1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 #include <linux/math64.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_actions_slpc_abi.h" 19 #include "abi/guc_klvs_abi.h" 20 #include "regs/xe_lrc_layout.h" 21 #include "xe_assert.h" 22 #include "xe_devcoredump.h" 23 #include "xe_device.h" 24 #include "xe_exec_queue.h" 25 #include "xe_force_wake.h" 26 #include "xe_gpu_scheduler.h" 27 #include "xe_gt.h" 28 #include "xe_gt_clock.h" 29 #include "xe_gt_printk.h" 30 #include "xe_guc.h" 31 #include "xe_guc_capture.h" 32 #include "xe_guc_ct.h" 33 #include "xe_guc_exec_queue_types.h" 34 #include "xe_guc_id_mgr.h" 35 #include "xe_guc_submit_types.h" 36 #include "xe_hw_engine.h" 37 #include "xe_hw_fence.h" 38 #include "xe_lrc.h" 39 #include "xe_macros.h" 40 #include "xe_map.h" 41 #include "xe_mocs.h" 42 #include "xe_pm.h" 43 #include "xe_ring_ops_types.h" 44 #include "xe_sched_job.h" 45 #include "xe_trace.h" 46 #include "xe_vm.h" 47 48 static struct xe_guc * 49 exec_queue_to_guc(struct xe_exec_queue *q) 50 { 51 return &q->gt->uc.guc; 52 } 53 54 /* 55 * Helpers for engine state, using an atomic as some of the bits can transition 56 * as the same time (e.g. a suspend can be happning at the same time as schedule 57 * engine done being processed). 58 */ 59 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 60 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 61 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 62 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 63 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 64 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 65 #define EXEC_QUEUE_STATE_RESET (1 << 6) 66 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 67 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 68 #define EXEC_QUEUE_STATE_BANNED (1 << 9) 69 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10) 70 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11) 71 72 static bool exec_queue_registered(struct xe_exec_queue *q) 73 { 74 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 75 } 76 77 static void set_exec_queue_registered(struct xe_exec_queue *q) 78 { 79 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 80 } 81 82 static void clear_exec_queue_registered(struct xe_exec_queue *q) 83 { 84 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 85 } 86 87 static bool exec_queue_enabled(struct xe_exec_queue *q) 88 { 89 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 90 } 91 92 static void set_exec_queue_enabled(struct xe_exec_queue *q) 93 { 94 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 95 } 96 97 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 98 { 99 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 100 } 101 102 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 103 { 104 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 105 } 106 107 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 108 { 109 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 110 } 111 112 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 113 { 114 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 115 } 116 117 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 118 { 119 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 120 } 121 122 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 123 { 124 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 125 } 126 127 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 128 { 129 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 130 } 131 132 static bool exec_queue_destroyed(struct xe_exec_queue *q) 133 { 134 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 135 } 136 137 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 138 { 139 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 140 } 141 142 static bool exec_queue_banned(struct xe_exec_queue *q) 143 { 144 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED; 145 } 146 147 static void set_exec_queue_banned(struct xe_exec_queue *q) 148 { 149 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state); 150 } 151 152 static bool exec_queue_suspended(struct xe_exec_queue *q) 153 { 154 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 155 } 156 157 static void set_exec_queue_suspended(struct xe_exec_queue *q) 158 { 159 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 160 } 161 162 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 163 { 164 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 165 } 166 167 static bool exec_queue_reset(struct xe_exec_queue *q) 168 { 169 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 170 } 171 172 static void set_exec_queue_reset(struct xe_exec_queue *q) 173 { 174 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 175 } 176 177 static bool exec_queue_killed(struct xe_exec_queue *q) 178 { 179 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 180 } 181 182 static void set_exec_queue_killed(struct xe_exec_queue *q) 183 { 184 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 185 } 186 187 static bool exec_queue_wedged(struct xe_exec_queue *q) 188 { 189 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 190 } 191 192 static void set_exec_queue_wedged(struct xe_exec_queue *q) 193 { 194 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 195 } 196 197 static bool exec_queue_check_timeout(struct xe_exec_queue *q) 198 { 199 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT; 200 } 201 202 static void set_exec_queue_check_timeout(struct xe_exec_queue *q) 203 { 204 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 205 } 206 207 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q) 208 { 209 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 210 } 211 212 static bool exec_queue_extra_ref(struct xe_exec_queue *q) 213 { 214 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF; 215 } 216 217 static void set_exec_queue_extra_ref(struct xe_exec_queue *q) 218 { 219 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state); 220 } 221 222 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 223 { 224 return (atomic_read(&q->guc->state) & 225 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED | 226 EXEC_QUEUE_STATE_BANNED)); 227 } 228 229 static void guc_submit_fini(struct drm_device *drm, void *arg) 230 { 231 struct xe_guc *guc = arg; 232 struct xe_device *xe = guc_to_xe(guc); 233 struct xe_gt *gt = guc_to_gt(guc); 234 int ret; 235 236 ret = wait_event_timeout(guc->submission_state.fini_wq, 237 xa_empty(&guc->submission_state.exec_queue_lookup), 238 HZ * 5); 239 240 drain_workqueue(xe->destroy_wq); 241 242 xe_gt_assert(gt, ret); 243 244 xa_destroy(&guc->submission_state.exec_queue_lookup); 245 } 246 247 static void guc_submit_wedged_fini(void *arg) 248 { 249 struct xe_guc *guc = arg; 250 struct xe_exec_queue *q; 251 unsigned long index; 252 253 mutex_lock(&guc->submission_state.lock); 254 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 255 if (exec_queue_wedged(q)) { 256 mutex_unlock(&guc->submission_state.lock); 257 xe_exec_queue_put(q); 258 mutex_lock(&guc->submission_state.lock); 259 } 260 } 261 mutex_unlock(&guc->submission_state.lock); 262 } 263 264 static const struct xe_exec_queue_ops guc_exec_queue_ops; 265 266 static void primelockdep(struct xe_guc *guc) 267 { 268 if (!IS_ENABLED(CONFIG_LOCKDEP)) 269 return; 270 271 fs_reclaim_acquire(GFP_KERNEL); 272 273 mutex_lock(&guc->submission_state.lock); 274 mutex_unlock(&guc->submission_state.lock); 275 276 fs_reclaim_release(GFP_KERNEL); 277 } 278 279 /** 280 * xe_guc_submit_init() - Initialize GuC submission. 281 * @guc: the &xe_guc to initialize 282 * @num_ids: number of GuC context IDs to use 283 * 284 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 285 * GuC context IDs supported by the GuC firmware should be used for submission. 286 * 287 * Only VF drivers will have to provide explicit number of GuC context IDs 288 * that they can use for submission. 289 * 290 * Return: 0 on success or a negative error code on failure. 291 */ 292 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 293 { 294 struct xe_device *xe = guc_to_xe(guc); 295 struct xe_gt *gt = guc_to_gt(guc); 296 int err; 297 298 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 299 if (err) 300 return err; 301 302 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 303 if (err) 304 return err; 305 306 gt->exec_queue_ops = &guc_exec_queue_ops; 307 308 xa_init(&guc->submission_state.exec_queue_lookup); 309 310 init_waitqueue_head(&guc->submission_state.fini_wq); 311 312 primelockdep(guc); 313 314 guc->submission_state.initialized = true; 315 316 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 317 } 318 319 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 320 { 321 int i; 322 323 lockdep_assert_held(&guc->submission_state.lock); 324 325 for (i = 0; i < xa_count; ++i) 326 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 327 328 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 329 q->guc->id, q->width); 330 331 if (xa_empty(&guc->submission_state.exec_queue_lookup)) 332 wake_up(&guc->submission_state.fini_wq); 333 } 334 335 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 336 { 337 int ret; 338 int i; 339 340 /* 341 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 342 * worse case user gets -ENOMEM on engine create and has to try again. 343 * 344 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 345 * failure. 346 */ 347 lockdep_assert_held(&guc->submission_state.lock); 348 349 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 350 q->width); 351 if (ret < 0) 352 return ret; 353 354 q->guc->id = ret; 355 356 for (i = 0; i < q->width; ++i) { 357 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup, 358 q->guc->id + i, q, GFP_NOWAIT)); 359 if (ret) 360 goto err_release; 361 } 362 363 return 0; 364 365 err_release: 366 __release_guc_id(guc, q, i); 367 368 return ret; 369 } 370 371 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 372 { 373 mutex_lock(&guc->submission_state.lock); 374 __release_guc_id(guc, q, q->width); 375 mutex_unlock(&guc->submission_state.lock); 376 } 377 378 struct exec_queue_policy { 379 u32 count; 380 struct guc_update_exec_queue_policy h2g; 381 }; 382 383 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 384 { 385 size_t bytes = sizeof(policy->h2g.header) + 386 (sizeof(policy->h2g.klv[0]) * policy->count); 387 388 return bytes / sizeof(u32); 389 } 390 391 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 392 u16 guc_id) 393 { 394 policy->h2g.header.action = 395 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 396 policy->h2g.header.guc_id = guc_id; 397 policy->count = 0; 398 } 399 400 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 401 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 402 u32 data) \ 403 { \ 404 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 405 \ 406 policy->h2g.klv[policy->count].kl = \ 407 FIELD_PREP(GUC_KLV_0_KEY, \ 408 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 409 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 410 policy->h2g.klv[policy->count].value = data; \ 411 policy->count++; \ 412 } 413 414 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 415 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 416 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 417 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY) 418 #undef MAKE_EXEC_QUEUE_POLICY_ADD 419 420 static const int xe_exec_queue_prio_to_guc[] = { 421 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 422 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 423 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 424 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 425 }; 426 427 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 428 { 429 struct exec_queue_policy policy; 430 enum xe_exec_queue_priority prio = q->sched_props.priority; 431 u32 timeslice_us = q->sched_props.timeslice_us; 432 u32 slpc_exec_queue_freq_req = 0; 433 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 434 435 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 436 437 if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY) 438 slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE; 439 440 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 441 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 442 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 443 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 444 __guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy, 445 slpc_exec_queue_freq_req); 446 447 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 448 __guc_exec_queue_policy_action_size(&policy), 0, 0); 449 } 450 451 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 452 { 453 struct exec_queue_policy policy; 454 455 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 456 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 457 458 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 459 __guc_exec_queue_policy_action_size(&policy), 0, 0); 460 } 461 462 #define parallel_read(xe_, map_, field_) \ 463 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 464 field_) 465 #define parallel_write(xe_, map_, field_, val_) \ 466 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 467 field_, val_) 468 469 static void __register_mlrc_exec_queue(struct xe_guc *guc, 470 struct xe_exec_queue *q, 471 struct guc_ctxt_registration_info *info) 472 { 473 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 474 u32 action[MAX_MLRC_REG_SIZE]; 475 int len = 0; 476 int i; 477 478 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q)); 479 480 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 481 action[len++] = info->flags; 482 action[len++] = info->context_idx; 483 action[len++] = info->engine_class; 484 action[len++] = info->engine_submit_mask; 485 action[len++] = info->wq_desc_lo; 486 action[len++] = info->wq_desc_hi; 487 action[len++] = info->wq_base_lo; 488 action[len++] = info->wq_base_hi; 489 action[len++] = info->wq_size; 490 action[len++] = q->width; 491 action[len++] = info->hwlrca_lo; 492 action[len++] = info->hwlrca_hi; 493 494 for (i = 1; i < q->width; ++i) { 495 struct xe_lrc *lrc = q->lrc[i]; 496 497 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 498 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 499 } 500 501 /* explicitly checks some fields that we might fixup later */ 502 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo == 503 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER]); 504 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo == 505 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER]); 506 xe_gt_assert(guc_to_gt(guc), q->width == 507 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS]); 508 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo == 509 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR]); 510 xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE); 511 #undef MAX_MLRC_REG_SIZE 512 513 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 514 } 515 516 static void __register_exec_queue(struct xe_guc *guc, 517 struct guc_ctxt_registration_info *info) 518 { 519 u32 action[] = { 520 XE_GUC_ACTION_REGISTER_CONTEXT, 521 info->flags, 522 info->context_idx, 523 info->engine_class, 524 info->engine_submit_mask, 525 info->wq_desc_lo, 526 info->wq_desc_hi, 527 info->wq_base_lo, 528 info->wq_base_hi, 529 info->wq_size, 530 info->hwlrca_lo, 531 info->hwlrca_hi, 532 }; 533 534 /* explicitly checks some fields that we might fixup later */ 535 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo == 536 action[XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER]); 537 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo == 538 action[XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER]); 539 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo == 540 action[XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR]); 541 542 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 543 } 544 545 static void register_exec_queue(struct xe_exec_queue *q) 546 { 547 struct xe_guc *guc = exec_queue_to_guc(q); 548 struct xe_device *xe = guc_to_xe(guc); 549 struct xe_lrc *lrc = q->lrc[0]; 550 struct guc_ctxt_registration_info info; 551 552 xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q)); 553 554 memset(&info, 0, sizeof(info)); 555 info.context_idx = q->guc->id; 556 info.engine_class = xe_engine_class_to_guc_class(q->class); 557 info.engine_submit_mask = q->logical_mask; 558 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 559 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 560 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 561 562 if (xe_exec_queue_is_parallel(q)) { 563 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 564 struct iosys_map map = xe_lrc_parallel_map(lrc); 565 566 info.wq_desc_lo = lower_32_bits(ggtt_addr + 567 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 568 info.wq_desc_hi = upper_32_bits(ggtt_addr + 569 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 570 info.wq_base_lo = lower_32_bits(ggtt_addr + 571 offsetof(struct guc_submit_parallel_scratch, wq[0])); 572 info.wq_base_hi = upper_32_bits(ggtt_addr + 573 offsetof(struct guc_submit_parallel_scratch, wq[0])); 574 info.wq_size = WQ_SIZE; 575 576 q->guc->wqi_head = 0; 577 q->guc->wqi_tail = 0; 578 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 579 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 580 } 581 582 /* 583 * We must keep a reference for LR engines if engine is registered with 584 * the GuC as jobs signal immediately and can't destroy an engine if the 585 * GuC has a reference to it. 586 */ 587 if (xe_exec_queue_is_lr(q)) 588 xe_exec_queue_get(q); 589 590 set_exec_queue_registered(q); 591 trace_xe_exec_queue_register(q); 592 if (xe_exec_queue_is_parallel(q)) 593 __register_mlrc_exec_queue(guc, q, &info); 594 else 595 __register_exec_queue(guc, &info); 596 init_policies(guc, q); 597 } 598 599 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 600 { 601 return (WQ_SIZE - q->guc->wqi_tail); 602 } 603 604 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 605 { 606 struct xe_guc *guc = exec_queue_to_guc(q); 607 struct xe_device *xe = guc_to_xe(guc); 608 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 609 unsigned int sleep_period_ms = 1; 610 611 #define AVAILABLE_SPACE \ 612 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 613 if (wqi_size > AVAILABLE_SPACE) { 614 try_again: 615 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 616 if (wqi_size > AVAILABLE_SPACE) { 617 if (sleep_period_ms == 1024) { 618 xe_gt_reset_async(q->gt); 619 return -ENODEV; 620 } 621 622 msleep(sleep_period_ms); 623 sleep_period_ms <<= 1; 624 goto try_again; 625 } 626 } 627 #undef AVAILABLE_SPACE 628 629 return 0; 630 } 631 632 static int wq_noop_append(struct xe_exec_queue *q) 633 { 634 struct xe_guc *guc = exec_queue_to_guc(q); 635 struct xe_device *xe = guc_to_xe(guc); 636 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 637 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 638 639 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 640 return -ENODEV; 641 642 xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw)); 643 644 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 645 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 646 FIELD_PREP(WQ_LEN_MASK, len_dw)); 647 q->guc->wqi_tail = 0; 648 649 return 0; 650 } 651 652 static void wq_item_append(struct xe_exec_queue *q) 653 { 654 struct xe_guc *guc = exec_queue_to_guc(q); 655 struct xe_device *xe = guc_to_xe(guc); 656 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 657 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 658 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 659 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 660 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 661 int i = 0, j; 662 663 if (wqi_size > wq_space_until_wrap(q)) { 664 if (wq_noop_append(q)) 665 return; 666 } 667 if (wq_wait_for_space(q, wqi_size)) 668 return; 669 670 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 671 FIELD_PREP(WQ_LEN_MASK, len_dw); 672 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 673 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 674 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 675 wqi[i++] = 0; 676 for (j = 1; j < q->width; ++j) { 677 struct xe_lrc *lrc = q->lrc[j]; 678 679 wqi[i++] = lrc->ring.tail / sizeof(u64); 680 } 681 682 xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32)); 683 684 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 685 wq[q->guc->wqi_tail / sizeof(u32)])); 686 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 687 q->guc->wqi_tail += wqi_size; 688 xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE); 689 690 xe_device_wmb(xe); 691 692 map = xe_lrc_parallel_map(q->lrc[0]); 693 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 694 } 695 696 #define RESUME_PENDING ~0x0ull 697 static void submit_exec_queue(struct xe_exec_queue *q) 698 { 699 struct xe_guc *guc = exec_queue_to_guc(q); 700 struct xe_lrc *lrc = q->lrc[0]; 701 u32 action[3]; 702 u32 g2h_len = 0; 703 u32 num_g2h = 0; 704 int len = 0; 705 bool extra_submit = false; 706 707 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 708 709 if (xe_exec_queue_is_parallel(q)) 710 wq_item_append(q); 711 else 712 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 713 714 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 715 return; 716 717 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 718 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 719 action[len++] = q->guc->id; 720 action[len++] = GUC_CONTEXT_ENABLE; 721 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 722 num_g2h = 1; 723 if (xe_exec_queue_is_parallel(q)) 724 extra_submit = true; 725 726 q->guc->resume_time = RESUME_PENDING; 727 set_exec_queue_pending_enable(q); 728 set_exec_queue_enabled(q); 729 trace_xe_exec_queue_scheduling_enable(q); 730 } else { 731 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 732 action[len++] = q->guc->id; 733 trace_xe_exec_queue_submit(q); 734 } 735 736 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 737 738 if (extra_submit) { 739 len = 0; 740 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 741 action[len++] = q->guc->id; 742 trace_xe_exec_queue_submit(q); 743 744 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 745 } 746 } 747 748 static struct dma_fence * 749 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 750 { 751 struct xe_sched_job *job = to_xe_sched_job(drm_job); 752 struct xe_exec_queue *q = job->q; 753 struct xe_guc *guc = exec_queue_to_guc(q); 754 struct dma_fence *fence = NULL; 755 bool lr = xe_exec_queue_is_lr(q); 756 757 xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 758 exec_queue_banned(q) || exec_queue_suspended(q)); 759 760 trace_xe_sched_job_run(job); 761 762 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 763 if (!exec_queue_registered(q)) 764 register_exec_queue(q); 765 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 766 q->ring_ops->emit_job(job); 767 submit_exec_queue(q); 768 } 769 770 if (lr) { 771 xe_sched_job_set_error(job, -EOPNOTSUPP); 772 dma_fence_put(job->fence); /* Drop ref from xe_sched_job_arm */ 773 } else { 774 fence = job->fence; 775 } 776 777 return fence; 778 } 779 780 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 781 { 782 struct xe_sched_job *job = to_xe_sched_job(drm_job); 783 784 trace_xe_sched_job_free(job); 785 xe_sched_job_put(job); 786 } 787 788 int xe_guc_read_stopped(struct xe_guc *guc) 789 { 790 return atomic_read(&guc->submission_state.stopped); 791 } 792 793 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 794 u32 action[] = { \ 795 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 796 q->guc->id, \ 797 GUC_CONTEXT_##enable_disable, \ 798 } 799 800 static void disable_scheduling_deregister(struct xe_guc *guc, 801 struct xe_exec_queue *q) 802 { 803 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 804 int ret; 805 806 set_min_preemption_timeout(guc, q); 807 smp_rmb(); 808 ret = wait_event_timeout(guc->ct.wq, 809 (!exec_queue_pending_enable(q) && 810 !exec_queue_pending_disable(q)) || 811 xe_guc_read_stopped(guc), 812 HZ * 5); 813 if (!ret) { 814 struct xe_gpu_scheduler *sched = &q->guc->sched; 815 816 xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n"); 817 xe_sched_submission_start(sched); 818 xe_gt_reset_async(q->gt); 819 xe_sched_tdr_queue_imm(sched); 820 return; 821 } 822 823 clear_exec_queue_enabled(q); 824 set_exec_queue_pending_disable(q); 825 set_exec_queue_destroyed(q); 826 trace_xe_exec_queue_scheduling_disable(q); 827 828 /* 829 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 830 * handler and we are not allowed to reserved G2H space in handlers. 831 */ 832 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 833 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 834 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 835 } 836 837 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 838 { 839 struct xe_guc *guc = exec_queue_to_guc(q); 840 struct xe_device *xe = guc_to_xe(guc); 841 842 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 843 wake_up_all(&xe->ufence_wq); 844 845 if (xe_exec_queue_is_lr(q)) 846 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 847 else 848 xe_sched_tdr_queue_imm(&q->guc->sched); 849 } 850 851 /** 852 * xe_guc_submit_wedge() - Wedge GuC submission 853 * @guc: the GuC object 854 * 855 * Save exec queue's registered with GuC state by taking a ref to each queue. 856 * Register a DRMM handler to drop refs upon driver unload. 857 */ 858 void xe_guc_submit_wedge(struct xe_guc *guc) 859 { 860 struct xe_gt *gt = guc_to_gt(guc); 861 struct xe_exec_queue *q; 862 unsigned long index; 863 int err; 864 865 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); 866 867 /* 868 * If device is being wedged even before submission_state is 869 * initialized, there's nothing to do here. 870 */ 871 if (!guc->submission_state.initialized) 872 return; 873 874 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev, 875 guc_submit_wedged_fini, guc); 876 if (err) { 877 xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; " 878 "Although device is wedged.\n"); 879 return; 880 } 881 882 mutex_lock(&guc->submission_state.lock); 883 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 884 if (xe_exec_queue_get_unless_zero(q)) 885 set_exec_queue_wedged(q); 886 mutex_unlock(&guc->submission_state.lock); 887 } 888 889 static bool guc_submit_hint_wedged(struct xe_guc *guc) 890 { 891 struct xe_device *xe = guc_to_xe(guc); 892 893 if (xe->wedged.mode != 2) 894 return false; 895 896 if (xe_device_wedged(xe)) 897 return true; 898 899 xe_device_declare_wedged(xe); 900 901 return true; 902 } 903 904 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 905 { 906 struct xe_guc_exec_queue *ge = 907 container_of(w, struct xe_guc_exec_queue, lr_tdr); 908 struct xe_exec_queue *q = ge->q; 909 struct xe_guc *guc = exec_queue_to_guc(q); 910 struct xe_gpu_scheduler *sched = &ge->sched; 911 bool wedged = false; 912 913 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q)); 914 trace_xe_exec_queue_lr_cleanup(q); 915 916 if (!exec_queue_killed(q)) 917 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 918 919 /* Kill the run_job / process_msg entry points */ 920 xe_sched_submission_stop(sched); 921 922 /* 923 * Engine state now mostly stable, disable scheduling / deregister if 924 * needed. This cleanup routine might be called multiple times, where 925 * the actual async engine deregister drops the final engine ref. 926 * Calling disable_scheduling_deregister will mark the engine as 927 * destroyed and fire off the CT requests to disable scheduling / 928 * deregister, which we only want to do once. We also don't want to mark 929 * the engine as pending_disable again as this may race with the 930 * xe_guc_deregister_done_handler() which treats it as an unexpected 931 * state. 932 */ 933 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 934 struct xe_guc *guc = exec_queue_to_guc(q); 935 int ret; 936 937 set_exec_queue_banned(q); 938 disable_scheduling_deregister(guc, q); 939 940 /* 941 * Must wait for scheduling to be disabled before signalling 942 * any fences, if GT broken the GT reset code should signal us. 943 */ 944 ret = wait_event_timeout(guc->ct.wq, 945 !exec_queue_pending_disable(q) || 946 xe_guc_read_stopped(guc), HZ * 5); 947 if (!ret) { 948 xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n", 949 q->guc->id); 950 xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n", 951 q->guc->id); 952 xe_sched_submission_start(sched); 953 xe_gt_reset_async(q->gt); 954 return; 955 } 956 } 957 958 if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0])) 959 xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id); 960 961 xe_sched_submission_start(sched); 962 } 963 964 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100) 965 966 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job) 967 { 968 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q)); 969 u32 ctx_timestamp, ctx_job_timestamp; 970 u32 timeout_ms = q->sched_props.job_timeout_ms; 971 u32 diff; 972 u64 running_time_ms; 973 974 if (!xe_sched_job_started(job)) { 975 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started", 976 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 977 q->guc->id); 978 979 return xe_sched_invalidate_job(job, 2); 980 } 981 982 ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(q->lrc[0])); 983 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]); 984 985 /* 986 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch 987 * possible overflows with a high timeout. 988 */ 989 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC); 990 991 diff = ctx_timestamp - ctx_job_timestamp; 992 993 /* 994 * Ensure timeout is within 5% to account for an GuC scheduling latency 995 */ 996 running_time_ms = 997 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff)); 998 999 xe_gt_dbg(gt, 1000 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x", 1001 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1002 q->guc->id, running_time_ms, timeout_ms, diff); 1003 1004 return running_time_ms >= timeout_ms; 1005 } 1006 1007 static void enable_scheduling(struct xe_exec_queue *q) 1008 { 1009 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 1010 struct xe_guc *guc = exec_queue_to_guc(q); 1011 int ret; 1012 1013 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1014 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1015 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1016 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1017 1018 set_exec_queue_pending_enable(q); 1019 set_exec_queue_enabled(q); 1020 trace_xe_exec_queue_scheduling_enable(q); 1021 1022 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1023 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1024 1025 ret = wait_event_timeout(guc->ct.wq, 1026 !exec_queue_pending_enable(q) || 1027 xe_guc_read_stopped(guc), HZ * 5); 1028 if (!ret || xe_guc_read_stopped(guc)) { 1029 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond"); 1030 set_exec_queue_banned(q); 1031 xe_gt_reset_async(q->gt); 1032 xe_sched_tdr_queue_imm(&q->guc->sched); 1033 } 1034 } 1035 1036 static void disable_scheduling(struct xe_exec_queue *q, bool immediate) 1037 { 1038 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 1039 struct xe_guc *guc = exec_queue_to_guc(q); 1040 1041 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1042 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1043 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1044 1045 if (immediate) 1046 set_min_preemption_timeout(guc, q); 1047 clear_exec_queue_enabled(q); 1048 set_exec_queue_pending_disable(q); 1049 trace_xe_exec_queue_scheduling_disable(q); 1050 1051 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1052 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1053 } 1054 1055 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1056 { 1057 u32 action[] = { 1058 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1059 q->guc->id, 1060 }; 1061 1062 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1063 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1064 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1065 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1066 1067 set_exec_queue_destroyed(q); 1068 trace_xe_exec_queue_deregister(q); 1069 1070 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1071 G2H_LEN_DW_DEREGISTER_CONTEXT, 1); 1072 } 1073 1074 static enum drm_gpu_sched_stat 1075 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 1076 { 1077 struct xe_sched_job *job = to_xe_sched_job(drm_job); 1078 struct xe_sched_job *tmp_job; 1079 struct xe_exec_queue *q = job->q; 1080 struct xe_gpu_scheduler *sched = &q->guc->sched; 1081 struct xe_guc *guc = exec_queue_to_guc(q); 1082 const char *process_name = "no process"; 1083 struct xe_device *xe = guc_to_xe(guc); 1084 unsigned int fw_ref; 1085 int err = -ETIME; 1086 pid_t pid = -1; 1087 int i = 0; 1088 bool wedged = false, skip_timeout_check; 1089 1090 /* 1091 * TDR has fired before free job worker. Common if exec queue 1092 * immediately closed after last fence signaled. Add back to pending 1093 * list so job can be freed and kick scheduler ensuring free job is not 1094 * lost. 1095 */ 1096 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) 1097 return DRM_GPU_SCHED_STAT_NO_HANG; 1098 1099 /* Kill the run_job entry point */ 1100 xe_sched_submission_stop(sched); 1101 1102 /* Must check all state after stopping scheduler */ 1103 skip_timeout_check = exec_queue_reset(q) || 1104 exec_queue_killed_or_banned_or_wedged(q) || 1105 exec_queue_destroyed(q); 1106 1107 /* 1108 * If devcoredump not captured and GuC capture for the job is not ready 1109 * do manual capture first and decide later if we need to use it 1110 */ 1111 if (!exec_queue_killed(q) && !xe->devcoredump.captured && 1112 !xe_guc_capture_get_matching_and_lock(q)) { 1113 /* take force wake before engine register manual capture */ 1114 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 1115 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 1116 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n"); 1117 1118 xe_engine_snapshot_capture_for_queue(q); 1119 1120 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 1121 } 1122 1123 /* 1124 * XXX: Sampling timeout doesn't work in wedged mode as we have to 1125 * modify scheduling state to read timestamp. We could read the 1126 * timestamp from a register to accumulate current running time but this 1127 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are 1128 * genuine timeouts. 1129 */ 1130 if (!exec_queue_killed(q)) 1131 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 1132 1133 /* Engine state now stable, disable scheduling to check timestamp */ 1134 if (!wedged && exec_queue_registered(q)) { 1135 int ret; 1136 1137 if (exec_queue_reset(q)) 1138 err = -EIO; 1139 1140 if (!exec_queue_destroyed(q)) { 1141 /* 1142 * Wait for any pending G2H to flush out before 1143 * modifying state 1144 */ 1145 ret = wait_event_timeout(guc->ct.wq, 1146 (!exec_queue_pending_enable(q) && 1147 !exec_queue_pending_disable(q)) || 1148 xe_guc_read_stopped(guc), HZ * 5); 1149 if (!ret || xe_guc_read_stopped(guc)) 1150 goto trigger_reset; 1151 1152 /* 1153 * Flag communicates to G2H handler that schedule 1154 * disable originated from a timeout check. The G2H then 1155 * avoid triggering cleanup or deregistering the exec 1156 * queue. 1157 */ 1158 set_exec_queue_check_timeout(q); 1159 disable_scheduling(q, skip_timeout_check); 1160 } 1161 1162 /* 1163 * Must wait for scheduling to be disabled before signalling 1164 * any fences, if GT broken the GT reset code should signal us. 1165 * 1166 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 1167 * error) messages which can cause the schedule disable to get 1168 * lost. If this occurs, trigger a GT reset to recover. 1169 */ 1170 smp_rmb(); 1171 ret = wait_event_timeout(guc->ct.wq, 1172 !exec_queue_pending_disable(q) || 1173 xe_guc_read_stopped(guc), HZ * 5); 1174 if (!ret || xe_guc_read_stopped(guc)) { 1175 trigger_reset: 1176 if (!ret) 1177 xe_gt_warn(guc_to_gt(guc), 1178 "Schedule disable failed to respond, guc_id=%d", 1179 q->guc->id); 1180 xe_devcoredump(q, job, 1181 "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d", 1182 q->guc->id, ret, xe_guc_read_stopped(guc)); 1183 set_exec_queue_extra_ref(q); 1184 xe_exec_queue_get(q); /* GT reset owns this */ 1185 set_exec_queue_banned(q); 1186 xe_gt_reset_async(q->gt); 1187 xe_sched_tdr_queue_imm(sched); 1188 goto rearm; 1189 } 1190 } 1191 1192 /* 1193 * Check if job is actually timed out, if so restart job execution and TDR 1194 */ 1195 if (!wedged && !skip_timeout_check && !check_timeout(q, job) && 1196 !exec_queue_reset(q) && exec_queue_registered(q)) { 1197 clear_exec_queue_check_timeout(q); 1198 goto sched_enable; 1199 } 1200 1201 if (q->vm && q->vm->xef) { 1202 process_name = q->vm->xef->process_name; 1203 pid = q->vm->xef->pid; 1204 } 1205 1206 if (!exec_queue_killed(q)) 1207 xe_gt_notice(guc_to_gt(guc), 1208 "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]", 1209 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1210 q->guc->id, q->flags, process_name, pid); 1211 1212 trace_xe_sched_job_timedout(job); 1213 1214 if (!exec_queue_killed(q)) 1215 xe_devcoredump(q, job, 1216 "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx", 1217 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1218 q->guc->id, q->flags); 1219 1220 /* 1221 * Kernel jobs should never fail, nor should VM jobs if they do 1222 * somethings has gone wrong and the GT needs a reset 1223 */ 1224 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 1225 "Kernel-submitted job timed out\n"); 1226 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 1227 "VM job timed out on non-killed execqueue\n"); 1228 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 1229 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 1230 if (!xe_sched_invalidate_job(job, 2)) { 1231 clear_exec_queue_check_timeout(q); 1232 xe_gt_reset_async(q->gt); 1233 goto rearm; 1234 } 1235 } 1236 1237 /* Finish cleaning up exec queue via deregister */ 1238 set_exec_queue_banned(q); 1239 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1240 set_exec_queue_extra_ref(q); 1241 xe_exec_queue_get(q); 1242 __deregister_exec_queue(guc, q); 1243 } 1244 1245 /* Stop fence signaling */ 1246 xe_hw_fence_irq_stop(q->fence_irq); 1247 1248 /* 1249 * Fence state now stable, stop / start scheduler which cleans up any 1250 * fences that are complete 1251 */ 1252 xe_sched_add_pending_job(sched, job); 1253 xe_sched_submission_start(sched); 1254 1255 xe_guc_exec_queue_trigger_cleanup(q); 1256 1257 /* Mark all outstanding jobs as bad, thus completing them */ 1258 spin_lock(&sched->base.job_list_lock); 1259 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1260 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1261 spin_unlock(&sched->base.job_list_lock); 1262 1263 /* Start fence signaling */ 1264 xe_hw_fence_irq_start(q->fence_irq); 1265 1266 return DRM_GPU_SCHED_STAT_RESET; 1267 1268 sched_enable: 1269 enable_scheduling(q); 1270 rearm: 1271 /* 1272 * XXX: Ideally want to adjust timeout based on current execution time 1273 * but there is not currently an easy way to do in DRM scheduler. With 1274 * some thought, do this in a follow up. 1275 */ 1276 xe_sched_submission_start(sched); 1277 return DRM_GPU_SCHED_STAT_NO_HANG; 1278 } 1279 1280 static void __guc_exec_queue_fini_async(struct work_struct *w) 1281 { 1282 struct xe_guc_exec_queue *ge = 1283 container_of(w, struct xe_guc_exec_queue, fini_async); 1284 struct xe_exec_queue *q = ge->q; 1285 struct xe_guc *guc = exec_queue_to_guc(q); 1286 1287 xe_pm_runtime_get(guc_to_xe(guc)); 1288 trace_xe_exec_queue_destroy(q); 1289 1290 release_guc_id(guc, q); 1291 if (xe_exec_queue_is_lr(q)) 1292 cancel_work_sync(&ge->lr_tdr); 1293 /* Confirm no work left behind accessing device structures */ 1294 cancel_delayed_work_sync(&ge->sched.base.work_tdr); 1295 xe_sched_entity_fini(&ge->entity); 1296 xe_sched_fini(&ge->sched); 1297 1298 /* 1299 * RCU free due sched being exported via DRM scheduler fences 1300 * (timeline name). 1301 */ 1302 kfree_rcu(ge, rcu); 1303 xe_exec_queue_fini(q); 1304 xe_pm_runtime_put(guc_to_xe(guc)); 1305 } 1306 1307 static void guc_exec_queue_fini_async(struct xe_exec_queue *q) 1308 { 1309 struct xe_guc *guc = exec_queue_to_guc(q); 1310 struct xe_device *xe = guc_to_xe(guc); 1311 1312 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async); 1313 1314 /* We must block on kernel engines so slabs are empty on driver unload */ 1315 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1316 __guc_exec_queue_fini_async(&q->guc->fini_async); 1317 else 1318 queue_work(xe->destroy_wq, &q->guc->fini_async); 1319 } 1320 1321 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q) 1322 { 1323 /* 1324 * Might be done from within the GPU scheduler, need to do async as we 1325 * fini the scheduler when the engine is fini'd, the scheduler can't 1326 * complete fini within itself (circular dependency). Async resolves 1327 * this we and don't really care when everything is fini'd, just that it 1328 * is. 1329 */ 1330 guc_exec_queue_fini_async(q); 1331 } 1332 1333 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1334 { 1335 struct xe_exec_queue *q = msg->private_data; 1336 struct xe_guc *guc = exec_queue_to_guc(q); 1337 1338 xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1339 trace_xe_exec_queue_cleanup_entity(q); 1340 1341 if (exec_queue_registered(q)) 1342 disable_scheduling_deregister(guc, q); 1343 else 1344 __guc_exec_queue_fini(guc, q); 1345 } 1346 1347 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1348 { 1349 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1350 } 1351 1352 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1353 { 1354 struct xe_exec_queue *q = msg->private_data; 1355 struct xe_guc *guc = exec_queue_to_guc(q); 1356 1357 if (guc_exec_queue_allowed_to_change_state(q)) 1358 init_policies(guc, q); 1359 kfree(msg); 1360 } 1361 1362 static void __suspend_fence_signal(struct xe_exec_queue *q) 1363 { 1364 if (!q->guc->suspend_pending) 1365 return; 1366 1367 WRITE_ONCE(q->guc->suspend_pending, false); 1368 wake_up(&q->guc->suspend_wait); 1369 } 1370 1371 static void suspend_fence_signal(struct xe_exec_queue *q) 1372 { 1373 struct xe_guc *guc = exec_queue_to_guc(q); 1374 1375 xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) || 1376 xe_guc_read_stopped(guc)); 1377 xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending); 1378 1379 __suspend_fence_signal(q); 1380 } 1381 1382 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1383 { 1384 struct xe_exec_queue *q = msg->private_data; 1385 struct xe_guc *guc = exec_queue_to_guc(q); 1386 1387 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1388 exec_queue_enabled(q)) { 1389 wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING || 1390 xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q)); 1391 1392 if (!xe_guc_read_stopped(guc)) { 1393 s64 since_resume_ms = 1394 ktime_ms_delta(ktime_get(), 1395 q->guc->resume_time); 1396 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1397 since_resume_ms; 1398 1399 if (wait_ms > 0 && q->guc->resume_time) 1400 msleep(wait_ms); 1401 1402 set_exec_queue_suspended(q); 1403 disable_scheduling(q, false); 1404 } 1405 } else if (q->guc->suspend_pending) { 1406 set_exec_queue_suspended(q); 1407 suspend_fence_signal(q); 1408 } 1409 } 1410 1411 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1412 { 1413 struct xe_exec_queue *q = msg->private_data; 1414 1415 if (guc_exec_queue_allowed_to_change_state(q)) { 1416 clear_exec_queue_suspended(q); 1417 if (!exec_queue_enabled(q)) { 1418 q->guc->resume_time = RESUME_PENDING; 1419 enable_scheduling(q); 1420 } 1421 } else { 1422 clear_exec_queue_suspended(q); 1423 } 1424 } 1425 1426 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1427 #define SET_SCHED_PROPS 2 1428 #define SUSPEND 3 1429 #define RESUME 4 1430 #define OPCODE_MASK 0xf 1431 #define MSG_LOCKED BIT(8) 1432 1433 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1434 { 1435 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data)); 1436 1437 trace_xe_sched_msg_recv(msg); 1438 1439 switch (msg->opcode) { 1440 case CLEANUP: 1441 __guc_exec_queue_process_msg_cleanup(msg); 1442 break; 1443 case SET_SCHED_PROPS: 1444 __guc_exec_queue_process_msg_set_sched_props(msg); 1445 break; 1446 case SUSPEND: 1447 __guc_exec_queue_process_msg_suspend(msg); 1448 break; 1449 case RESUME: 1450 __guc_exec_queue_process_msg_resume(msg); 1451 break; 1452 default: 1453 XE_WARN_ON("Unknown message type"); 1454 } 1455 1456 xe_pm_runtime_put(xe); 1457 } 1458 1459 static const struct drm_sched_backend_ops drm_sched_ops = { 1460 .run_job = guc_exec_queue_run_job, 1461 .free_job = guc_exec_queue_free_job, 1462 .timedout_job = guc_exec_queue_timedout_job, 1463 }; 1464 1465 static const struct xe_sched_backend_ops xe_sched_ops = { 1466 .process_msg = guc_exec_queue_process_msg, 1467 }; 1468 1469 static int guc_exec_queue_init(struct xe_exec_queue *q) 1470 { 1471 struct xe_gpu_scheduler *sched; 1472 struct xe_guc *guc = exec_queue_to_guc(q); 1473 struct xe_guc_exec_queue *ge; 1474 long timeout; 1475 int err, i; 1476 1477 xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc))); 1478 1479 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1480 if (!ge) 1481 return -ENOMEM; 1482 1483 q->guc = ge; 1484 ge->q = q; 1485 init_rcu_head(&ge->rcu); 1486 init_waitqueue_head(&ge->suspend_wait); 1487 1488 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i) 1489 INIT_LIST_HEAD(&ge->static_msgs[i].link); 1490 1491 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1492 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1493 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1494 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1495 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1496 q->name, gt_to_xe(q->gt)->drm.dev); 1497 if (err) 1498 goto err_free; 1499 1500 sched = &ge->sched; 1501 err = xe_sched_entity_init(&ge->entity, sched); 1502 if (err) 1503 goto err_sched; 1504 1505 if (xe_exec_queue_is_lr(q)) 1506 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1507 1508 mutex_lock(&guc->submission_state.lock); 1509 1510 err = alloc_guc_id(guc, q); 1511 if (err) 1512 goto err_entity; 1513 1514 q->entity = &ge->entity; 1515 1516 if (xe_guc_read_stopped(guc)) 1517 xe_sched_stop(sched); 1518 1519 mutex_unlock(&guc->submission_state.lock); 1520 1521 xe_exec_queue_assign_name(q, q->guc->id); 1522 1523 trace_xe_exec_queue_create(q); 1524 1525 return 0; 1526 1527 err_entity: 1528 mutex_unlock(&guc->submission_state.lock); 1529 xe_sched_entity_fini(&ge->entity); 1530 err_sched: 1531 xe_sched_fini(&ge->sched); 1532 err_free: 1533 kfree(ge); 1534 1535 return err; 1536 } 1537 1538 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1539 { 1540 trace_xe_exec_queue_kill(q); 1541 set_exec_queue_killed(q); 1542 __suspend_fence_signal(q); 1543 xe_guc_exec_queue_trigger_cleanup(q); 1544 } 1545 1546 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1547 u32 opcode) 1548 { 1549 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q))); 1550 1551 INIT_LIST_HEAD(&msg->link); 1552 msg->opcode = opcode & OPCODE_MASK; 1553 msg->private_data = q; 1554 1555 trace_xe_sched_msg_add(msg); 1556 if (opcode & MSG_LOCKED) 1557 xe_sched_add_msg_locked(&q->guc->sched, msg); 1558 else 1559 xe_sched_add_msg(&q->guc->sched, msg); 1560 } 1561 1562 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q, 1563 struct xe_sched_msg *msg, 1564 u32 opcode) 1565 { 1566 if (!list_empty(&msg->link)) 1567 return false; 1568 1569 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED); 1570 1571 return true; 1572 } 1573 1574 #define STATIC_MSG_CLEANUP 0 1575 #define STATIC_MSG_SUSPEND 1 1576 #define STATIC_MSG_RESUME 2 1577 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1578 { 1579 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1580 1581 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1582 guc_exec_queue_add_msg(q, msg, CLEANUP); 1583 else 1584 __guc_exec_queue_fini(exec_queue_to_guc(q), q); 1585 } 1586 1587 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1588 enum xe_exec_queue_priority priority) 1589 { 1590 struct xe_sched_msg *msg; 1591 1592 if (q->sched_props.priority == priority || 1593 exec_queue_killed_or_banned_or_wedged(q)) 1594 return 0; 1595 1596 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1597 if (!msg) 1598 return -ENOMEM; 1599 1600 q->sched_props.priority = priority; 1601 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1602 1603 return 0; 1604 } 1605 1606 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1607 { 1608 struct xe_sched_msg *msg; 1609 1610 if (q->sched_props.timeslice_us == timeslice_us || 1611 exec_queue_killed_or_banned_or_wedged(q)) 1612 return 0; 1613 1614 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1615 if (!msg) 1616 return -ENOMEM; 1617 1618 q->sched_props.timeslice_us = timeslice_us; 1619 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1620 1621 return 0; 1622 } 1623 1624 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1625 u32 preempt_timeout_us) 1626 { 1627 struct xe_sched_msg *msg; 1628 1629 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1630 exec_queue_killed_or_banned_or_wedged(q)) 1631 return 0; 1632 1633 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1634 if (!msg) 1635 return -ENOMEM; 1636 1637 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1638 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1639 1640 return 0; 1641 } 1642 1643 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1644 { 1645 struct xe_gpu_scheduler *sched = &q->guc->sched; 1646 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1647 1648 if (exec_queue_killed_or_banned_or_wedged(q)) 1649 return -EINVAL; 1650 1651 xe_sched_msg_lock(sched); 1652 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND)) 1653 q->guc->suspend_pending = true; 1654 xe_sched_msg_unlock(sched); 1655 1656 return 0; 1657 } 1658 1659 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1660 { 1661 struct xe_guc *guc = exec_queue_to_guc(q); 1662 int ret; 1663 1664 /* 1665 * Likely don't need to check exec_queue_killed() as we clear 1666 * suspend_pending upon kill but to be paranoid but races in which 1667 * suspend_pending is set after kill also check kill here. 1668 */ 1669 ret = wait_event_interruptible_timeout(q->guc->suspend_wait, 1670 !READ_ONCE(q->guc->suspend_pending) || 1671 exec_queue_killed(q) || 1672 xe_guc_read_stopped(guc), 1673 HZ * 5); 1674 1675 if (!ret) { 1676 xe_gt_warn(guc_to_gt(guc), 1677 "Suspend fence, guc_id=%d, failed to respond", 1678 q->guc->id); 1679 /* XXX: Trigger GT reset? */ 1680 return -ETIME; 1681 } 1682 1683 return ret < 0 ? ret : 0; 1684 } 1685 1686 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1687 { 1688 struct xe_gpu_scheduler *sched = &q->guc->sched; 1689 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1690 struct xe_guc *guc = exec_queue_to_guc(q); 1691 1692 xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending); 1693 1694 xe_sched_msg_lock(sched); 1695 guc_exec_queue_try_add_msg(q, msg, RESUME); 1696 xe_sched_msg_unlock(sched); 1697 } 1698 1699 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1700 { 1701 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1702 } 1703 1704 /* 1705 * All of these functions are an abstraction layer which other parts of XE can 1706 * use to trap into the GuC backend. All of these functions, aside from init, 1707 * really shouldn't do much other than trap into the DRM scheduler which 1708 * synchronizes these operations. 1709 */ 1710 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1711 .init = guc_exec_queue_init, 1712 .kill = guc_exec_queue_kill, 1713 .fini = guc_exec_queue_fini, 1714 .set_priority = guc_exec_queue_set_priority, 1715 .set_timeslice = guc_exec_queue_set_timeslice, 1716 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1717 .suspend = guc_exec_queue_suspend, 1718 .suspend_wait = guc_exec_queue_suspend_wait, 1719 .resume = guc_exec_queue_resume, 1720 .reset_status = guc_exec_queue_reset_status, 1721 }; 1722 1723 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1724 { 1725 struct xe_gpu_scheduler *sched = &q->guc->sched; 1726 1727 /* Stop scheduling + flush any DRM scheduler operations */ 1728 xe_sched_submission_stop(sched); 1729 1730 /* Clean up lost G2H + reset engine state */ 1731 if (exec_queue_registered(q)) { 1732 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1733 xe_exec_queue_put(q); 1734 else if (exec_queue_destroyed(q)) 1735 __guc_exec_queue_fini(guc, q); 1736 } 1737 if (q->guc->suspend_pending) { 1738 set_exec_queue_suspended(q); 1739 suspend_fence_signal(q); 1740 } 1741 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED | 1742 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED | 1743 EXEC_QUEUE_STATE_SUSPENDED, 1744 &q->guc->state); 1745 q->guc->resume_time = 0; 1746 trace_xe_exec_queue_stop(q); 1747 1748 /* 1749 * Ban any engine (aside from kernel and engines used for VM ops) with a 1750 * started but not complete job or if a job has gone through a GT reset 1751 * more than twice. 1752 */ 1753 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1754 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1755 bool ban = false; 1756 1757 if (job) { 1758 if ((xe_sched_job_started(job) && 1759 !xe_sched_job_completed(job)) || 1760 xe_sched_invalidate_job(job, 2)) { 1761 trace_xe_sched_job_ban(job); 1762 ban = true; 1763 } 1764 } else if (xe_exec_queue_is_lr(q) && 1765 !xe_lrc_ring_is_idle(q->lrc[0])) { 1766 ban = true; 1767 } 1768 1769 if (ban) { 1770 set_exec_queue_banned(q); 1771 xe_guc_exec_queue_trigger_cleanup(q); 1772 } 1773 } 1774 } 1775 1776 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1777 { 1778 int ret; 1779 1780 if (!guc->submission_state.initialized) 1781 return 0; 1782 1783 /* 1784 * Using an atomic here rather than submission_state.lock as this 1785 * function can be called while holding the CT lock (engine reset 1786 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1787 * Atomic is not ideal, but it works to prevent against concurrent reset 1788 * and releasing any TDRs waiting on guc->submission_state.stopped. 1789 */ 1790 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1791 smp_wmb(); 1792 wake_up_all(&guc->ct.wq); 1793 1794 return ret; 1795 } 1796 1797 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1798 { 1799 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) || 1800 !xe_guc_read_stopped(guc)); 1801 } 1802 1803 void xe_guc_submit_stop(struct xe_guc *guc) 1804 { 1805 struct xe_exec_queue *q; 1806 unsigned long index; 1807 1808 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1); 1809 1810 mutex_lock(&guc->submission_state.lock); 1811 1812 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1813 /* Prevent redundant attempts to stop parallel queues */ 1814 if (q->guc->id != index) 1815 continue; 1816 1817 guc_exec_queue_stop(guc, q); 1818 } 1819 1820 mutex_unlock(&guc->submission_state.lock); 1821 1822 /* 1823 * No one can enter the backend at this point, aside from new engine 1824 * creation which is protected by guc->submission_state.lock. 1825 */ 1826 1827 } 1828 1829 static void guc_exec_queue_start(struct xe_exec_queue *q) 1830 { 1831 struct xe_gpu_scheduler *sched = &q->guc->sched; 1832 1833 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1834 int i; 1835 1836 trace_xe_exec_queue_resubmit(q); 1837 for (i = 0; i < q->width; ++i) 1838 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1839 xe_sched_resubmit_jobs(sched); 1840 } 1841 1842 xe_sched_submission_start(sched); 1843 xe_sched_submission_resume_tdr(sched); 1844 } 1845 1846 int xe_guc_submit_start(struct xe_guc *guc) 1847 { 1848 struct xe_exec_queue *q; 1849 unsigned long index; 1850 1851 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1); 1852 1853 mutex_lock(&guc->submission_state.lock); 1854 atomic_dec(&guc->submission_state.stopped); 1855 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1856 /* Prevent redundant attempts to start parallel queues */ 1857 if (q->guc->id != index) 1858 continue; 1859 1860 guc_exec_queue_start(q); 1861 } 1862 mutex_unlock(&guc->submission_state.lock); 1863 1864 wake_up_all(&guc->ct.wq); 1865 1866 return 0; 1867 } 1868 1869 static struct xe_exec_queue * 1870 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1871 { 1872 struct xe_gt *gt = guc_to_gt(guc); 1873 struct xe_exec_queue *q; 1874 1875 if (unlikely(guc_id >= GUC_ID_MAX)) { 1876 xe_gt_err(gt, "Invalid guc_id %u\n", guc_id); 1877 return NULL; 1878 } 1879 1880 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1881 if (unlikely(!q)) { 1882 xe_gt_err(gt, "Not engine present for guc_id %u\n", guc_id); 1883 return NULL; 1884 } 1885 1886 xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id); 1887 xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width)); 1888 1889 return q; 1890 } 1891 1892 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1893 { 1894 u32 action[] = { 1895 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1896 q->guc->id, 1897 }; 1898 1899 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q)); 1900 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1901 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1902 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1903 1904 trace_xe_exec_queue_deregister(q); 1905 1906 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1907 } 1908 1909 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q, 1910 u32 runnable_state) 1911 { 1912 trace_xe_exec_queue_scheduling_done(q); 1913 1914 if (runnable_state == 1) { 1915 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q)); 1916 1917 q->guc->resume_time = ktime_get(); 1918 clear_exec_queue_pending_enable(q); 1919 smp_wmb(); 1920 wake_up_all(&guc->ct.wq); 1921 } else { 1922 bool check_timeout = exec_queue_check_timeout(q); 1923 1924 xe_gt_assert(guc_to_gt(guc), runnable_state == 0); 1925 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q)); 1926 1927 if (q->guc->suspend_pending) { 1928 suspend_fence_signal(q); 1929 clear_exec_queue_pending_disable(q); 1930 } else { 1931 if (exec_queue_banned(q) || check_timeout) { 1932 smp_wmb(); 1933 wake_up_all(&guc->ct.wq); 1934 } 1935 if (!check_timeout && exec_queue_destroyed(q)) { 1936 /* 1937 * Make sure to clear the pending_disable only 1938 * after sampling the destroyed state. We want 1939 * to ensure we don't trigger the unregister too 1940 * early with something intending to only 1941 * disable scheduling. The caller doing the 1942 * destroy must wait for an ongoing 1943 * pending_disable before marking as destroyed. 1944 */ 1945 clear_exec_queue_pending_disable(q); 1946 deregister_exec_queue(guc, q); 1947 } else { 1948 clear_exec_queue_pending_disable(q); 1949 } 1950 } 1951 } 1952 } 1953 1954 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1955 { 1956 struct xe_exec_queue *q; 1957 u32 guc_id, runnable_state; 1958 1959 if (unlikely(len < 2)) 1960 return -EPROTO; 1961 1962 guc_id = msg[0]; 1963 runnable_state = msg[1]; 1964 1965 q = g2h_exec_queue_lookup(guc, guc_id); 1966 if (unlikely(!q)) 1967 return -EPROTO; 1968 1969 if (unlikely(!exec_queue_pending_enable(q) && 1970 !exec_queue_pending_disable(q))) { 1971 xe_gt_err(guc_to_gt(guc), 1972 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u", 1973 atomic_read(&q->guc->state), q->guc->id, 1974 runnable_state); 1975 return -EPROTO; 1976 } 1977 1978 handle_sched_done(guc, q, runnable_state); 1979 1980 return 0; 1981 } 1982 1983 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 1984 { 1985 trace_xe_exec_queue_deregister_done(q); 1986 1987 clear_exec_queue_registered(q); 1988 1989 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1990 xe_exec_queue_put(q); 1991 else 1992 __guc_exec_queue_fini(guc, q); 1993 } 1994 1995 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1996 { 1997 struct xe_exec_queue *q; 1998 u32 guc_id; 1999 2000 if (unlikely(len < 1)) 2001 return -EPROTO; 2002 2003 guc_id = msg[0]; 2004 2005 q = g2h_exec_queue_lookup(guc, guc_id); 2006 if (unlikely(!q)) 2007 return -EPROTO; 2008 2009 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 2010 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 2011 xe_gt_err(guc_to_gt(guc), 2012 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d", 2013 atomic_read(&q->guc->state), q->guc->id); 2014 return -EPROTO; 2015 } 2016 2017 handle_deregister_done(guc, q); 2018 2019 return 0; 2020 } 2021 2022 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 2023 { 2024 struct xe_gt *gt = guc_to_gt(guc); 2025 struct xe_exec_queue *q; 2026 u32 guc_id; 2027 2028 if (unlikely(len < 1)) 2029 return -EPROTO; 2030 2031 guc_id = msg[0]; 2032 2033 q = g2h_exec_queue_lookup(guc, guc_id); 2034 if (unlikely(!q)) 2035 return -EPROTO; 2036 2037 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 2038 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2039 2040 trace_xe_exec_queue_reset(q); 2041 2042 /* 2043 * A banned engine is a NOP at this point (came from 2044 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 2045 * jobs by setting timeout of the job to the minimum value kicking 2046 * guc_exec_queue_timedout_job. 2047 */ 2048 set_exec_queue_reset(q); 2049 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2050 xe_guc_exec_queue_trigger_cleanup(q); 2051 2052 return 0; 2053 } 2054 2055 /* 2056 * xe_guc_error_capture_handler - Handler of GuC captured message 2057 * @guc: The GuC object 2058 * @msg: Point to the message 2059 * @len: The message length 2060 * 2061 * When GuC captured data is ready, GuC will send message 2062 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be 2063 * called 1st to check status before process the data comes with the message. 2064 * 2065 * Returns: error code. 0 if success 2066 */ 2067 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len) 2068 { 2069 u32 status; 2070 2071 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN)) 2072 return -EPROTO; 2073 2074 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 2075 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 2076 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space"); 2077 2078 xe_guc_capture_process(guc); 2079 2080 return 0; 2081 } 2082 2083 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 2084 u32 len) 2085 { 2086 struct xe_gt *gt = guc_to_gt(guc); 2087 struct xe_exec_queue *q; 2088 u32 guc_id; 2089 u32 type = XE_GUC_CAT_ERR_TYPE_INVALID; 2090 2091 if (unlikely(!len || len > 2)) 2092 return -EPROTO; 2093 2094 guc_id = msg[0]; 2095 2096 if (len == 2) 2097 type = msg[1]; 2098 2099 if (guc_id == GUC_ID_UNKNOWN) { 2100 /* 2101 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF 2102 * context. In such case only PF will be notified about that fault. 2103 */ 2104 xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n"); 2105 return 0; 2106 } 2107 2108 q = g2h_exec_queue_lookup(guc, guc_id); 2109 if (unlikely(!q)) 2110 return -EPROTO; 2111 2112 /* 2113 * The type is HW-defined and changes based on platform, so we don't 2114 * decode it in the kernel and only check if it is valid. 2115 * See bspec 54047 and 72187 for details. 2116 */ 2117 if (type != XE_GUC_CAT_ERR_TYPE_INVALID) 2118 xe_gt_dbg(gt, 2119 "Engine memory CAT error [%u]: class=%s, logical_mask: 0x%x, guc_id=%d", 2120 type, xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2121 else 2122 xe_gt_dbg(gt, 2123 "Engine memory CAT error: class=%s, logical_mask: 0x%x, guc_id=%d", 2124 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2125 2126 trace_xe_exec_queue_memory_cat_error(q); 2127 2128 /* Treat the same as engine reset */ 2129 set_exec_queue_reset(q); 2130 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2131 xe_guc_exec_queue_trigger_cleanup(q); 2132 2133 return 0; 2134 } 2135 2136 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 2137 { 2138 struct xe_gt *gt = guc_to_gt(guc); 2139 u8 guc_class, instance; 2140 u32 reason; 2141 2142 if (unlikely(len != 3)) 2143 return -EPROTO; 2144 2145 guc_class = msg[0]; 2146 instance = msg[1]; 2147 reason = msg[2]; 2148 2149 /* Unexpected failure of a hardware feature, log an actual error */ 2150 xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X", 2151 guc_class, instance, reason); 2152 2153 xe_gt_reset_async(gt); 2154 2155 return 0; 2156 } 2157 2158 static void 2159 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 2160 struct xe_guc_submit_exec_queue_snapshot *snapshot) 2161 { 2162 struct xe_guc *guc = exec_queue_to_guc(q); 2163 struct xe_device *xe = guc_to_xe(guc); 2164 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 2165 int i; 2166 2167 snapshot->guc.wqi_head = q->guc->wqi_head; 2168 snapshot->guc.wqi_tail = q->guc->wqi_tail; 2169 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 2170 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 2171 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 2172 wq_desc.wq_status); 2173 2174 if (snapshot->parallel.wq_desc.head != 2175 snapshot->parallel.wq_desc.tail) { 2176 for (i = snapshot->parallel.wq_desc.head; 2177 i != snapshot->parallel.wq_desc.tail; 2178 i = (i + sizeof(u32)) % WQ_SIZE) 2179 snapshot->parallel.wq[i / sizeof(u32)] = 2180 parallel_read(xe, map, wq[i / sizeof(u32)]); 2181 } 2182 } 2183 2184 static void 2185 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2186 struct drm_printer *p) 2187 { 2188 int i; 2189 2190 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 2191 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 2192 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 2193 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 2194 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 2195 2196 if (snapshot->parallel.wq_desc.head != 2197 snapshot->parallel.wq_desc.tail) { 2198 for (i = snapshot->parallel.wq_desc.head; 2199 i != snapshot->parallel.wq_desc.tail; 2200 i = (i + sizeof(u32)) % WQ_SIZE) 2201 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 2202 snapshot->parallel.wq[i / sizeof(u32)]); 2203 } 2204 } 2205 2206 /** 2207 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 2208 * @q: faulty exec queue 2209 * 2210 * This can be printed out in a later stage like during dev_coredump 2211 * analysis. 2212 * 2213 * Returns: a GuC Submit Engine snapshot object that must be freed by the 2214 * caller, using `xe_guc_exec_queue_snapshot_free`. 2215 */ 2216 struct xe_guc_submit_exec_queue_snapshot * 2217 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 2218 { 2219 struct xe_gpu_scheduler *sched = &q->guc->sched; 2220 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2221 int i; 2222 2223 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 2224 2225 if (!snapshot) 2226 return NULL; 2227 2228 snapshot->guc.id = q->guc->id; 2229 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 2230 snapshot->class = q->class; 2231 snapshot->logical_mask = q->logical_mask; 2232 snapshot->width = q->width; 2233 snapshot->refcount = kref_read(&q->refcount); 2234 snapshot->sched_timeout = sched->base.timeout; 2235 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 2236 snapshot->sched_props.preempt_timeout_us = 2237 q->sched_props.preempt_timeout_us; 2238 2239 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 2240 GFP_ATOMIC); 2241 2242 if (snapshot->lrc) { 2243 for (i = 0; i < q->width; ++i) { 2244 struct xe_lrc *lrc = q->lrc[i]; 2245 2246 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 2247 } 2248 } 2249 2250 snapshot->schedule_state = atomic_read(&q->guc->state); 2251 snapshot->exec_queue_flags = q->flags; 2252 2253 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 2254 if (snapshot->parallel_execution) 2255 guc_exec_queue_wq_snapshot_capture(q, snapshot); 2256 2257 spin_lock(&sched->base.job_list_lock); 2258 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 2259 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 2260 sizeof(struct pending_list_snapshot), 2261 GFP_ATOMIC); 2262 2263 if (snapshot->pending_list) { 2264 struct xe_sched_job *job_iter; 2265 2266 i = 0; 2267 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 2268 snapshot->pending_list[i].seqno = 2269 xe_sched_job_seqno(job_iter); 2270 snapshot->pending_list[i].fence = 2271 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 2272 snapshot->pending_list[i].finished = 2273 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 2274 ? 1 : 0; 2275 i++; 2276 } 2277 } 2278 2279 spin_unlock(&sched->base.job_list_lock); 2280 2281 return snapshot; 2282 } 2283 2284 /** 2285 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 2286 * @snapshot: Previously captured snapshot of job. 2287 * 2288 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 2289 */ 2290 void 2291 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2292 { 2293 int i; 2294 2295 if (!snapshot || !snapshot->lrc) 2296 return; 2297 2298 for (i = 0; i < snapshot->width; ++i) 2299 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 2300 } 2301 2302 /** 2303 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 2304 * @snapshot: GuC Submit Engine snapshot object. 2305 * @p: drm_printer where it will be printed out. 2306 * 2307 * This function prints out a given GuC Submit Engine snapshot object. 2308 */ 2309 void 2310 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2311 struct drm_printer *p) 2312 { 2313 int i; 2314 2315 if (!snapshot) 2316 return; 2317 2318 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id); 2319 drm_printf(p, "\tName: %s\n", snapshot->name); 2320 drm_printf(p, "\tClass: %d\n", snapshot->class); 2321 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 2322 drm_printf(p, "\tWidth: %d\n", snapshot->width); 2323 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 2324 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 2325 drm_printf(p, "\tTimeslice: %u (us)\n", 2326 snapshot->sched_props.timeslice_us); 2327 drm_printf(p, "\tPreempt timeout: %u (us)\n", 2328 snapshot->sched_props.preempt_timeout_us); 2329 2330 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 2331 xe_lrc_snapshot_print(snapshot->lrc[i], p); 2332 2333 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 2334 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 2335 2336 if (snapshot->parallel_execution) 2337 guc_exec_queue_wq_snapshot_print(snapshot, p); 2338 2339 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 2340 i++) 2341 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 2342 snapshot->pending_list[i].seqno, 2343 snapshot->pending_list[i].fence, 2344 snapshot->pending_list[i].finished); 2345 } 2346 2347 /** 2348 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 2349 * snapshot. 2350 * @snapshot: GuC Submit Engine snapshot object. 2351 * 2352 * This function free all the memory that needed to be allocated at capture 2353 * time. 2354 */ 2355 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2356 { 2357 int i; 2358 2359 if (!snapshot) 2360 return; 2361 2362 if (snapshot->lrc) { 2363 for (i = 0; i < snapshot->width; i++) 2364 xe_lrc_snapshot_free(snapshot->lrc[i]); 2365 kfree(snapshot->lrc); 2366 } 2367 kfree(snapshot->pending_list); 2368 kfree(snapshot); 2369 } 2370 2371 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 2372 { 2373 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2374 2375 snapshot = xe_guc_exec_queue_snapshot_capture(q); 2376 xe_guc_exec_queue_snapshot_print(snapshot, p); 2377 xe_guc_exec_queue_snapshot_free(snapshot); 2378 } 2379 2380 /** 2381 * xe_guc_submit_print - GuC Submit Print. 2382 * @guc: GuC. 2383 * @p: drm_printer where it will be printed out. 2384 * 2385 * This function capture and prints snapshots of **all** GuC Engines. 2386 */ 2387 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2388 { 2389 struct xe_exec_queue *q; 2390 unsigned long index; 2391 2392 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2393 return; 2394 2395 mutex_lock(&guc->submission_state.lock); 2396 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2397 guc_exec_queue_print(q, p); 2398 mutex_unlock(&guc->submission_state.lock); 2399 } 2400