1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 14 #include <drm/drm_managed.h> 15 16 #include "abi/guc_actions_abi.h" 17 #include "abi/guc_klvs_abi.h" 18 #include "regs/xe_lrc_layout.h" 19 #include "xe_assert.h" 20 #include "xe_devcoredump.h" 21 #include "xe_device.h" 22 #include "xe_exec_queue.h" 23 #include "xe_force_wake.h" 24 #include "xe_gpu_scheduler.h" 25 #include "xe_gt.h" 26 #include "xe_gt_printk.h" 27 #include "xe_guc.h" 28 #include "xe_guc_ct.h" 29 #include "xe_guc_exec_queue_types.h" 30 #include "xe_guc_id_mgr.h" 31 #include "xe_guc_submit_types.h" 32 #include "xe_hw_engine.h" 33 #include "xe_hw_fence.h" 34 #include "xe_lrc.h" 35 #include "xe_macros.h" 36 #include "xe_map.h" 37 #include "xe_mocs.h" 38 #include "xe_pm.h" 39 #include "xe_ring_ops_types.h" 40 #include "xe_sched_job.h" 41 #include "xe_trace.h" 42 #include "xe_vm.h" 43 44 static struct xe_guc * 45 exec_queue_to_guc(struct xe_exec_queue *q) 46 { 47 return &q->gt->uc.guc; 48 } 49 50 /* 51 * Helpers for engine state, using an atomic as some of the bits can transition 52 * as the same time (e.g. a suspend can be happning at the same time as schedule 53 * engine done being processed). 54 */ 55 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 56 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 57 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 58 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 59 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 60 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 61 #define EXEC_QUEUE_STATE_RESET (1 << 6) 62 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 63 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 64 65 static bool exec_queue_registered(struct xe_exec_queue *q) 66 { 67 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 68 } 69 70 static void set_exec_queue_registered(struct xe_exec_queue *q) 71 { 72 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 73 } 74 75 static void clear_exec_queue_registered(struct xe_exec_queue *q) 76 { 77 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 78 } 79 80 static bool exec_queue_enabled(struct xe_exec_queue *q) 81 { 82 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 83 } 84 85 static void set_exec_queue_enabled(struct xe_exec_queue *q) 86 { 87 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 88 } 89 90 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 91 { 92 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 93 } 94 95 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 96 { 97 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 98 } 99 100 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 101 { 102 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 103 } 104 105 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 106 { 107 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 108 } 109 110 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 111 { 112 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 113 } 114 115 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 116 { 117 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 118 } 119 120 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 121 { 122 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 123 } 124 125 static bool exec_queue_destroyed(struct xe_exec_queue *q) 126 { 127 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 128 } 129 130 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 131 { 132 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 133 } 134 135 static bool exec_queue_banned(struct xe_exec_queue *q) 136 { 137 return (q->flags & EXEC_QUEUE_FLAG_BANNED); 138 } 139 140 static void set_exec_queue_banned(struct xe_exec_queue *q) 141 { 142 q->flags |= EXEC_QUEUE_FLAG_BANNED; 143 } 144 145 static bool exec_queue_suspended(struct xe_exec_queue *q) 146 { 147 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 148 } 149 150 static void set_exec_queue_suspended(struct xe_exec_queue *q) 151 { 152 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 153 } 154 155 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 156 { 157 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 158 } 159 160 static bool exec_queue_reset(struct xe_exec_queue *q) 161 { 162 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 163 } 164 165 static void set_exec_queue_reset(struct xe_exec_queue *q) 166 { 167 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 168 } 169 170 static bool exec_queue_killed(struct xe_exec_queue *q) 171 { 172 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 173 } 174 175 static void set_exec_queue_killed(struct xe_exec_queue *q) 176 { 177 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 178 } 179 180 static bool exec_queue_wedged(struct xe_exec_queue *q) 181 { 182 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 183 } 184 185 static void set_exec_queue_wedged(struct xe_exec_queue *q) 186 { 187 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 188 } 189 190 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 191 { 192 return exec_queue_banned(q) || (atomic_read(&q->guc->state) & 193 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED)); 194 } 195 196 #ifdef CONFIG_PROVE_LOCKING 197 static int alloc_submit_wq(struct xe_guc *guc) 198 { 199 int i; 200 201 for (i = 0; i < NUM_SUBMIT_WQ; ++i) { 202 guc->submission_state.submit_wq_pool[i] = 203 alloc_ordered_workqueue("submit_wq", 0); 204 if (!guc->submission_state.submit_wq_pool[i]) 205 goto err_free; 206 } 207 208 return 0; 209 210 err_free: 211 while (i) 212 destroy_workqueue(guc->submission_state.submit_wq_pool[--i]); 213 214 return -ENOMEM; 215 } 216 217 static void free_submit_wq(struct xe_guc *guc) 218 { 219 int i; 220 221 for (i = 0; i < NUM_SUBMIT_WQ; ++i) 222 destroy_workqueue(guc->submission_state.submit_wq_pool[i]); 223 } 224 225 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc) 226 { 227 int idx = guc->submission_state.submit_wq_idx++ % NUM_SUBMIT_WQ; 228 229 return guc->submission_state.submit_wq_pool[idx]; 230 } 231 #else 232 static int alloc_submit_wq(struct xe_guc *guc) 233 { 234 return 0; 235 } 236 237 static void free_submit_wq(struct xe_guc *guc) 238 { 239 240 } 241 242 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc) 243 { 244 return NULL; 245 } 246 #endif 247 248 static void guc_submit_fini(struct drm_device *drm, void *arg) 249 { 250 struct xe_guc *guc = arg; 251 252 xa_destroy(&guc->submission_state.exec_queue_lookup); 253 free_submit_wq(guc); 254 } 255 256 static void guc_submit_wedged_fini(struct drm_device *drm, void *arg) 257 { 258 struct xe_guc *guc = arg; 259 struct xe_exec_queue *q; 260 unsigned long index; 261 262 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 263 if (exec_queue_wedged(q)) 264 xe_exec_queue_put(q); 265 } 266 267 static const struct xe_exec_queue_ops guc_exec_queue_ops; 268 269 static void primelockdep(struct xe_guc *guc) 270 { 271 if (!IS_ENABLED(CONFIG_LOCKDEP)) 272 return; 273 274 fs_reclaim_acquire(GFP_KERNEL); 275 276 mutex_lock(&guc->submission_state.lock); 277 mutex_unlock(&guc->submission_state.lock); 278 279 fs_reclaim_release(GFP_KERNEL); 280 } 281 282 /** 283 * xe_guc_submit_init() - Initialize GuC submission. 284 * @guc: the &xe_guc to initialize 285 * @num_ids: number of GuC context IDs to use 286 * 287 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 288 * GuC context IDs supported by the GuC firmware should be used for submission. 289 * 290 * Only VF drivers will have to provide explicit number of GuC context IDs 291 * that they can use for submission. 292 * 293 * Return: 0 on success or a negative error code on failure. 294 */ 295 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 296 { 297 struct xe_device *xe = guc_to_xe(guc); 298 struct xe_gt *gt = guc_to_gt(guc); 299 int err; 300 301 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 302 if (err) 303 return err; 304 305 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 306 if (err) 307 return err; 308 309 err = alloc_submit_wq(guc); 310 if (err) 311 return err; 312 313 gt->exec_queue_ops = &guc_exec_queue_ops; 314 315 xa_init(&guc->submission_state.exec_queue_lookup); 316 317 primelockdep(guc); 318 319 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 320 } 321 322 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 323 { 324 int i; 325 326 lockdep_assert_held(&guc->submission_state.lock); 327 328 for (i = 0; i < xa_count; ++i) 329 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 330 331 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 332 q->guc->id, q->width); 333 } 334 335 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 336 { 337 int ret; 338 void *ptr; 339 int i; 340 341 /* 342 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 343 * worse case user gets -ENOMEM on engine create and has to try again. 344 * 345 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 346 * failure. 347 */ 348 lockdep_assert_held(&guc->submission_state.lock); 349 350 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 351 q->width); 352 if (ret < 0) 353 return ret; 354 355 q->guc->id = ret; 356 357 for (i = 0; i < q->width; ++i) { 358 ptr = xa_store(&guc->submission_state.exec_queue_lookup, 359 q->guc->id + i, q, GFP_NOWAIT); 360 if (IS_ERR(ptr)) { 361 ret = PTR_ERR(ptr); 362 goto err_release; 363 } 364 } 365 366 return 0; 367 368 err_release: 369 __release_guc_id(guc, q, i); 370 371 return ret; 372 } 373 374 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 375 { 376 mutex_lock(&guc->submission_state.lock); 377 __release_guc_id(guc, q, q->width); 378 mutex_unlock(&guc->submission_state.lock); 379 } 380 381 struct exec_queue_policy { 382 u32 count; 383 struct guc_update_exec_queue_policy h2g; 384 }; 385 386 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 387 { 388 size_t bytes = sizeof(policy->h2g.header) + 389 (sizeof(policy->h2g.klv[0]) * policy->count); 390 391 return bytes / sizeof(u32); 392 } 393 394 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 395 u16 guc_id) 396 { 397 policy->h2g.header.action = 398 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 399 policy->h2g.header.guc_id = guc_id; 400 policy->count = 0; 401 } 402 403 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 404 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 405 u32 data) \ 406 { \ 407 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 408 \ 409 policy->h2g.klv[policy->count].kl = \ 410 FIELD_PREP(GUC_KLV_0_KEY, \ 411 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 412 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 413 policy->h2g.klv[policy->count].value = data; \ 414 policy->count++; \ 415 } 416 417 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 418 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 419 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 420 #undef MAKE_EXEC_QUEUE_POLICY_ADD 421 422 static const int xe_exec_queue_prio_to_guc[] = { 423 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 424 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 425 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 426 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 427 }; 428 429 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 430 { 431 struct exec_queue_policy policy; 432 struct xe_device *xe = guc_to_xe(guc); 433 enum xe_exec_queue_priority prio = q->sched_props.priority; 434 u32 timeslice_us = q->sched_props.timeslice_us; 435 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 436 437 xe_assert(xe, exec_queue_registered(q)); 438 439 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 440 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 441 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 442 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 443 444 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 445 __guc_exec_queue_policy_action_size(&policy), 0, 0); 446 } 447 448 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 449 { 450 struct exec_queue_policy policy; 451 452 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 453 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 454 455 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 456 __guc_exec_queue_policy_action_size(&policy), 0, 0); 457 } 458 459 #define parallel_read(xe_, map_, field_) \ 460 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 461 field_) 462 #define parallel_write(xe_, map_, field_, val_) \ 463 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 464 field_, val_) 465 466 static void __register_mlrc_exec_queue(struct xe_guc *guc, 467 struct xe_exec_queue *q, 468 struct guc_ctxt_registration_info *info) 469 { 470 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 471 struct xe_device *xe = guc_to_xe(guc); 472 u32 action[MAX_MLRC_REG_SIZE]; 473 int len = 0; 474 int i; 475 476 xe_assert(xe, xe_exec_queue_is_parallel(q)); 477 478 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 479 action[len++] = info->flags; 480 action[len++] = info->context_idx; 481 action[len++] = info->engine_class; 482 action[len++] = info->engine_submit_mask; 483 action[len++] = info->wq_desc_lo; 484 action[len++] = info->wq_desc_hi; 485 action[len++] = info->wq_base_lo; 486 action[len++] = info->wq_base_hi; 487 action[len++] = info->wq_size; 488 action[len++] = q->width; 489 action[len++] = info->hwlrca_lo; 490 action[len++] = info->hwlrca_hi; 491 492 for (i = 1; i < q->width; ++i) { 493 struct xe_lrc *lrc = q->lrc[i]; 494 495 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 496 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 497 } 498 499 xe_assert(xe, len <= MAX_MLRC_REG_SIZE); 500 #undef MAX_MLRC_REG_SIZE 501 502 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 503 } 504 505 static void __register_exec_queue(struct xe_guc *guc, 506 struct guc_ctxt_registration_info *info) 507 { 508 u32 action[] = { 509 XE_GUC_ACTION_REGISTER_CONTEXT, 510 info->flags, 511 info->context_idx, 512 info->engine_class, 513 info->engine_submit_mask, 514 info->wq_desc_lo, 515 info->wq_desc_hi, 516 info->wq_base_lo, 517 info->wq_base_hi, 518 info->wq_size, 519 info->hwlrca_lo, 520 info->hwlrca_hi, 521 }; 522 523 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 524 } 525 526 static void register_exec_queue(struct xe_exec_queue *q) 527 { 528 struct xe_guc *guc = exec_queue_to_guc(q); 529 struct xe_device *xe = guc_to_xe(guc); 530 struct xe_lrc *lrc = q->lrc[0]; 531 struct guc_ctxt_registration_info info; 532 533 xe_assert(xe, !exec_queue_registered(q)); 534 535 memset(&info, 0, sizeof(info)); 536 info.context_idx = q->guc->id; 537 info.engine_class = xe_engine_class_to_guc_class(q->class); 538 info.engine_submit_mask = q->logical_mask; 539 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 540 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 541 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 542 543 if (xe_exec_queue_is_parallel(q)) { 544 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 545 struct iosys_map map = xe_lrc_parallel_map(lrc); 546 547 info.wq_desc_lo = lower_32_bits(ggtt_addr + 548 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 549 info.wq_desc_hi = upper_32_bits(ggtt_addr + 550 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 551 info.wq_base_lo = lower_32_bits(ggtt_addr + 552 offsetof(struct guc_submit_parallel_scratch, wq[0])); 553 info.wq_base_hi = upper_32_bits(ggtt_addr + 554 offsetof(struct guc_submit_parallel_scratch, wq[0])); 555 info.wq_size = WQ_SIZE; 556 557 q->guc->wqi_head = 0; 558 q->guc->wqi_tail = 0; 559 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 560 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 561 } 562 563 /* 564 * We must keep a reference for LR engines if engine is registered with 565 * the GuC as jobs signal immediately and can't destroy an engine if the 566 * GuC has a reference to it. 567 */ 568 if (xe_exec_queue_is_lr(q)) 569 xe_exec_queue_get(q); 570 571 set_exec_queue_registered(q); 572 trace_xe_exec_queue_register(q); 573 if (xe_exec_queue_is_parallel(q)) 574 __register_mlrc_exec_queue(guc, q, &info); 575 else 576 __register_exec_queue(guc, &info); 577 init_policies(guc, q); 578 } 579 580 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 581 { 582 return (WQ_SIZE - q->guc->wqi_tail); 583 } 584 585 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 586 { 587 struct xe_guc *guc = exec_queue_to_guc(q); 588 struct xe_device *xe = guc_to_xe(guc); 589 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 590 unsigned int sleep_period_ms = 1; 591 592 #define AVAILABLE_SPACE \ 593 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 594 if (wqi_size > AVAILABLE_SPACE) { 595 try_again: 596 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 597 if (wqi_size > AVAILABLE_SPACE) { 598 if (sleep_period_ms == 1024) { 599 xe_gt_reset_async(q->gt); 600 return -ENODEV; 601 } 602 603 msleep(sleep_period_ms); 604 sleep_period_ms <<= 1; 605 goto try_again; 606 } 607 } 608 #undef AVAILABLE_SPACE 609 610 return 0; 611 } 612 613 static int wq_noop_append(struct xe_exec_queue *q) 614 { 615 struct xe_guc *guc = exec_queue_to_guc(q); 616 struct xe_device *xe = guc_to_xe(guc); 617 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 618 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 619 620 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 621 return -ENODEV; 622 623 xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw)); 624 625 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 626 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 627 FIELD_PREP(WQ_LEN_MASK, len_dw)); 628 q->guc->wqi_tail = 0; 629 630 return 0; 631 } 632 633 static void wq_item_append(struct xe_exec_queue *q) 634 { 635 struct xe_guc *guc = exec_queue_to_guc(q); 636 struct xe_device *xe = guc_to_xe(guc); 637 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 638 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 639 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 640 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 641 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 642 int i = 0, j; 643 644 if (wqi_size > wq_space_until_wrap(q)) { 645 if (wq_noop_append(q)) 646 return; 647 } 648 if (wq_wait_for_space(q, wqi_size)) 649 return; 650 651 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 652 FIELD_PREP(WQ_LEN_MASK, len_dw); 653 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 654 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 655 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 656 wqi[i++] = 0; 657 for (j = 1; j < q->width; ++j) { 658 struct xe_lrc *lrc = q->lrc[j]; 659 660 wqi[i++] = lrc->ring.tail / sizeof(u64); 661 } 662 663 xe_assert(xe, i == wqi_size / sizeof(u32)); 664 665 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 666 wq[q->guc->wqi_tail / sizeof(u32)])); 667 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 668 q->guc->wqi_tail += wqi_size; 669 xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE); 670 671 xe_device_wmb(xe); 672 673 map = xe_lrc_parallel_map(q->lrc[0]); 674 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 675 } 676 677 #define RESUME_PENDING ~0x0ull 678 static void submit_exec_queue(struct xe_exec_queue *q) 679 { 680 struct xe_guc *guc = exec_queue_to_guc(q); 681 struct xe_device *xe = guc_to_xe(guc); 682 struct xe_lrc *lrc = q->lrc[0]; 683 u32 action[3]; 684 u32 g2h_len = 0; 685 u32 num_g2h = 0; 686 int len = 0; 687 bool extra_submit = false; 688 689 xe_assert(xe, exec_queue_registered(q)); 690 691 if (xe_exec_queue_is_parallel(q)) 692 wq_item_append(q); 693 else 694 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 695 696 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 697 return; 698 699 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 700 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 701 action[len++] = q->guc->id; 702 action[len++] = GUC_CONTEXT_ENABLE; 703 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 704 num_g2h = 1; 705 if (xe_exec_queue_is_parallel(q)) 706 extra_submit = true; 707 708 q->guc->resume_time = RESUME_PENDING; 709 set_exec_queue_pending_enable(q); 710 set_exec_queue_enabled(q); 711 trace_xe_exec_queue_scheduling_enable(q); 712 } else { 713 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 714 action[len++] = q->guc->id; 715 trace_xe_exec_queue_submit(q); 716 } 717 718 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 719 720 if (extra_submit) { 721 len = 0; 722 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 723 action[len++] = q->guc->id; 724 trace_xe_exec_queue_submit(q); 725 726 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 727 } 728 } 729 730 static struct dma_fence * 731 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 732 { 733 struct xe_sched_job *job = to_xe_sched_job(drm_job); 734 struct xe_exec_queue *q = job->q; 735 struct xe_guc *guc = exec_queue_to_guc(q); 736 struct xe_device *xe = guc_to_xe(guc); 737 bool lr = xe_exec_queue_is_lr(q); 738 739 xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 740 exec_queue_banned(q) || exec_queue_suspended(q)); 741 742 trace_xe_sched_job_run(job); 743 744 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 745 if (!exec_queue_registered(q)) 746 register_exec_queue(q); 747 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 748 q->ring_ops->emit_job(job); 749 submit_exec_queue(q); 750 } 751 752 if (lr) { 753 xe_sched_job_set_error(job, -EOPNOTSUPP); 754 return NULL; 755 } else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) { 756 return job->fence; 757 } else { 758 return dma_fence_get(job->fence); 759 } 760 } 761 762 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 763 { 764 struct xe_sched_job *job = to_xe_sched_job(drm_job); 765 766 xe_exec_queue_update_run_ticks(job->q); 767 768 trace_xe_sched_job_free(job); 769 xe_sched_job_put(job); 770 } 771 772 static int guc_read_stopped(struct xe_guc *guc) 773 { 774 return atomic_read(&guc->submission_state.stopped); 775 } 776 777 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 778 u32 action[] = { \ 779 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 780 q->guc->id, \ 781 GUC_CONTEXT_##enable_disable, \ 782 } 783 784 static void disable_scheduling_deregister(struct xe_guc *guc, 785 struct xe_exec_queue *q) 786 { 787 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 788 struct xe_device *xe = guc_to_xe(guc); 789 int ret; 790 791 set_min_preemption_timeout(guc, q); 792 smp_rmb(); 793 ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) || 794 guc_read_stopped(guc), HZ * 5); 795 if (!ret) { 796 struct xe_gpu_scheduler *sched = &q->guc->sched; 797 798 drm_warn(&xe->drm, "Pending enable failed to respond"); 799 xe_sched_submission_start(sched); 800 xe_gt_reset_async(q->gt); 801 xe_sched_tdr_queue_imm(sched); 802 return; 803 } 804 805 clear_exec_queue_enabled(q); 806 set_exec_queue_pending_disable(q); 807 set_exec_queue_destroyed(q); 808 trace_xe_exec_queue_scheduling_disable(q); 809 810 /* 811 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 812 * handler and we are not allowed to reserved G2H space in handlers. 813 */ 814 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 815 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 816 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 817 } 818 819 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 820 { 821 struct xe_guc *guc = exec_queue_to_guc(q); 822 struct xe_device *xe = guc_to_xe(guc); 823 824 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 825 wake_up_all(&xe->ufence_wq); 826 827 if (xe_exec_queue_is_lr(q)) 828 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 829 else 830 xe_sched_tdr_queue_imm(&q->guc->sched); 831 } 832 833 static bool guc_submit_hint_wedged(struct xe_guc *guc) 834 { 835 struct xe_device *xe = guc_to_xe(guc); 836 struct xe_exec_queue *q; 837 unsigned long index; 838 int err; 839 840 if (xe->wedged.mode != 2) 841 return false; 842 843 if (xe_device_wedged(xe)) 844 return true; 845 846 xe_device_declare_wedged(xe); 847 848 xe_guc_submit_reset_prepare(guc); 849 xe_guc_ct_stop(&guc->ct); 850 851 err = drmm_add_action_or_reset(&guc_to_xe(guc)->drm, 852 guc_submit_wedged_fini, guc); 853 if (err) { 854 drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n"); 855 return true; /* Device is wedged anyway */ 856 } 857 858 mutex_lock(&guc->submission_state.lock); 859 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 860 if (xe_exec_queue_get_unless_zero(q)) 861 set_exec_queue_wedged(q); 862 mutex_unlock(&guc->submission_state.lock); 863 864 return true; 865 } 866 867 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 868 { 869 struct xe_guc_exec_queue *ge = 870 container_of(w, struct xe_guc_exec_queue, lr_tdr); 871 struct xe_exec_queue *q = ge->q; 872 struct xe_guc *guc = exec_queue_to_guc(q); 873 struct xe_device *xe = guc_to_xe(guc); 874 struct xe_gpu_scheduler *sched = &ge->sched; 875 bool wedged; 876 877 xe_assert(xe, xe_exec_queue_is_lr(q)); 878 trace_xe_exec_queue_lr_cleanup(q); 879 880 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 881 882 /* Kill the run_job / process_msg entry points */ 883 xe_sched_submission_stop(sched); 884 885 /* 886 * Engine state now mostly stable, disable scheduling / deregister if 887 * needed. This cleanup routine might be called multiple times, where 888 * the actual async engine deregister drops the final engine ref. 889 * Calling disable_scheduling_deregister will mark the engine as 890 * destroyed and fire off the CT requests to disable scheduling / 891 * deregister, which we only want to do once. We also don't want to mark 892 * the engine as pending_disable again as this may race with the 893 * xe_guc_deregister_done_handler() which treats it as an unexpected 894 * state. 895 */ 896 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 897 struct xe_guc *guc = exec_queue_to_guc(q); 898 int ret; 899 900 set_exec_queue_banned(q); 901 disable_scheduling_deregister(guc, q); 902 903 /* 904 * Must wait for scheduling to be disabled before signalling 905 * any fences, if GT broken the GT reset code should signal us. 906 */ 907 ret = wait_event_timeout(guc->ct.wq, 908 !exec_queue_pending_disable(q) || 909 guc_read_stopped(guc), HZ * 5); 910 if (!ret) { 911 drm_warn(&xe->drm, "Schedule disable failed to respond"); 912 xe_sched_submission_start(sched); 913 xe_gt_reset_async(q->gt); 914 return; 915 } 916 } 917 918 xe_sched_submission_start(sched); 919 } 920 921 static enum drm_gpu_sched_stat 922 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 923 { 924 struct xe_sched_job *job = to_xe_sched_job(drm_job); 925 struct xe_sched_job *tmp_job; 926 struct xe_exec_queue *q = job->q; 927 struct xe_gpu_scheduler *sched = &q->guc->sched; 928 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(q)); 929 int err = -ETIME; 930 int i = 0; 931 bool wedged; 932 933 /* 934 * TDR has fired before free job worker. Common if exec queue 935 * immediately closed after last fence signaled. 936 */ 937 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) { 938 guc_exec_queue_free_job(drm_job); 939 940 return DRM_GPU_SCHED_STAT_NOMINAL; 941 } 942 943 drm_notice(&xe->drm, "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx", 944 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 945 q->guc->id, q->flags); 946 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 947 "Kernel-submitted job timed out\n"); 948 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 949 "VM job timed out on non-killed execqueue\n"); 950 951 if (!exec_queue_killed(q)) 952 xe_devcoredump(job); 953 954 trace_xe_sched_job_timedout(job); 955 956 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 957 958 /* Kill the run_job entry point */ 959 xe_sched_submission_stop(sched); 960 961 /* 962 * Kernel jobs should never fail, nor should VM jobs if they do 963 * somethings has gone wrong and the GT needs a reset 964 */ 965 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 966 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 967 if (!xe_sched_invalidate_job(job, 2)) { 968 xe_sched_add_pending_job(sched, job); 969 xe_sched_submission_start(sched); 970 xe_gt_reset_async(q->gt); 971 goto out; 972 } 973 } 974 975 /* Engine state now stable, disable scheduling if needed */ 976 if (!wedged && exec_queue_registered(q)) { 977 struct xe_guc *guc = exec_queue_to_guc(q); 978 int ret; 979 980 if (exec_queue_reset(q)) 981 err = -EIO; 982 set_exec_queue_banned(q); 983 if (!exec_queue_destroyed(q)) { 984 xe_exec_queue_get(q); 985 disable_scheduling_deregister(guc, q); 986 } 987 988 /* 989 * Must wait for scheduling to be disabled before signalling 990 * any fences, if GT broken the GT reset code should signal us. 991 * 992 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 993 * error) messages which can cause the schedule disable to get 994 * lost. If this occurs, trigger a GT reset to recover. 995 */ 996 smp_rmb(); 997 ret = wait_event_timeout(guc->ct.wq, 998 !exec_queue_pending_disable(q) || 999 guc_read_stopped(guc), HZ * 5); 1000 if (!ret || guc_read_stopped(guc)) { 1001 drm_warn(&xe->drm, "Schedule disable failed to respond"); 1002 xe_sched_add_pending_job(sched, job); 1003 xe_sched_submission_start(sched); 1004 xe_gt_reset_async(q->gt); 1005 xe_sched_tdr_queue_imm(sched); 1006 goto out; 1007 } 1008 } 1009 1010 /* Stop fence signaling */ 1011 xe_hw_fence_irq_stop(q->fence_irq); 1012 1013 /* 1014 * Fence state now stable, stop / start scheduler which cleans up any 1015 * fences that are complete 1016 */ 1017 xe_sched_add_pending_job(sched, job); 1018 xe_sched_submission_start(sched); 1019 1020 xe_guc_exec_queue_trigger_cleanup(q); 1021 1022 /* Mark all outstanding jobs as bad, thus completing them */ 1023 spin_lock(&sched->base.job_list_lock); 1024 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1025 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1026 spin_unlock(&sched->base.job_list_lock); 1027 1028 /* Start fence signaling */ 1029 xe_hw_fence_irq_start(q->fence_irq); 1030 1031 out: 1032 return DRM_GPU_SCHED_STAT_NOMINAL; 1033 } 1034 1035 static void __guc_exec_queue_fini_async(struct work_struct *w) 1036 { 1037 struct xe_guc_exec_queue *ge = 1038 container_of(w, struct xe_guc_exec_queue, fini_async); 1039 struct xe_exec_queue *q = ge->q; 1040 struct xe_guc *guc = exec_queue_to_guc(q); 1041 1042 xe_pm_runtime_get(guc_to_xe(guc)); 1043 trace_xe_exec_queue_destroy(q); 1044 1045 if (xe_exec_queue_is_lr(q)) 1046 cancel_work_sync(&ge->lr_tdr); 1047 release_guc_id(guc, q); 1048 xe_sched_entity_fini(&ge->entity); 1049 xe_sched_fini(&ge->sched); 1050 1051 kfree(ge); 1052 xe_exec_queue_fini(q); 1053 xe_pm_runtime_put(guc_to_xe(guc)); 1054 } 1055 1056 static void guc_exec_queue_fini_async(struct xe_exec_queue *q) 1057 { 1058 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async); 1059 1060 /* We must block on kernel engines so slabs are empty on driver unload */ 1061 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1062 __guc_exec_queue_fini_async(&q->guc->fini_async); 1063 else 1064 queue_work(system_wq, &q->guc->fini_async); 1065 } 1066 1067 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q) 1068 { 1069 /* 1070 * Might be done from within the GPU scheduler, need to do async as we 1071 * fini the scheduler when the engine is fini'd, the scheduler can't 1072 * complete fini within itself (circular dependency). Async resolves 1073 * this we and don't really care when everything is fini'd, just that it 1074 * is. 1075 */ 1076 guc_exec_queue_fini_async(q); 1077 } 1078 1079 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1080 { 1081 struct xe_exec_queue *q = msg->private_data; 1082 struct xe_guc *guc = exec_queue_to_guc(q); 1083 struct xe_device *xe = guc_to_xe(guc); 1084 1085 xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1086 trace_xe_exec_queue_cleanup_entity(q); 1087 1088 if (exec_queue_registered(q)) 1089 disable_scheduling_deregister(guc, q); 1090 else 1091 __guc_exec_queue_fini(guc, q); 1092 } 1093 1094 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1095 { 1096 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1097 } 1098 1099 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1100 { 1101 struct xe_exec_queue *q = msg->private_data; 1102 struct xe_guc *guc = exec_queue_to_guc(q); 1103 1104 if (guc_exec_queue_allowed_to_change_state(q)) 1105 init_policies(guc, q); 1106 kfree(msg); 1107 } 1108 1109 static void suspend_fence_signal(struct xe_exec_queue *q) 1110 { 1111 struct xe_guc *guc = exec_queue_to_guc(q); 1112 struct xe_device *xe = guc_to_xe(guc); 1113 1114 xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) || 1115 guc_read_stopped(guc)); 1116 xe_assert(xe, q->guc->suspend_pending); 1117 1118 q->guc->suspend_pending = false; 1119 smp_wmb(); 1120 wake_up(&q->guc->suspend_wait); 1121 } 1122 1123 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1124 { 1125 struct xe_exec_queue *q = msg->private_data; 1126 struct xe_guc *guc = exec_queue_to_guc(q); 1127 1128 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1129 exec_queue_enabled(q)) { 1130 wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING || 1131 guc_read_stopped(guc)); 1132 1133 if (!guc_read_stopped(guc)) { 1134 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 1135 s64 since_resume_ms = 1136 ktime_ms_delta(ktime_get(), 1137 q->guc->resume_time); 1138 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1139 since_resume_ms; 1140 1141 if (wait_ms > 0 && q->guc->resume_time) 1142 msleep(wait_ms); 1143 1144 set_exec_queue_suspended(q); 1145 clear_exec_queue_enabled(q); 1146 set_exec_queue_pending_disable(q); 1147 trace_xe_exec_queue_scheduling_disable(q); 1148 1149 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1150 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1151 } 1152 } else if (q->guc->suspend_pending) { 1153 set_exec_queue_suspended(q); 1154 suspend_fence_signal(q); 1155 } 1156 } 1157 1158 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1159 { 1160 struct xe_exec_queue *q = msg->private_data; 1161 struct xe_guc *guc = exec_queue_to_guc(q); 1162 1163 if (guc_exec_queue_allowed_to_change_state(q)) { 1164 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 1165 1166 q->guc->resume_time = RESUME_PENDING; 1167 clear_exec_queue_suspended(q); 1168 set_exec_queue_pending_enable(q); 1169 set_exec_queue_enabled(q); 1170 trace_xe_exec_queue_scheduling_enable(q); 1171 1172 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1173 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1174 } else { 1175 clear_exec_queue_suspended(q); 1176 } 1177 } 1178 1179 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1180 #define SET_SCHED_PROPS 2 1181 #define SUSPEND 3 1182 #define RESUME 4 1183 1184 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1185 { 1186 trace_xe_sched_msg_recv(msg); 1187 1188 switch (msg->opcode) { 1189 case CLEANUP: 1190 __guc_exec_queue_process_msg_cleanup(msg); 1191 break; 1192 case SET_SCHED_PROPS: 1193 __guc_exec_queue_process_msg_set_sched_props(msg); 1194 break; 1195 case SUSPEND: 1196 __guc_exec_queue_process_msg_suspend(msg); 1197 break; 1198 case RESUME: 1199 __guc_exec_queue_process_msg_resume(msg); 1200 break; 1201 default: 1202 XE_WARN_ON("Unknown message type"); 1203 } 1204 } 1205 1206 static const struct drm_sched_backend_ops drm_sched_ops = { 1207 .run_job = guc_exec_queue_run_job, 1208 .free_job = guc_exec_queue_free_job, 1209 .timedout_job = guc_exec_queue_timedout_job, 1210 }; 1211 1212 static const struct xe_sched_backend_ops xe_sched_ops = { 1213 .process_msg = guc_exec_queue_process_msg, 1214 }; 1215 1216 static int guc_exec_queue_init(struct xe_exec_queue *q) 1217 { 1218 struct xe_gpu_scheduler *sched; 1219 struct xe_guc *guc = exec_queue_to_guc(q); 1220 struct xe_device *xe = guc_to_xe(guc); 1221 struct xe_guc_exec_queue *ge; 1222 long timeout; 1223 int err; 1224 1225 xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc))); 1226 1227 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1228 if (!ge) 1229 return -ENOMEM; 1230 1231 q->guc = ge; 1232 ge->q = q; 1233 init_waitqueue_head(&ge->suspend_wait); 1234 1235 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1236 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1237 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1238 get_submit_wq(guc), 1239 q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1240 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1241 q->name, gt_to_xe(q->gt)->drm.dev); 1242 if (err) 1243 goto err_free; 1244 1245 sched = &ge->sched; 1246 err = xe_sched_entity_init(&ge->entity, sched); 1247 if (err) 1248 goto err_sched; 1249 1250 if (xe_exec_queue_is_lr(q)) 1251 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1252 1253 mutex_lock(&guc->submission_state.lock); 1254 1255 err = alloc_guc_id(guc, q); 1256 if (err) 1257 goto err_entity; 1258 1259 q->entity = &ge->entity; 1260 1261 if (guc_read_stopped(guc)) 1262 xe_sched_stop(sched); 1263 1264 mutex_unlock(&guc->submission_state.lock); 1265 1266 xe_exec_queue_assign_name(q, q->guc->id); 1267 1268 trace_xe_exec_queue_create(q); 1269 1270 return 0; 1271 1272 err_entity: 1273 mutex_unlock(&guc->submission_state.lock); 1274 xe_sched_entity_fini(&ge->entity); 1275 err_sched: 1276 xe_sched_fini(&ge->sched); 1277 err_free: 1278 kfree(ge); 1279 1280 return err; 1281 } 1282 1283 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1284 { 1285 trace_xe_exec_queue_kill(q); 1286 set_exec_queue_killed(q); 1287 xe_guc_exec_queue_trigger_cleanup(q); 1288 } 1289 1290 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1291 u32 opcode) 1292 { 1293 INIT_LIST_HEAD(&msg->link); 1294 msg->opcode = opcode; 1295 msg->private_data = q; 1296 1297 trace_xe_sched_msg_add(msg); 1298 xe_sched_add_msg(&q->guc->sched, msg); 1299 } 1300 1301 #define STATIC_MSG_CLEANUP 0 1302 #define STATIC_MSG_SUSPEND 1 1303 #define STATIC_MSG_RESUME 2 1304 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1305 { 1306 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1307 1308 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1309 guc_exec_queue_add_msg(q, msg, CLEANUP); 1310 else 1311 __guc_exec_queue_fini(exec_queue_to_guc(q), q); 1312 } 1313 1314 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1315 enum xe_exec_queue_priority priority) 1316 { 1317 struct xe_sched_msg *msg; 1318 1319 if (q->sched_props.priority == priority || 1320 exec_queue_killed_or_banned_or_wedged(q)) 1321 return 0; 1322 1323 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1324 if (!msg) 1325 return -ENOMEM; 1326 1327 q->sched_props.priority = priority; 1328 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1329 1330 return 0; 1331 } 1332 1333 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1334 { 1335 struct xe_sched_msg *msg; 1336 1337 if (q->sched_props.timeslice_us == timeslice_us || 1338 exec_queue_killed_or_banned_or_wedged(q)) 1339 return 0; 1340 1341 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1342 if (!msg) 1343 return -ENOMEM; 1344 1345 q->sched_props.timeslice_us = timeslice_us; 1346 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1347 1348 return 0; 1349 } 1350 1351 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1352 u32 preempt_timeout_us) 1353 { 1354 struct xe_sched_msg *msg; 1355 1356 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1357 exec_queue_killed_or_banned_or_wedged(q)) 1358 return 0; 1359 1360 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1361 if (!msg) 1362 return -ENOMEM; 1363 1364 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1365 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1366 1367 return 0; 1368 } 1369 1370 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1371 { 1372 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1373 1374 if (exec_queue_killed_or_banned_or_wedged(q) || q->guc->suspend_pending) 1375 return -EINVAL; 1376 1377 q->guc->suspend_pending = true; 1378 guc_exec_queue_add_msg(q, msg, SUSPEND); 1379 1380 return 0; 1381 } 1382 1383 static void guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1384 { 1385 struct xe_guc *guc = exec_queue_to_guc(q); 1386 1387 wait_event(q->guc->suspend_wait, !q->guc->suspend_pending || 1388 guc_read_stopped(guc)); 1389 } 1390 1391 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1392 { 1393 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1394 struct xe_guc *guc = exec_queue_to_guc(q); 1395 struct xe_device *xe = guc_to_xe(guc); 1396 1397 xe_assert(xe, !q->guc->suspend_pending); 1398 1399 guc_exec_queue_add_msg(q, msg, RESUME); 1400 } 1401 1402 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1403 { 1404 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1405 } 1406 1407 /* 1408 * All of these functions are an abstraction layer which other parts of XE can 1409 * use to trap into the GuC backend. All of these functions, aside from init, 1410 * really shouldn't do much other than trap into the DRM scheduler which 1411 * synchronizes these operations. 1412 */ 1413 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1414 .init = guc_exec_queue_init, 1415 .kill = guc_exec_queue_kill, 1416 .fini = guc_exec_queue_fini, 1417 .set_priority = guc_exec_queue_set_priority, 1418 .set_timeslice = guc_exec_queue_set_timeslice, 1419 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1420 .suspend = guc_exec_queue_suspend, 1421 .suspend_wait = guc_exec_queue_suspend_wait, 1422 .resume = guc_exec_queue_resume, 1423 .reset_status = guc_exec_queue_reset_status, 1424 }; 1425 1426 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1427 { 1428 struct xe_gpu_scheduler *sched = &q->guc->sched; 1429 1430 /* Stop scheduling + flush any DRM scheduler operations */ 1431 xe_sched_submission_stop(sched); 1432 1433 /* Clean up lost G2H + reset engine state */ 1434 if (exec_queue_registered(q)) { 1435 if ((exec_queue_banned(q) && exec_queue_destroyed(q)) || 1436 xe_exec_queue_is_lr(q)) 1437 xe_exec_queue_put(q); 1438 else if (exec_queue_destroyed(q)) 1439 __guc_exec_queue_fini(guc, q); 1440 } 1441 if (q->guc->suspend_pending) { 1442 set_exec_queue_suspended(q); 1443 suspend_fence_signal(q); 1444 } 1445 atomic_and(EXEC_QUEUE_STATE_DESTROYED | EXEC_QUEUE_STATE_SUSPENDED, 1446 &q->guc->state); 1447 q->guc->resume_time = 0; 1448 trace_xe_exec_queue_stop(q); 1449 1450 /* 1451 * Ban any engine (aside from kernel and engines used for VM ops) with a 1452 * started but not complete job or if a job has gone through a GT reset 1453 * more than twice. 1454 */ 1455 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1456 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1457 bool ban = false; 1458 1459 if (job) { 1460 if ((xe_sched_job_started(job) && 1461 !xe_sched_job_completed(job)) || 1462 xe_sched_invalidate_job(job, 2)) { 1463 trace_xe_sched_job_ban(job); 1464 ban = true; 1465 } 1466 } else if (xe_exec_queue_is_lr(q) && 1467 (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) { 1468 ban = true; 1469 } 1470 1471 if (ban) { 1472 set_exec_queue_banned(q); 1473 xe_guc_exec_queue_trigger_cleanup(q); 1474 } 1475 } 1476 } 1477 1478 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1479 { 1480 int ret; 1481 1482 /* 1483 * Using an atomic here rather than submission_state.lock as this 1484 * function can be called while holding the CT lock (engine reset 1485 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1486 * Atomic is not ideal, but it works to prevent against concurrent reset 1487 * and releasing any TDRs waiting on guc->submission_state.stopped. 1488 */ 1489 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1490 smp_wmb(); 1491 wake_up_all(&guc->ct.wq); 1492 1493 return ret; 1494 } 1495 1496 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1497 { 1498 wait_event(guc->ct.wq, !guc_read_stopped(guc)); 1499 } 1500 1501 void xe_guc_submit_stop(struct xe_guc *guc) 1502 { 1503 struct xe_exec_queue *q; 1504 unsigned long index; 1505 struct xe_device *xe = guc_to_xe(guc); 1506 1507 xe_assert(xe, guc_read_stopped(guc) == 1); 1508 1509 mutex_lock(&guc->submission_state.lock); 1510 1511 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1512 guc_exec_queue_stop(guc, q); 1513 1514 mutex_unlock(&guc->submission_state.lock); 1515 1516 /* 1517 * No one can enter the backend at this point, aside from new engine 1518 * creation which is protected by guc->submission_state.lock. 1519 */ 1520 1521 } 1522 1523 static void guc_exec_queue_start(struct xe_exec_queue *q) 1524 { 1525 struct xe_gpu_scheduler *sched = &q->guc->sched; 1526 1527 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1528 int i; 1529 1530 trace_xe_exec_queue_resubmit(q); 1531 for (i = 0; i < q->width; ++i) 1532 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1533 xe_sched_resubmit_jobs(sched); 1534 } 1535 1536 xe_sched_submission_start(sched); 1537 } 1538 1539 int xe_guc_submit_start(struct xe_guc *guc) 1540 { 1541 struct xe_exec_queue *q; 1542 unsigned long index; 1543 struct xe_device *xe = guc_to_xe(guc); 1544 1545 xe_assert(xe, guc_read_stopped(guc) == 1); 1546 1547 mutex_lock(&guc->submission_state.lock); 1548 atomic_dec(&guc->submission_state.stopped); 1549 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1550 guc_exec_queue_start(q); 1551 mutex_unlock(&guc->submission_state.lock); 1552 1553 wake_up_all(&guc->ct.wq); 1554 1555 return 0; 1556 } 1557 1558 static struct xe_exec_queue * 1559 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1560 { 1561 struct xe_device *xe = guc_to_xe(guc); 1562 struct xe_exec_queue *q; 1563 1564 if (unlikely(guc_id >= GUC_ID_MAX)) { 1565 drm_err(&xe->drm, "Invalid guc_id %u", guc_id); 1566 return NULL; 1567 } 1568 1569 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1570 if (unlikely(!q)) { 1571 drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id); 1572 return NULL; 1573 } 1574 1575 xe_assert(xe, guc_id >= q->guc->id); 1576 xe_assert(xe, guc_id < (q->guc->id + q->width)); 1577 1578 return q; 1579 } 1580 1581 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1582 { 1583 u32 action[] = { 1584 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1585 q->guc->id, 1586 }; 1587 1588 trace_xe_exec_queue_deregister(q); 1589 1590 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1591 } 1592 1593 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q) 1594 { 1595 trace_xe_exec_queue_scheduling_done(q); 1596 1597 if (exec_queue_pending_enable(q)) { 1598 q->guc->resume_time = ktime_get(); 1599 clear_exec_queue_pending_enable(q); 1600 smp_wmb(); 1601 wake_up_all(&guc->ct.wq); 1602 } else { 1603 clear_exec_queue_pending_disable(q); 1604 if (q->guc->suspend_pending) { 1605 suspend_fence_signal(q); 1606 } else { 1607 if (exec_queue_banned(q)) { 1608 smp_wmb(); 1609 wake_up_all(&guc->ct.wq); 1610 } 1611 deregister_exec_queue(guc, q); 1612 } 1613 } 1614 } 1615 1616 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1617 { 1618 struct xe_device *xe = guc_to_xe(guc); 1619 struct xe_exec_queue *q; 1620 u32 guc_id = msg[0]; 1621 1622 if (unlikely(len < 2)) { 1623 drm_err(&xe->drm, "Invalid length %u", len); 1624 return -EPROTO; 1625 } 1626 1627 q = g2h_exec_queue_lookup(guc, guc_id); 1628 if (unlikely(!q)) 1629 return -EPROTO; 1630 1631 if (unlikely(!exec_queue_pending_enable(q) && 1632 !exec_queue_pending_disable(q))) { 1633 drm_err(&xe->drm, "Unexpected engine state 0x%04x", 1634 atomic_read(&q->guc->state)); 1635 return -EPROTO; 1636 } 1637 1638 handle_sched_done(guc, q); 1639 1640 return 0; 1641 } 1642 1643 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 1644 { 1645 trace_xe_exec_queue_deregister_done(q); 1646 1647 clear_exec_queue_registered(q); 1648 1649 if (exec_queue_banned(q) || xe_exec_queue_is_lr(q)) 1650 xe_exec_queue_put(q); 1651 else 1652 __guc_exec_queue_fini(guc, q); 1653 } 1654 1655 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1656 { 1657 struct xe_device *xe = guc_to_xe(guc); 1658 struct xe_exec_queue *q; 1659 u32 guc_id = msg[0]; 1660 1661 if (unlikely(len < 1)) { 1662 drm_err(&xe->drm, "Invalid length %u", len); 1663 return -EPROTO; 1664 } 1665 1666 q = g2h_exec_queue_lookup(guc, guc_id); 1667 if (unlikely(!q)) 1668 return -EPROTO; 1669 1670 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 1671 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 1672 drm_err(&xe->drm, "Unexpected engine state 0x%04x", 1673 atomic_read(&q->guc->state)); 1674 return -EPROTO; 1675 } 1676 1677 handle_deregister_done(guc, q); 1678 1679 return 0; 1680 } 1681 1682 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 1683 { 1684 struct xe_gt *gt = guc_to_gt(guc); 1685 struct xe_device *xe = guc_to_xe(guc); 1686 struct xe_exec_queue *q; 1687 u32 guc_id = msg[0]; 1688 1689 if (unlikely(len < 1)) { 1690 drm_err(&xe->drm, "Invalid length %u", len); 1691 return -EPROTO; 1692 } 1693 1694 q = g2h_exec_queue_lookup(guc, guc_id); 1695 if (unlikely(!q)) 1696 return -EPROTO; 1697 1698 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1699 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1700 1701 /* FIXME: Do error capture, most likely async */ 1702 1703 trace_xe_exec_queue_reset(q); 1704 1705 /* 1706 * A banned engine is a NOP at this point (came from 1707 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 1708 * jobs by setting timeout of the job to the minimum value kicking 1709 * guc_exec_queue_timedout_job. 1710 */ 1711 set_exec_queue_reset(q); 1712 if (!exec_queue_banned(q)) 1713 xe_guc_exec_queue_trigger_cleanup(q); 1714 1715 return 0; 1716 } 1717 1718 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 1719 u32 len) 1720 { 1721 struct xe_gt *gt = guc_to_gt(guc); 1722 struct xe_device *xe = guc_to_xe(guc); 1723 struct xe_exec_queue *q; 1724 u32 guc_id = msg[0]; 1725 1726 if (unlikely(len < 1)) { 1727 drm_err(&xe->drm, "Invalid length %u", len); 1728 return -EPROTO; 1729 } 1730 1731 q = g2h_exec_queue_lookup(guc, guc_id); 1732 if (unlikely(!q)) 1733 return -EPROTO; 1734 1735 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1736 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1737 1738 trace_xe_exec_queue_memory_cat_error(q); 1739 1740 /* Treat the same as engine reset */ 1741 set_exec_queue_reset(q); 1742 if (!exec_queue_banned(q)) 1743 xe_guc_exec_queue_trigger_cleanup(q); 1744 1745 return 0; 1746 } 1747 1748 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 1749 { 1750 struct xe_device *xe = guc_to_xe(guc); 1751 u8 guc_class, instance; 1752 u32 reason; 1753 1754 if (unlikely(len != 3)) { 1755 drm_err(&xe->drm, "Invalid length %u", len); 1756 return -EPROTO; 1757 } 1758 1759 guc_class = msg[0]; 1760 instance = msg[1]; 1761 reason = msg[2]; 1762 1763 /* Unexpected failure of a hardware feature, log an actual error */ 1764 drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X", 1765 guc_class, instance, reason); 1766 1767 xe_gt_reset_async(guc_to_gt(guc)); 1768 1769 return 0; 1770 } 1771 1772 static void 1773 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 1774 struct xe_guc_submit_exec_queue_snapshot *snapshot) 1775 { 1776 struct xe_guc *guc = exec_queue_to_guc(q); 1777 struct xe_device *xe = guc_to_xe(guc); 1778 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 1779 int i; 1780 1781 snapshot->guc.wqi_head = q->guc->wqi_head; 1782 snapshot->guc.wqi_tail = q->guc->wqi_tail; 1783 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 1784 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 1785 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 1786 wq_desc.wq_status); 1787 1788 if (snapshot->parallel.wq_desc.head != 1789 snapshot->parallel.wq_desc.tail) { 1790 for (i = snapshot->parallel.wq_desc.head; 1791 i != snapshot->parallel.wq_desc.tail; 1792 i = (i + sizeof(u32)) % WQ_SIZE) 1793 snapshot->parallel.wq[i / sizeof(u32)] = 1794 parallel_read(xe, map, wq[i / sizeof(u32)]); 1795 } 1796 } 1797 1798 static void 1799 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 1800 struct drm_printer *p) 1801 { 1802 int i; 1803 1804 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 1805 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 1806 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 1807 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 1808 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 1809 1810 if (snapshot->parallel.wq_desc.head != 1811 snapshot->parallel.wq_desc.tail) { 1812 for (i = snapshot->parallel.wq_desc.head; 1813 i != snapshot->parallel.wq_desc.tail; 1814 i = (i + sizeof(u32)) % WQ_SIZE) 1815 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 1816 snapshot->parallel.wq[i / sizeof(u32)]); 1817 } 1818 } 1819 1820 /** 1821 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 1822 * @q: faulty exec queue 1823 * 1824 * This can be printed out in a later stage like during dev_coredump 1825 * analysis. 1826 * 1827 * Returns: a GuC Submit Engine snapshot object that must be freed by the 1828 * caller, using `xe_guc_exec_queue_snapshot_free`. 1829 */ 1830 struct xe_guc_submit_exec_queue_snapshot * 1831 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 1832 { 1833 struct xe_gpu_scheduler *sched = &q->guc->sched; 1834 struct xe_guc_submit_exec_queue_snapshot *snapshot; 1835 int i; 1836 1837 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 1838 1839 if (!snapshot) 1840 return NULL; 1841 1842 snapshot->guc.id = q->guc->id; 1843 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 1844 snapshot->class = q->class; 1845 snapshot->logical_mask = q->logical_mask; 1846 snapshot->width = q->width; 1847 snapshot->refcount = kref_read(&q->refcount); 1848 snapshot->sched_timeout = sched->base.timeout; 1849 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 1850 snapshot->sched_props.preempt_timeout_us = 1851 q->sched_props.preempt_timeout_us; 1852 1853 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 1854 GFP_ATOMIC); 1855 1856 if (snapshot->lrc) { 1857 for (i = 0; i < q->width; ++i) { 1858 struct xe_lrc *lrc = q->lrc[i]; 1859 1860 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 1861 } 1862 } 1863 1864 snapshot->schedule_state = atomic_read(&q->guc->state); 1865 snapshot->exec_queue_flags = q->flags; 1866 1867 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 1868 if (snapshot->parallel_execution) 1869 guc_exec_queue_wq_snapshot_capture(q, snapshot); 1870 1871 spin_lock(&sched->base.job_list_lock); 1872 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 1873 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 1874 sizeof(struct pending_list_snapshot), 1875 GFP_ATOMIC); 1876 1877 if (snapshot->pending_list) { 1878 struct xe_sched_job *job_iter; 1879 1880 i = 0; 1881 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 1882 snapshot->pending_list[i].seqno = 1883 xe_sched_job_seqno(job_iter); 1884 snapshot->pending_list[i].fence = 1885 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 1886 snapshot->pending_list[i].finished = 1887 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 1888 ? 1 : 0; 1889 i++; 1890 } 1891 } 1892 1893 spin_unlock(&sched->base.job_list_lock); 1894 1895 return snapshot; 1896 } 1897 1898 /** 1899 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 1900 * @snapshot: Previously captured snapshot of job. 1901 * 1902 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 1903 */ 1904 void 1905 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 1906 { 1907 int i; 1908 1909 if (!snapshot || !snapshot->lrc) 1910 return; 1911 1912 for (i = 0; i < snapshot->width; ++i) 1913 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 1914 } 1915 1916 /** 1917 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 1918 * @snapshot: GuC Submit Engine snapshot object. 1919 * @p: drm_printer where it will be printed out. 1920 * 1921 * This function prints out a given GuC Submit Engine snapshot object. 1922 */ 1923 void 1924 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 1925 struct drm_printer *p) 1926 { 1927 int i; 1928 1929 if (!snapshot) 1930 return; 1931 1932 drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id); 1933 drm_printf(p, "\tName: %s\n", snapshot->name); 1934 drm_printf(p, "\tClass: %d\n", snapshot->class); 1935 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 1936 drm_printf(p, "\tWidth: %d\n", snapshot->width); 1937 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 1938 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 1939 drm_printf(p, "\tTimeslice: %u (us)\n", 1940 snapshot->sched_props.timeslice_us); 1941 drm_printf(p, "\tPreempt timeout: %u (us)\n", 1942 snapshot->sched_props.preempt_timeout_us); 1943 1944 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 1945 xe_lrc_snapshot_print(snapshot->lrc[i], p); 1946 1947 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 1948 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 1949 1950 if (snapshot->parallel_execution) 1951 guc_exec_queue_wq_snapshot_print(snapshot, p); 1952 1953 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 1954 i++) 1955 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 1956 snapshot->pending_list[i].seqno, 1957 snapshot->pending_list[i].fence, 1958 snapshot->pending_list[i].finished); 1959 } 1960 1961 /** 1962 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 1963 * snapshot. 1964 * @snapshot: GuC Submit Engine snapshot object. 1965 * 1966 * This function free all the memory that needed to be allocated at capture 1967 * time. 1968 */ 1969 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 1970 { 1971 int i; 1972 1973 if (!snapshot) 1974 return; 1975 1976 if (snapshot->lrc) { 1977 for (i = 0; i < snapshot->width; i++) 1978 xe_lrc_snapshot_free(snapshot->lrc[i]); 1979 kfree(snapshot->lrc); 1980 } 1981 kfree(snapshot->pending_list); 1982 kfree(snapshot); 1983 } 1984 1985 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 1986 { 1987 struct xe_guc_submit_exec_queue_snapshot *snapshot; 1988 1989 snapshot = xe_guc_exec_queue_snapshot_capture(q); 1990 xe_guc_exec_queue_snapshot_print(snapshot, p); 1991 xe_guc_exec_queue_snapshot_free(snapshot); 1992 } 1993 1994 /** 1995 * xe_guc_submit_print - GuC Submit Print. 1996 * @guc: GuC. 1997 * @p: drm_printer where it will be printed out. 1998 * 1999 * This function capture and prints snapshots of **all** GuC Engines. 2000 */ 2001 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2002 { 2003 struct xe_exec_queue *q; 2004 unsigned long index; 2005 2006 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2007 return; 2008 2009 mutex_lock(&guc->submission_state.lock); 2010 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2011 guc_exec_queue_print(q, p); 2012 mutex_unlock(&guc->submission_state.lock); 2013 } 2014