submission_state.lock.
1766 	 */
1767 
1768 }
1769 
1770 static void guc_exec_queue_start(struct xe_exec_queue *q)
1771 {
1772 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1773 
1774 	if (!exec_queue_killed_or_banned_or_wedged(q)) {
1775 		int i;
1776 
1777 		trace_xe_exec_queue_resubmit(q);
1778 		for (i = 0; i < q->width; ++i)
1779 			xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1780 		xe_sched_resubmit_jobs(sched);
1781 	}
1782 
1783 	xe_sched_submission_start(sched);
1784 	xe_sched_submission_resume_tdr(sched);
1785 }
1786 
1787 int xe_guc_submit_start(struct xe_guc *guc)
1788 {
1789 	struct xe_exec_queue *q;
1790 	unsigned long index;
1791 	struct xe_device *xe = guc_to_xe(guc);
1792 
1793 	xe_assert(xe, xe_guc_read_stopped(guc) == 1);
1794 
1795 	mutex_lock(&guc->submission_state.lock);
1796 	atomic_dec(&guc->submission_state.stopped);
1797 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1798 		/* Prevent redundant attempts to start parallel queues */
1799 		if (q->guc->id != index)
1800 			continue;
1801 
1802 		guc_exec_queue_start(q);
1803 	}
1804 	mutex_unlock(&guc->submission_state.lock);
1805 
1806 	wake_up_all(&guc->ct.wq);
1807 
1808 	return 0;
1809 }
1810 
1811 static struct xe_exec_queue *
1812 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1813 {
1814 	struct xe_device *xe = guc_to_xe(guc);
1815 	struct xe_exec_queue *q;
1816 
1817 	if (unlikely(guc_id >= GUC_ID_MAX)) {
1818 		drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1819 		return NULL;
1820 	}
1821 
1822 	q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1823 	if (unlikely(!q)) {
1824 		drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1825 		return NULL;
1826 	}
1827 
1828 	xe_assert(xe, guc_id >= q->guc->id);
1829 	xe_assert(xe, guc_id < (q->guc->id + q->width));
1830 
1831 	return q;
1832 }
1833 
1834 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1835 {
1836 	u32 action[] = {
1837 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1838 		q->guc->id,
1839 	};
1840 
1841 	xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1842 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1843 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1844 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1845 
1846 	trace_xe_exec_queue_deregister(q);
1847 
1848 	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1849 }
1850 
1851 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1852 			      u32 runnable_state)
1853 {
1854 	trace_xe_exec_queue_scheduling_done(q);
1855 
1856 	if (runnable_state == 1) {
1857 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1858 
1859 		q->guc->resume_time = ktime_get();
1860 		clear_exec_queue_pending_enable(q);
1861 		smp_wmb();
1862 		wake_up_all(&guc->ct.wq);
1863 	} else {
1864 		bool check_timeout = exec_queue_check_timeout(q);
1865 
1866 		xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1867 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1868 
1869 		clear_exec_queue_pending_disable(q);
1870 		if (q->guc->suspend_pending) {
1871 			suspend_fence_signal(q);
1872 		} else {
1873 			if (exec_queue_banned(q) || check_timeout) {
1874 				smp_wmb();
1875 				wake_up_all(&guc->ct.wq);
1876 			}
1877 			if (!check_timeout)
1878 				deregister_exec_queue(guc, q);
1879 		}
1880 	}
1881 }
1882 
1883 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1884 {
1885 	struct xe_device *xe = guc_to_xe(guc);
1886 	struct xe_exec_queue *q;
1887 	u32 guc_id = msg[0];
1888 	u32 runnable_state = msg[1];
1889 
1890 	if (unlikely(len < 2)) {
1891 		drm_err(&xe->drm, "Invalid length %u", len);
1892 		return -EPROTO;
1893 	}
1894 
1895 	q = g2h_exec_queue_lookup(guc, guc_id);
1896 	if (unlikely(!q))
1897 		return -EPROTO;
1898 
1899 	if (unlikely(!exec_queue_pending_enable(q) &&
1900 		     !exec_queue_pending_disable(q))) {
1901 		xe_gt_err(guc_to_gt(guc),
1902 			  "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1903 			  atomic_read(&q->guc->state), q->guc->id,
1904 			  runnable_state);
1905 		return -EPROTO;
1906 	}
1907 
1908 	handle_sched_done(guc, q, runnable_state);
1909 
1910 	return 0;
1911 }
1912 
1913 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1914 {
1915 	trace_xe_exec_queue_deregister_done(q);
1916 
1917 	clear_exec_queue_registered(q);
1918 
1919 	if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1920 		xe_exec_queue_put(q);
1921 	else
1922 		__guc_exec_queue_fini(guc, q);
1923 }
1924 
1925 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1926 {
1927 	struct xe_device *xe = guc_to_xe(guc);
1928 	struct xe_exec_queue *q;
1929 	u32 guc_id = msg[0];
1930 
1931 	if (unlikely(len < 1)) {
1932 		drm_err(&xe->drm, "Invalid length %u", len);
1933 		return -EPROTO;
1934 	}
1935 
1936 	q = g2h_exec_queue_lookup(guc, guc_id);
1937 	if (unlikely(!q))
1938 		return -EPROTO;
1939 
1940 	if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1941 	    exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1942 		xe_gt_err(guc_to_gt(guc),
1943 			  "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
1944 			  atomic_read(&q->guc->state), q->guc->id);
1945 		return -EPROTO;
1946 	}
1947 
1948 	handle_deregister_done(guc, q);
1949 
1950 	return 0;
1951 }
1952 
1953 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1954 {
1955 	struct xe_gt *gt = guc_to_gt(guc);
1956 	struct xe_device *xe = guc_to_xe(guc);
1957 	struct xe_exec_queue *q;
1958 	u32 guc_id = msg[0];
1959 
1960 	if (unlikely(len < 1)) {
1961 		drm_err(&xe->drm, "Invalid length %u", len);
1962 		return -EPROTO;
1963 	}
1964 
1965 	q = g2h_exec_queue_lookup(guc, guc_id);
1966 	if (unlikely(!q))
1967 		return -EPROTO;
1968 
1969 	xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
1970 		   xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
1971 
1972 	trace_xe_exec_queue_reset(q);
1973 
1974 	/*
1975 	 * A banned engine is a NOP at this point (came from
1976 	 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
1977 	 * jobs by setting timeout of the job to the minimum value kicking
1978 	 * guc_exec_queue_timedout_job.
1979 	 */
1980 	set_exec_queue_reset(q);
1981 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
1982 		xe_guc_exec_queue_trigger_cleanup(q);
1983 
1984 	return 0;
1985 }
1986 
1987 /*
1988  * xe_guc_error_capture_handler - Handler of GuC captured message
1989  * @guc: The GuC object
1990  * @msg: Point to the message
1991  * @len: The message length
1992  *
1993  * When GuC captured data is ready, GuC will send message
1994  * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
1995  * called 1st to check status before process the data comes with the message.
1996  *
1997  * Returns: error code. 0 if success
1998  */
1999 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2000 {
2001 	u32 status;
2002 
2003 	if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN)) {
2004 		xe_gt_dbg(guc_to_gt(guc), "Invalid length %u", len);
2005 		return -EPROTO;
2006 	}
2007 
2008 	status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2009 	if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2010 		xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2011 
2012 	xe_guc_capture_process(guc);
2013 
2014 	return 0;
2015 }
2016 
2017 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2018 					       u32 len)
2019 {
2020 	struct xe_gt *gt = guc_to_gt(guc);
2021 	struct xe_device *xe = guc_to_xe(guc);
2022 	struct xe_exec_queue *q;
2023 	u32 guc_id = msg[0];
2024 
2025 	if (unlikely(len < 1)) {
2026 		drm_err(&xe->drm, "Invalid length %u", len);
2027 		return -EPROTO;
2028 	}
2029 
2030 	q = g2h_exec_queue_lookup(guc, guc_id);
2031 	if (unlikely(!q))
2032 		return -EPROTO;
2033 
2034 	xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2035 		  xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2036 
2037 	trace_xe_exec_queue_memory_cat_error(q);
2038 
2039 	/* Treat the same as engine reset */
2040 	set_exec_queue_reset(q);
2041 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2042 		xe_guc_exec_queue_trigger_cleanup(q);
2043 
2044 	return 0;
2045 }
2046 
2047 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2048 {
2049 	struct xe_device *xe = guc_to_xe(guc);
2050 	u8 guc_class, instance;
2051 	u32 reason;
2052 
2053 	if (unlikely(len != 3)) {
2054 		drm_err(&xe->drm, "Invalid length %u", len);
2055 		return -EPROTO;
2056 	}
2057 
2058 	guc_class = msg[0];
2059 	instance = msg[1];
2060 	reason = msg[2];
2061 
2062 	/* Unexpected failure of a hardware feature, log an actual error */
2063 	drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
2064 		guc_class, instance, reason);
2065 
2066 	xe_gt_reset_async(guc_to_gt(guc));
2067 
2068 	return 0;
2069 }
2070 
2071 static void
2072 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2073 				   struct xe_guc_submit_exec_queue_snapshot *snapshot)
2074 {
2075 	struct xe_guc *guc = exec_queue_to_guc(q);
2076 	struct xe_device *xe = guc_to_xe(guc);
2077 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2078 	int i;
2079 
2080 	snapshot->guc.wqi_head = q->guc->wqi_head;
2081 	snapshot->guc.wqi_tail = q->guc->wqi_tail;
2082 	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2083 	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2084 	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2085 							  wq_desc.wq_status);
2086 
2087 	if (snapshot->parallel.wq_desc.head !=
2088 	    snapshot->parallel.wq_desc.tail) {
2089 		for (i = snapshot->parallel.wq_desc.head;
2090 		     i != snapshot->parallel.wq_desc.tail;
2091 		     i = (i + sizeof(u32)) % WQ_SIZE)
2092 			snapshot->parallel.wq[i / sizeof(u32)] =
2093 				parallel_read(xe, map, wq[i / sizeof(u32)]);
2094 	}
2095 }
2096 
2097 static void
2098 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2099 				 struct drm_printer *p)
2100 {
2101 	int i;
2102 
2103 	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2104 		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2105 	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2106 		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2107 	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2108 
2109 	if (snapshot->parallel.wq_desc.head !=
2110 	    snapshot->parallel.wq_desc.tail) {
2111 		for (i = snapshot->parallel.wq_desc.head;
2112 		     i != snapshot->parallel.wq_desc.tail;
2113 		     i = (i + sizeof(u32)) % WQ_SIZE)
2114 			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2115 				   snapshot->parallel.wq[i / sizeof(u32)]);
2116 	}
2117 }
2118 
2119 /**
2120  * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2121  * @q: faulty exec queue
2122  *
2123  * This can be printed out in a later stage like during dev_coredump
2124  * analysis.
2125  *
2126  * Returns: a GuC Submit Engine snapshot object that must be freed by the
2127  * caller, using `xe_guc_exec_queue_snapshot_free`.
2128  */
2129 struct xe_guc_submit_exec_queue_snapshot *
2130 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2131 {
2132 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2133 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2134 	int i;
2135 
2136 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2137 
2138 	if (!snapshot)
2139 		return NULL;
2140 
2141 	snapshot->guc.id = q->guc->id;
2142 	memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2143 	snapshot->class = q->class;
2144 	snapshot->logical_mask = q->logical_mask;
2145 	snapshot->width = q->width;
2146 	snapshot->refcount = kref_read(&q->refcount);
2147 	snapshot->sched_timeout = sched->base.timeout;
2148 	snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2149 	snapshot->sched_props.preempt_timeout_us =
2150 		q->sched_props.preempt_timeout_us;
2151 
2152 	snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2153 				      GFP_ATOMIC);
2154 
2155 	if (snapshot->lrc) {
2156 		for (i = 0; i < q->width; ++i) {
2157 			struct xe_lrc *lrc = q->lrc[i];
2158 
2159 			snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2160 		}
2161 	}
2162 
2163 	snapshot->schedule_state = atomic_read(&q->guc->state);
2164 	snapshot->exec_queue_flags = q->flags;
2165 
2166 	snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2167 	if (snapshot->parallel_execution)
2168 		guc_exec_queue_wq_snapshot_capture(q, snapshot);
2169 
2170 	spin_lock(&sched->base.job_list_lock);
2171 	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2172 	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2173 					       sizeof(struct pending_list_snapshot),
2174 					       GFP_ATOMIC);
2175 
2176 	if (snapshot->pending_list) {
2177 		struct xe_sched_job *job_iter;
2178 
2179 		i = 0;
2180 		list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2181 			snapshot->pending_list[i].seqno =
2182 				xe_sched_job_seqno(job_iter);
2183 			snapshot->pending_list[i].fence =
2184 				dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2185 			snapshot->pending_list[i].finished =
2186 				dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2187 				? 1 : 0;
2188 			i++;
2189 		}
2190 	}
2191 
2192 	spin_unlock(&sched->base.job_list_lock);
2193 
2194 	return snapshot;
2195 }
2196 
2197 /**
2198  * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2199  * @snapshot: Previously captured snapshot of job.
2200  *
2201  * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2202  */
2203 void
2204 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2205 {
2206 	int i;
2207 
2208 	if (!snapshot || !snapshot->lrc)
2209 		return;
2210 
2211 	for (i = 0; i < snapshot->width; ++i)
2212 		xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2213 }
2214 
2215 /**
2216  * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2217  * @snapshot: GuC Submit Engine snapshot object.
2218  * @p: drm_printer where it will be printed out.
2219  *
2220  * This function prints out a given GuC Submit Engine snapshot object.
2221  */
2222 void
2223 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2224 				 struct drm_printer *p)
2225 {
2226 	int i;
2227 
2228 	if (!snapshot)
2229 		return;
2230 
2231 	drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2232 	drm_printf(p, "\tName: %s\n", snapshot->name);
2233 	drm_printf(p, "\tClass: %d\n", snapshot->class);
2234 	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2235 	drm_printf(p, "\tWidth: %d\n", snapshot->width);
2236 	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2237 	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2238 	drm_printf(p, "\tTimeslice: %u (us)\n",
2239 		   snapshot->sched_props.timeslice_us);
2240 	drm_printf(p, "\tPreempt timeout: %u (us)\n",
2241 		   snapshot->sched_props.preempt_timeout_us);
2242 
2243 	for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2244 		xe_lrc_snapshot_print(snapshot->lrc[i], p);
2245 
2246 	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2247 	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2248 
2249 	if (snapshot->parallel_execution)
2250 		guc_exec_queue_wq_snapshot_print(snapshot, p);
2251 
2252 	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2253 	     i++)
2254 		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2255 			   snapshot->pending_list[i].seqno,
2256 			   snapshot->pending_list[i].fence,
2257 			   snapshot->pending_list[i].finished);
2258 }
2259 
2260 /**
2261  * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2262  * snapshot.
2263  * @snapshot: GuC Submit Engine snapshot object.
2264  *
2265  * This function free all the memory that needed to be allocated at capture
2266  * time.
2267  */
2268 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2269 {
2270 	int i;
2271 
2272 	if (!snapshot)
2273 		return;
2274 
2275 	if (snapshot->lrc) {
2276 		for (i = 0; i < snapshot->width; i++)
2277 			xe_lrc_snapshot_free(snapshot->lrc[i]);
2278 		kfree(snapshot->lrc);
2279 	}
2280 	kfree(snapshot->pending_list);
2281 	kfree(snapshot);
2282 }
2283 
2284 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2285 {
2286 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2287 
2288 	snapshot = xe_guc_exec_queue_snapshot_capture(q);
2289 	xe_guc_exec_queue_snapshot_print(snapshot, p);
2290 	xe_guc_exec_queue_snapshot_free(snapshot);
2291 }
2292 
2293 /**
2294  * xe_guc_submit_print - GuC Submit Print.
2295  * @guc: GuC.
2296  * @p: drm_printer where it will be printed out.
2297  *
2298  * This function capture and prints snapshots of **all** GuC Engines.
2299  */
2300 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2301 {
2302 	struct xe_exec_queue *q;
2303 	unsigned long index;
2304 
2305 	if (!xe_device_uc_enabled(guc_to_xe(guc)))
2306 		return;
2307 
2308 	mutex_lock(&guc->submission_state.lock);
2309 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2310 		guc_exec_queue_print(q, p);
2311 	mutex_unlock(&guc->submission_state.lock);
2312 }
2313