1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 #include <linux/math64.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_klvs_abi.h" 19 #include "regs/xe_lrc_layout.h" 20 #include "xe_assert.h" 21 #include "xe_devcoredump.h" 22 #include "xe_device.h" 23 #include "xe_exec_queue.h" 24 #include "xe_force_wake.h" 25 #include "xe_gpu_scheduler.h" 26 #include "xe_gt.h" 27 #include "xe_gt_clock.h" 28 #include "xe_gt_printk.h" 29 #include "xe_guc.h" 30 #include "xe_guc_ct.h" 31 #include "xe_guc_exec_queue_types.h" 32 #include "xe_guc_id_mgr.h" 33 #include "xe_guc_submit_types.h" 34 #include "xe_hw_engine.h" 35 #include "xe_hw_fence.h" 36 #include "xe_lrc.h" 37 #include "xe_macros.h" 38 #include "xe_map.h" 39 #include "xe_mocs.h" 40 #include "xe_pm.h" 41 #include "xe_ring_ops_types.h" 42 #include "xe_sched_job.h" 43 #include "xe_trace.h" 44 #include "xe_vm.h" 45 46 static struct xe_guc * 47 exec_queue_to_guc(struct xe_exec_queue *q) 48 { 49 return &q->gt->uc.guc; 50 } 51 52 /* 53 * Helpers for engine state, using an atomic as some of the bits can transition 54 * as the same time (e.g. a suspend can be happning at the same time as schedule 55 * engine done being processed). 56 */ 57 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 58 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 59 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 60 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 61 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 62 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 63 #define EXEC_QUEUE_STATE_RESET (1 << 6) 64 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 65 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 66 #define EXEC_QUEUE_STATE_BANNED (1 << 9) 67 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10) 68 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11) 69 70 static bool exec_queue_registered(struct xe_exec_queue *q) 71 { 72 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 73 } 74 75 static void set_exec_queue_registered(struct xe_exec_queue *q) 76 { 77 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 78 } 79 80 static void clear_exec_queue_registered(struct xe_exec_queue *q) 81 { 82 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 83 } 84 85 static bool exec_queue_enabled(struct xe_exec_queue *q) 86 { 87 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 88 } 89 90 static void set_exec_queue_enabled(struct xe_exec_queue *q) 91 { 92 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 93 } 94 95 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 96 { 97 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 98 } 99 100 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 101 { 102 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 103 } 104 105 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 106 { 107 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 108 } 109 110 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 111 { 112 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 113 } 114 115 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 116 { 117 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 118 } 119 120 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 121 { 122 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 123 } 124 125 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 126 { 127 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 128 } 129 130 static bool exec_queue_destroyed(struct xe_exec_queue *q) 131 { 132 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 133 } 134 135 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 136 { 137 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 138 } 139 140 static bool exec_queue_banned(struct xe_exec_queue *q) 141 { 142 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED; 143 } 144 145 static void set_exec_queue_banned(struct xe_exec_queue *q) 146 { 147 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state); 148 } 149 150 static bool exec_queue_suspended(struct xe_exec_queue *q) 151 { 152 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 153 } 154 155 static void set_exec_queue_suspended(struct xe_exec_queue *q) 156 { 157 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 158 } 159 160 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 161 { 162 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 163 } 164 165 static bool exec_queue_reset(struct xe_exec_queue *q) 166 { 167 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 168 } 169 170 static void set_exec_queue_reset(struct xe_exec_queue *q) 171 { 172 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 173 } 174 175 static bool exec_queue_killed(struct xe_exec_queue *q) 176 { 177 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 178 } 179 180 static void set_exec_queue_killed(struct xe_exec_queue *q) 181 { 182 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 183 } 184 185 static bool exec_queue_wedged(struct xe_exec_queue *q) 186 { 187 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 188 } 189 190 static void set_exec_queue_wedged(struct xe_exec_queue *q) 191 { 192 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 193 } 194 195 static bool exec_queue_check_timeout(struct xe_exec_queue *q) 196 { 197 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT; 198 } 199 200 static void set_exec_queue_check_timeout(struct xe_exec_queue *q) 201 { 202 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 203 } 204 205 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q) 206 { 207 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 208 } 209 210 static bool exec_queue_extra_ref(struct xe_exec_queue *q) 211 { 212 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF; 213 } 214 215 static void set_exec_queue_extra_ref(struct xe_exec_queue *q) 216 { 217 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state); 218 } 219 220 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 221 { 222 return (atomic_read(&q->guc->state) & 223 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED | 224 EXEC_QUEUE_STATE_BANNED)); 225 } 226 227 static void guc_submit_fini(struct drm_device *drm, void *arg) 228 { 229 struct xe_guc *guc = arg; 230 231 xa_destroy(&guc->submission_state.exec_queue_lookup); 232 } 233 234 static void guc_submit_wedged_fini(void *arg) 235 { 236 struct xe_guc *guc = arg; 237 struct xe_exec_queue *q; 238 unsigned long index; 239 240 mutex_lock(&guc->submission_state.lock); 241 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 242 if (exec_queue_wedged(q)) { 243 mutex_unlock(&guc->submission_state.lock); 244 xe_exec_queue_put(q); 245 mutex_lock(&guc->submission_state.lock); 246 } 247 } 248 mutex_unlock(&guc->submission_state.lock); 249 } 250 251 static const struct xe_exec_queue_ops guc_exec_queue_ops; 252 253 static void primelockdep(struct xe_guc *guc) 254 { 255 if (!IS_ENABLED(CONFIG_LOCKDEP)) 256 return; 257 258 fs_reclaim_acquire(GFP_KERNEL); 259 260 mutex_lock(&guc->submission_state.lock); 261 mutex_unlock(&guc->submission_state.lock); 262 263 fs_reclaim_release(GFP_KERNEL); 264 } 265 266 /** 267 * xe_guc_submit_init() - Initialize GuC submission. 268 * @guc: the &xe_guc to initialize 269 * @num_ids: number of GuC context IDs to use 270 * 271 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 272 * GuC context IDs supported by the GuC firmware should be used for submission. 273 * 274 * Only VF drivers will have to provide explicit number of GuC context IDs 275 * that they can use for submission. 276 * 277 * Return: 0 on success or a negative error code on failure. 278 */ 279 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 280 { 281 struct xe_device *xe = guc_to_xe(guc); 282 struct xe_gt *gt = guc_to_gt(guc); 283 int err; 284 285 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 286 if (err) 287 return err; 288 289 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 290 if (err) 291 return err; 292 293 gt->exec_queue_ops = &guc_exec_queue_ops; 294 295 xa_init(&guc->submission_state.exec_queue_lookup); 296 297 init_waitqueue_head(&guc->submission_state.fini_wq); 298 299 primelockdep(guc); 300 301 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 302 } 303 304 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 305 { 306 int i; 307 308 lockdep_assert_held(&guc->submission_state.lock); 309 310 for (i = 0; i < xa_count; ++i) 311 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 312 313 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 314 q->guc->id, q->width); 315 316 if (xa_empty(&guc->submission_state.exec_queue_lookup)) 317 wake_up(&guc->submission_state.fini_wq); 318 } 319 320 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 321 { 322 int ret; 323 int i; 324 325 /* 326 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 327 * worse case user gets -ENOMEM on engine create and has to try again. 328 * 329 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 330 * failure. 331 */ 332 lockdep_assert_held(&guc->submission_state.lock); 333 334 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 335 q->width); 336 if (ret < 0) 337 return ret; 338 339 q->guc->id = ret; 340 341 for (i = 0; i < q->width; ++i) { 342 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup, 343 q->guc->id + i, q, GFP_NOWAIT)); 344 if (ret) 345 goto err_release; 346 } 347 348 return 0; 349 350 err_release: 351 __release_guc_id(guc, q, i); 352 353 return ret; 354 } 355 356 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 357 { 358 mutex_lock(&guc->submission_state.lock); 359 __release_guc_id(guc, q, q->width); 360 mutex_unlock(&guc->submission_state.lock); 361 } 362 363 struct exec_queue_policy { 364 u32 count; 365 struct guc_update_exec_queue_policy h2g; 366 }; 367 368 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 369 { 370 size_t bytes = sizeof(policy->h2g.header) + 371 (sizeof(policy->h2g.klv[0]) * policy->count); 372 373 return bytes / sizeof(u32); 374 } 375 376 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 377 u16 guc_id) 378 { 379 policy->h2g.header.action = 380 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 381 policy->h2g.header.guc_id = guc_id; 382 policy->count = 0; 383 } 384 385 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 386 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 387 u32 data) \ 388 { \ 389 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 390 \ 391 policy->h2g.klv[policy->count].kl = \ 392 FIELD_PREP(GUC_KLV_0_KEY, \ 393 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 394 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 395 policy->h2g.klv[policy->count].value = data; \ 396 policy->count++; \ 397 } 398 399 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 400 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 401 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 402 #undef MAKE_EXEC_QUEUE_POLICY_ADD 403 404 static const int xe_exec_queue_prio_to_guc[] = { 405 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 406 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 407 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 408 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 409 }; 410 411 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 412 { 413 struct exec_queue_policy policy; 414 struct xe_device *xe = guc_to_xe(guc); 415 enum xe_exec_queue_priority prio = q->sched_props.priority; 416 u32 timeslice_us = q->sched_props.timeslice_us; 417 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 418 419 xe_assert(xe, exec_queue_registered(q)); 420 421 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 422 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 423 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 424 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 425 426 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 427 __guc_exec_queue_policy_action_size(&policy), 0, 0); 428 } 429 430 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 431 { 432 struct exec_queue_policy policy; 433 434 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 435 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 436 437 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 438 __guc_exec_queue_policy_action_size(&policy), 0, 0); 439 } 440 441 #define parallel_read(xe_, map_, field_) \ 442 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 443 field_) 444 #define parallel_write(xe_, map_, field_, val_) \ 445 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 446 field_, val_) 447 448 static void __register_mlrc_exec_queue(struct xe_guc *guc, 449 struct xe_exec_queue *q, 450 struct guc_ctxt_registration_info *info) 451 { 452 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 453 struct xe_device *xe = guc_to_xe(guc); 454 u32 action[MAX_MLRC_REG_SIZE]; 455 int len = 0; 456 int i; 457 458 xe_assert(xe, xe_exec_queue_is_parallel(q)); 459 460 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 461 action[len++] = info->flags; 462 action[len++] = info->context_idx; 463 action[len++] = info->engine_class; 464 action[len++] = info->engine_submit_mask; 465 action[len++] = info->wq_desc_lo; 466 action[len++] = info->wq_desc_hi; 467 action[len++] = info->wq_base_lo; 468 action[len++] = info->wq_base_hi; 469 action[len++] = info->wq_size; 470 action[len++] = q->width; 471 action[len++] = info->hwlrca_lo; 472 action[len++] = info->hwlrca_hi; 473 474 for (i = 1; i < q->width; ++i) { 475 struct xe_lrc *lrc = q->lrc[i]; 476 477 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 478 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 479 } 480 481 xe_assert(xe, len <= MAX_MLRC_REG_SIZE); 482 #undef MAX_MLRC_REG_SIZE 483 484 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 485 } 486 487 static void __register_exec_queue(struct xe_guc *guc, 488 struct guc_ctxt_registration_info *info) 489 { 490 u32 action[] = { 491 XE_GUC_ACTION_REGISTER_CONTEXT, 492 info->flags, 493 info->context_idx, 494 info->engine_class, 495 info->engine_submit_mask, 496 info->wq_desc_lo, 497 info->wq_desc_hi, 498 info->wq_base_lo, 499 info->wq_base_hi, 500 info->wq_size, 501 info->hwlrca_lo, 502 info->hwlrca_hi, 503 }; 504 505 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 506 } 507 508 static void register_exec_queue(struct xe_exec_queue *q) 509 { 510 struct xe_guc *guc = exec_queue_to_guc(q); 511 struct xe_device *xe = guc_to_xe(guc); 512 struct xe_lrc *lrc = q->lrc[0]; 513 struct guc_ctxt_registration_info info; 514 515 xe_assert(xe, !exec_queue_registered(q)); 516 517 memset(&info, 0, sizeof(info)); 518 info.context_idx = q->guc->id; 519 info.engine_class = xe_engine_class_to_guc_class(q->class); 520 info.engine_submit_mask = q->logical_mask; 521 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 522 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 523 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 524 525 if (xe_exec_queue_is_parallel(q)) { 526 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 527 struct iosys_map map = xe_lrc_parallel_map(lrc); 528 529 info.wq_desc_lo = lower_32_bits(ggtt_addr + 530 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 531 info.wq_desc_hi = upper_32_bits(ggtt_addr + 532 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 533 info.wq_base_lo = lower_32_bits(ggtt_addr + 534 offsetof(struct guc_submit_parallel_scratch, wq[0])); 535 info.wq_base_hi = upper_32_bits(ggtt_addr + 536 offsetof(struct guc_submit_parallel_scratch, wq[0])); 537 info.wq_size = WQ_SIZE; 538 539 q->guc->wqi_head = 0; 540 q->guc->wqi_tail = 0; 541 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 542 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 543 } 544 545 /* 546 * We must keep a reference for LR engines if engine is registered with 547 * the GuC as jobs signal immediately and can't destroy an engine if the 548 * GuC has a reference to it. 549 */ 550 if (xe_exec_queue_is_lr(q)) 551 xe_exec_queue_get(q); 552 553 set_exec_queue_registered(q); 554 trace_xe_exec_queue_register(q); 555 if (xe_exec_queue_is_parallel(q)) 556 __register_mlrc_exec_queue(guc, q, &info); 557 else 558 __register_exec_queue(guc, &info); 559 init_policies(guc, q); 560 } 561 562 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 563 { 564 return (WQ_SIZE - q->guc->wqi_tail); 565 } 566 567 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 568 { 569 struct xe_guc *guc = exec_queue_to_guc(q); 570 struct xe_device *xe = guc_to_xe(guc); 571 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 572 unsigned int sleep_period_ms = 1; 573 574 #define AVAILABLE_SPACE \ 575 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 576 if (wqi_size > AVAILABLE_SPACE) { 577 try_again: 578 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 579 if (wqi_size > AVAILABLE_SPACE) { 580 if (sleep_period_ms == 1024) { 581 xe_gt_reset_async(q->gt); 582 return -ENODEV; 583 } 584 585 msleep(sleep_period_ms); 586 sleep_period_ms <<= 1; 587 goto try_again; 588 } 589 } 590 #undef AVAILABLE_SPACE 591 592 return 0; 593 } 594 595 static int wq_noop_append(struct xe_exec_queue *q) 596 { 597 struct xe_guc *guc = exec_queue_to_guc(q); 598 struct xe_device *xe = guc_to_xe(guc); 599 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 600 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 601 602 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 603 return -ENODEV; 604 605 xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw)); 606 607 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 608 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 609 FIELD_PREP(WQ_LEN_MASK, len_dw)); 610 q->guc->wqi_tail = 0; 611 612 return 0; 613 } 614 615 static void wq_item_append(struct xe_exec_queue *q) 616 { 617 struct xe_guc *guc = exec_queue_to_guc(q); 618 struct xe_device *xe = guc_to_xe(guc); 619 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 620 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 621 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 622 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 623 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 624 int i = 0, j; 625 626 if (wqi_size > wq_space_until_wrap(q)) { 627 if (wq_noop_append(q)) 628 return; 629 } 630 if (wq_wait_for_space(q, wqi_size)) 631 return; 632 633 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 634 FIELD_PREP(WQ_LEN_MASK, len_dw); 635 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 636 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 637 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 638 wqi[i++] = 0; 639 for (j = 1; j < q->width; ++j) { 640 struct xe_lrc *lrc = q->lrc[j]; 641 642 wqi[i++] = lrc->ring.tail / sizeof(u64); 643 } 644 645 xe_assert(xe, i == wqi_size / sizeof(u32)); 646 647 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 648 wq[q->guc->wqi_tail / sizeof(u32)])); 649 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 650 q->guc->wqi_tail += wqi_size; 651 xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE); 652 653 xe_device_wmb(xe); 654 655 map = xe_lrc_parallel_map(q->lrc[0]); 656 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 657 } 658 659 #define RESUME_PENDING ~0x0ull 660 static void submit_exec_queue(struct xe_exec_queue *q) 661 { 662 struct xe_guc *guc = exec_queue_to_guc(q); 663 struct xe_device *xe = guc_to_xe(guc); 664 struct xe_lrc *lrc = q->lrc[0]; 665 u32 action[3]; 666 u32 g2h_len = 0; 667 u32 num_g2h = 0; 668 int len = 0; 669 bool extra_submit = false; 670 671 xe_assert(xe, exec_queue_registered(q)); 672 673 if (xe_exec_queue_is_parallel(q)) 674 wq_item_append(q); 675 else 676 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 677 678 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 679 return; 680 681 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 682 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 683 action[len++] = q->guc->id; 684 action[len++] = GUC_CONTEXT_ENABLE; 685 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 686 num_g2h = 1; 687 if (xe_exec_queue_is_parallel(q)) 688 extra_submit = true; 689 690 q->guc->resume_time = RESUME_PENDING; 691 set_exec_queue_pending_enable(q); 692 set_exec_queue_enabled(q); 693 trace_xe_exec_queue_scheduling_enable(q); 694 } else { 695 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 696 action[len++] = q->guc->id; 697 trace_xe_exec_queue_submit(q); 698 } 699 700 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 701 702 if (extra_submit) { 703 len = 0; 704 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 705 action[len++] = q->guc->id; 706 trace_xe_exec_queue_submit(q); 707 708 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 709 } 710 } 711 712 static struct dma_fence * 713 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 714 { 715 struct xe_sched_job *job = to_xe_sched_job(drm_job); 716 struct xe_exec_queue *q = job->q; 717 struct xe_guc *guc = exec_queue_to_guc(q); 718 struct xe_device *xe = guc_to_xe(guc); 719 bool lr = xe_exec_queue_is_lr(q); 720 721 xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 722 exec_queue_banned(q) || exec_queue_suspended(q)); 723 724 trace_xe_sched_job_run(job); 725 726 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 727 if (!exec_queue_registered(q)) 728 register_exec_queue(q); 729 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 730 q->ring_ops->emit_job(job); 731 submit_exec_queue(q); 732 } 733 734 if (lr) { 735 xe_sched_job_set_error(job, -EOPNOTSUPP); 736 return NULL; 737 } else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) { 738 return job->fence; 739 } else { 740 return dma_fence_get(job->fence); 741 } 742 } 743 744 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 745 { 746 struct xe_sched_job *job = to_xe_sched_job(drm_job); 747 748 xe_exec_queue_update_run_ticks(job->q); 749 750 trace_xe_sched_job_free(job); 751 xe_sched_job_put(job); 752 } 753 754 static int guc_read_stopped(struct xe_guc *guc) 755 { 756 return atomic_read(&guc->submission_state.stopped); 757 } 758 759 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 760 u32 action[] = { \ 761 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 762 q->guc->id, \ 763 GUC_CONTEXT_##enable_disable, \ 764 } 765 766 static void disable_scheduling_deregister(struct xe_guc *guc, 767 struct xe_exec_queue *q) 768 { 769 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 770 struct xe_device *xe = guc_to_xe(guc); 771 int ret; 772 773 set_min_preemption_timeout(guc, q); 774 smp_rmb(); 775 ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) || 776 guc_read_stopped(guc), HZ * 5); 777 if (!ret) { 778 struct xe_gpu_scheduler *sched = &q->guc->sched; 779 780 drm_warn(&xe->drm, "Pending enable failed to respond"); 781 xe_sched_submission_start(sched); 782 xe_gt_reset_async(q->gt); 783 xe_sched_tdr_queue_imm(sched); 784 return; 785 } 786 787 clear_exec_queue_enabled(q); 788 set_exec_queue_pending_disable(q); 789 set_exec_queue_destroyed(q); 790 trace_xe_exec_queue_scheduling_disable(q); 791 792 /* 793 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 794 * handler and we are not allowed to reserved G2H space in handlers. 795 */ 796 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 797 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 798 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 799 } 800 801 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 802 { 803 struct xe_guc *guc = exec_queue_to_guc(q); 804 struct xe_device *xe = guc_to_xe(guc); 805 806 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 807 wake_up_all(&xe->ufence_wq); 808 809 if (xe_exec_queue_is_lr(q)) 810 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 811 else 812 xe_sched_tdr_queue_imm(&q->guc->sched); 813 } 814 815 /** 816 * xe_guc_submit_wedge() - Wedge GuC submission 817 * @guc: the GuC object 818 * 819 * Save exec queue's registered with GuC state by taking a ref to each queue. 820 * Register a DRMM handler to drop refs upon driver unload. 821 */ 822 void xe_guc_submit_wedge(struct xe_guc *guc) 823 { 824 struct xe_device *xe = guc_to_xe(guc); 825 struct xe_exec_queue *q; 826 unsigned long index; 827 int err; 828 829 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); 830 831 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev, 832 guc_submit_wedged_fini, guc); 833 if (err) { 834 drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n"); 835 return; 836 } 837 838 mutex_lock(&guc->submission_state.lock); 839 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 840 if (xe_exec_queue_get_unless_zero(q)) 841 set_exec_queue_wedged(q); 842 mutex_unlock(&guc->submission_state.lock); 843 } 844 845 static bool guc_submit_hint_wedged(struct xe_guc *guc) 846 { 847 struct xe_device *xe = guc_to_xe(guc); 848 849 if (xe->wedged.mode != 2) 850 return false; 851 852 if (xe_device_wedged(xe)) 853 return true; 854 855 xe_device_declare_wedged(xe); 856 857 return true; 858 } 859 860 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 861 { 862 struct xe_guc_exec_queue *ge = 863 container_of(w, struct xe_guc_exec_queue, lr_tdr); 864 struct xe_exec_queue *q = ge->q; 865 struct xe_guc *guc = exec_queue_to_guc(q); 866 struct xe_device *xe = guc_to_xe(guc); 867 struct xe_gpu_scheduler *sched = &ge->sched; 868 bool wedged; 869 870 xe_assert(xe, xe_exec_queue_is_lr(q)); 871 trace_xe_exec_queue_lr_cleanup(q); 872 873 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 874 875 /* Kill the run_job / process_msg entry points */ 876 xe_sched_submission_stop(sched); 877 878 /* 879 * Engine state now mostly stable, disable scheduling / deregister if 880 * needed. This cleanup routine might be called multiple times, where 881 * the actual async engine deregister drops the final engine ref. 882 * Calling disable_scheduling_deregister will mark the engine as 883 * destroyed and fire off the CT requests to disable scheduling / 884 * deregister, which we only want to do once. We also don't want to mark 885 * the engine as pending_disable again as this may race with the 886 * xe_guc_deregister_done_handler() which treats it as an unexpected 887 * state. 888 */ 889 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 890 struct xe_guc *guc = exec_queue_to_guc(q); 891 int ret; 892 893 set_exec_queue_banned(q); 894 disable_scheduling_deregister(guc, q); 895 896 /* 897 * Must wait for scheduling to be disabled before signalling 898 * any fences, if GT broken the GT reset code should signal us. 899 */ 900 ret = wait_event_timeout(guc->ct.wq, 901 !exec_queue_pending_disable(q) || 902 guc_read_stopped(guc), HZ * 5); 903 if (!ret) { 904 drm_warn(&xe->drm, "Schedule disable failed to respond"); 905 xe_sched_submission_start(sched); 906 xe_gt_reset_async(q->gt); 907 return; 908 } 909 } 910 911 xe_sched_submission_start(sched); 912 } 913 914 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100) 915 916 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job) 917 { 918 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q)); 919 u32 ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]); 920 u32 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]); 921 u32 timeout_ms = q->sched_props.job_timeout_ms; 922 u32 diff; 923 u64 running_time_ms; 924 925 /* 926 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch 927 * possible overflows with a high timeout. 928 */ 929 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC); 930 931 if (ctx_timestamp < ctx_job_timestamp) 932 diff = ctx_timestamp + U32_MAX - ctx_job_timestamp; 933 else 934 diff = ctx_timestamp - ctx_job_timestamp; 935 936 /* 937 * Ensure timeout is within 5% to account for an GuC scheduling latency 938 */ 939 running_time_ms = 940 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff)); 941 942 xe_gt_dbg(gt, 943 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x", 944 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 945 q->guc->id, running_time_ms, timeout_ms, diff); 946 947 return running_time_ms >= timeout_ms; 948 } 949 950 static void enable_scheduling(struct xe_exec_queue *q) 951 { 952 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 953 struct xe_guc *guc = exec_queue_to_guc(q); 954 int ret; 955 956 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 957 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 958 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 959 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 960 961 set_exec_queue_pending_enable(q); 962 set_exec_queue_enabled(q); 963 trace_xe_exec_queue_scheduling_enable(q); 964 965 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 966 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 967 968 ret = wait_event_timeout(guc->ct.wq, 969 !exec_queue_pending_enable(q) || 970 guc_read_stopped(guc), HZ * 5); 971 if (!ret || guc_read_stopped(guc)) { 972 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond"); 973 set_exec_queue_banned(q); 974 xe_gt_reset_async(q->gt); 975 xe_sched_tdr_queue_imm(&q->guc->sched); 976 } 977 } 978 979 static void disable_scheduling(struct xe_exec_queue *q, bool immediate) 980 { 981 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 982 struct xe_guc *guc = exec_queue_to_guc(q); 983 984 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 985 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 986 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 987 988 if (immediate) 989 set_min_preemption_timeout(guc, q); 990 clear_exec_queue_enabled(q); 991 set_exec_queue_pending_disable(q); 992 trace_xe_exec_queue_scheduling_disable(q); 993 994 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 995 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 996 } 997 998 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 999 { 1000 u32 action[] = { 1001 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1002 q->guc->id, 1003 }; 1004 1005 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1006 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1007 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1008 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1009 1010 set_exec_queue_destroyed(q); 1011 trace_xe_exec_queue_deregister(q); 1012 1013 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1014 G2H_LEN_DW_DEREGISTER_CONTEXT, 1); 1015 } 1016 1017 static enum drm_gpu_sched_stat 1018 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 1019 { 1020 struct xe_sched_job *job = to_xe_sched_job(drm_job); 1021 struct xe_sched_job *tmp_job; 1022 struct xe_exec_queue *q = job->q; 1023 struct xe_gpu_scheduler *sched = &q->guc->sched; 1024 struct xe_guc *guc = exec_queue_to_guc(q); 1025 const char *process_name = "no process"; 1026 int err = -ETIME; 1027 pid_t pid = -1; 1028 int i = 0; 1029 bool wedged, skip_timeout_check; 1030 1031 /* 1032 * TDR has fired before free job worker. Common if exec queue 1033 * immediately closed after last fence signaled. 1034 */ 1035 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) { 1036 guc_exec_queue_free_job(drm_job); 1037 1038 return DRM_GPU_SCHED_STAT_NOMINAL; 1039 } 1040 1041 /* Kill the run_job entry point */ 1042 xe_sched_submission_stop(sched); 1043 1044 /* Must check all state after stopping scheduler */ 1045 skip_timeout_check = exec_queue_reset(q) || 1046 exec_queue_killed_or_banned_or_wedged(q) || 1047 exec_queue_destroyed(q); 1048 1049 /* Job hasn't started, can't be timed out */ 1050 if (!skip_timeout_check && !xe_sched_job_started(job)) 1051 goto rearm; 1052 1053 /* 1054 * XXX: Sampling timeout doesn't work in wedged mode as we have to 1055 * modify scheduling state to read timestamp. We could read the 1056 * timestamp from a register to accumulate current running time but this 1057 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are 1058 * genuine timeouts. 1059 */ 1060 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 1061 1062 /* Engine state now stable, disable scheduling to check timestamp */ 1063 if (!wedged && exec_queue_registered(q)) { 1064 int ret; 1065 1066 if (exec_queue_reset(q)) 1067 err = -EIO; 1068 1069 if (!exec_queue_destroyed(q)) { 1070 /* 1071 * Wait for any pending G2H to flush out before 1072 * modifying state 1073 */ 1074 ret = wait_event_timeout(guc->ct.wq, 1075 !exec_queue_pending_enable(q) || 1076 guc_read_stopped(guc), HZ * 5); 1077 if (!ret || guc_read_stopped(guc)) 1078 goto trigger_reset; 1079 1080 /* 1081 * Flag communicates to G2H handler that schedule 1082 * disable originated from a timeout check. The G2H then 1083 * avoid triggering cleanup or deregistering the exec 1084 * queue. 1085 */ 1086 set_exec_queue_check_timeout(q); 1087 disable_scheduling(q, skip_timeout_check); 1088 } 1089 1090 /* 1091 * Must wait for scheduling to be disabled before signalling 1092 * any fences, if GT broken the GT reset code should signal us. 1093 * 1094 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 1095 * error) messages which can cause the schedule disable to get 1096 * lost. If this occurs, trigger a GT reset to recover. 1097 */ 1098 smp_rmb(); 1099 ret = wait_event_timeout(guc->ct.wq, 1100 !exec_queue_pending_disable(q) || 1101 guc_read_stopped(guc), HZ * 5); 1102 if (!ret || guc_read_stopped(guc)) { 1103 trigger_reset: 1104 if (!ret) 1105 xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond"); 1106 set_exec_queue_extra_ref(q); 1107 xe_exec_queue_get(q); /* GT reset owns this */ 1108 set_exec_queue_banned(q); 1109 xe_gt_reset_async(q->gt); 1110 xe_sched_tdr_queue_imm(sched); 1111 goto rearm; 1112 } 1113 } 1114 1115 /* 1116 * Check if job is actually timed out, if so restart job execution and TDR 1117 */ 1118 if (!wedged && !skip_timeout_check && !check_timeout(q, job) && 1119 !exec_queue_reset(q) && exec_queue_registered(q)) { 1120 clear_exec_queue_check_timeout(q); 1121 goto sched_enable; 1122 } 1123 1124 if (q->vm && q->vm->xef) { 1125 process_name = q->vm->xef->process_name; 1126 pid = q->vm->xef->pid; 1127 } 1128 xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]", 1129 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1130 q->guc->id, q->flags, process_name, pid); 1131 1132 trace_xe_sched_job_timedout(job); 1133 1134 if (!exec_queue_killed(q)) 1135 xe_devcoredump(job); 1136 1137 /* 1138 * Kernel jobs should never fail, nor should VM jobs if they do 1139 * somethings has gone wrong and the GT needs a reset 1140 */ 1141 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 1142 "Kernel-submitted job timed out\n"); 1143 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 1144 "VM job timed out on non-killed execqueue\n"); 1145 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 1146 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 1147 if (!xe_sched_invalidate_job(job, 2)) { 1148 clear_exec_queue_check_timeout(q); 1149 xe_gt_reset_async(q->gt); 1150 goto rearm; 1151 } 1152 } 1153 1154 /* Finish cleaning up exec queue via deregister */ 1155 set_exec_queue_banned(q); 1156 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1157 set_exec_queue_extra_ref(q); 1158 xe_exec_queue_get(q); 1159 __deregister_exec_queue(guc, q); 1160 } 1161 1162 /* Stop fence signaling */ 1163 xe_hw_fence_irq_stop(q->fence_irq); 1164 1165 /* 1166 * Fence state now stable, stop / start scheduler which cleans up any 1167 * fences that are complete 1168 */ 1169 xe_sched_add_pending_job(sched, job); 1170 xe_sched_submission_start(sched); 1171 1172 xe_guc_exec_queue_trigger_cleanup(q); 1173 1174 /* Mark all outstanding jobs as bad, thus completing them */ 1175 spin_lock(&sched->base.job_list_lock); 1176 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1177 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1178 spin_unlock(&sched->base.job_list_lock); 1179 1180 /* Start fence signaling */ 1181 xe_hw_fence_irq_start(q->fence_irq); 1182 1183 return DRM_GPU_SCHED_STAT_NOMINAL; 1184 1185 sched_enable: 1186 enable_scheduling(q); 1187 rearm: 1188 /* 1189 * XXX: Ideally want to adjust timeout based on current exection time 1190 * but there is not currently an easy way to do in DRM scheduler. With 1191 * some thought, do this in a follow up. 1192 */ 1193 xe_sched_add_pending_job(sched, job); 1194 xe_sched_submission_start(sched); 1195 1196 return DRM_GPU_SCHED_STAT_NOMINAL; 1197 } 1198 1199 static void __guc_exec_queue_fini_async(struct work_struct *w) 1200 { 1201 struct xe_guc_exec_queue *ge = 1202 container_of(w, struct xe_guc_exec_queue, fini_async); 1203 struct xe_exec_queue *q = ge->q; 1204 struct xe_guc *guc = exec_queue_to_guc(q); 1205 1206 xe_pm_runtime_get(guc_to_xe(guc)); 1207 trace_xe_exec_queue_destroy(q); 1208 1209 if (xe_exec_queue_is_lr(q)) 1210 cancel_work_sync(&ge->lr_tdr); 1211 release_guc_id(guc, q); 1212 xe_sched_entity_fini(&ge->entity); 1213 xe_sched_fini(&ge->sched); 1214 1215 kfree(ge); 1216 xe_exec_queue_fini(q); 1217 xe_pm_runtime_put(guc_to_xe(guc)); 1218 } 1219 1220 static void guc_exec_queue_fini_async(struct xe_exec_queue *q) 1221 { 1222 struct xe_guc *guc = exec_queue_to_guc(q); 1223 struct xe_device *xe = guc_to_xe(guc); 1224 1225 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async); 1226 1227 /* We must block on kernel engines so slabs are empty on driver unload */ 1228 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1229 __guc_exec_queue_fini_async(&q->guc->fini_async); 1230 else 1231 queue_work(xe->destroy_wq, &q->guc->fini_async); 1232 } 1233 1234 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q) 1235 { 1236 /* 1237 * Might be done from within the GPU scheduler, need to do async as we 1238 * fini the scheduler when the engine is fini'd, the scheduler can't 1239 * complete fini within itself (circular dependency). Async resolves 1240 * this we and don't really care when everything is fini'd, just that it 1241 * is. 1242 */ 1243 guc_exec_queue_fini_async(q); 1244 } 1245 1246 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1247 { 1248 struct xe_exec_queue *q = msg->private_data; 1249 struct xe_guc *guc = exec_queue_to_guc(q); 1250 struct xe_device *xe = guc_to_xe(guc); 1251 1252 xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1253 trace_xe_exec_queue_cleanup_entity(q); 1254 1255 if (exec_queue_registered(q)) 1256 disable_scheduling_deregister(guc, q); 1257 else 1258 __guc_exec_queue_fini(guc, q); 1259 } 1260 1261 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1262 { 1263 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1264 } 1265 1266 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1267 { 1268 struct xe_exec_queue *q = msg->private_data; 1269 struct xe_guc *guc = exec_queue_to_guc(q); 1270 1271 if (guc_exec_queue_allowed_to_change_state(q)) 1272 init_policies(guc, q); 1273 kfree(msg); 1274 } 1275 1276 static void __suspend_fence_signal(struct xe_exec_queue *q) 1277 { 1278 if (!q->guc->suspend_pending) 1279 return; 1280 1281 WRITE_ONCE(q->guc->suspend_pending, false); 1282 wake_up(&q->guc->suspend_wait); 1283 } 1284 1285 static void suspend_fence_signal(struct xe_exec_queue *q) 1286 { 1287 struct xe_guc *guc = exec_queue_to_guc(q); 1288 struct xe_device *xe = guc_to_xe(guc); 1289 1290 xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) || 1291 guc_read_stopped(guc)); 1292 xe_assert(xe, q->guc->suspend_pending); 1293 1294 __suspend_fence_signal(q); 1295 } 1296 1297 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1298 { 1299 struct xe_exec_queue *q = msg->private_data; 1300 struct xe_guc *guc = exec_queue_to_guc(q); 1301 1302 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1303 exec_queue_enabled(q)) { 1304 wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING || 1305 guc_read_stopped(guc)); 1306 1307 if (!guc_read_stopped(guc)) { 1308 s64 since_resume_ms = 1309 ktime_ms_delta(ktime_get(), 1310 q->guc->resume_time); 1311 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1312 since_resume_ms; 1313 1314 if (wait_ms > 0 && q->guc->resume_time) 1315 msleep(wait_ms); 1316 1317 set_exec_queue_suspended(q); 1318 disable_scheduling(q, false); 1319 } 1320 } else if (q->guc->suspend_pending) { 1321 set_exec_queue_suspended(q); 1322 suspend_fence_signal(q); 1323 } 1324 } 1325 1326 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1327 { 1328 struct xe_exec_queue *q = msg->private_data; 1329 1330 if (guc_exec_queue_allowed_to_change_state(q)) { 1331 clear_exec_queue_suspended(q); 1332 if (!exec_queue_enabled(q)) { 1333 q->guc->resume_time = RESUME_PENDING; 1334 enable_scheduling(q); 1335 } 1336 } else { 1337 clear_exec_queue_suspended(q); 1338 } 1339 } 1340 1341 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1342 #define SET_SCHED_PROPS 2 1343 #define SUSPEND 3 1344 #define RESUME 4 1345 #define OPCODE_MASK 0xf 1346 #define MSG_LOCKED BIT(8) 1347 1348 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1349 { 1350 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data)); 1351 1352 trace_xe_sched_msg_recv(msg); 1353 1354 switch (msg->opcode) { 1355 case CLEANUP: 1356 __guc_exec_queue_process_msg_cleanup(msg); 1357 break; 1358 case SET_SCHED_PROPS: 1359 __guc_exec_queue_process_msg_set_sched_props(msg); 1360 break; 1361 case SUSPEND: 1362 __guc_exec_queue_process_msg_suspend(msg); 1363 break; 1364 case RESUME: 1365 __guc_exec_queue_process_msg_resume(msg); 1366 break; 1367 default: 1368 XE_WARN_ON("Unknown message type"); 1369 } 1370 1371 xe_pm_runtime_put(xe); 1372 } 1373 1374 static const struct drm_sched_backend_ops drm_sched_ops = { 1375 .run_job = guc_exec_queue_run_job, 1376 .free_job = guc_exec_queue_free_job, 1377 .timedout_job = guc_exec_queue_timedout_job, 1378 }; 1379 1380 static const struct xe_sched_backend_ops xe_sched_ops = { 1381 .process_msg = guc_exec_queue_process_msg, 1382 }; 1383 1384 static int guc_exec_queue_init(struct xe_exec_queue *q) 1385 { 1386 struct xe_gpu_scheduler *sched; 1387 struct xe_guc *guc = exec_queue_to_guc(q); 1388 struct xe_device *xe = guc_to_xe(guc); 1389 struct xe_guc_exec_queue *ge; 1390 long timeout; 1391 int err, i; 1392 1393 xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc))); 1394 1395 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1396 if (!ge) 1397 return -ENOMEM; 1398 1399 q->guc = ge; 1400 ge->q = q; 1401 init_waitqueue_head(&ge->suspend_wait); 1402 1403 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i) 1404 INIT_LIST_HEAD(&ge->static_msgs[i].link); 1405 1406 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1407 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1408 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1409 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1410 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1411 q->name, gt_to_xe(q->gt)->drm.dev); 1412 if (err) 1413 goto err_free; 1414 1415 sched = &ge->sched; 1416 err = xe_sched_entity_init(&ge->entity, sched); 1417 if (err) 1418 goto err_sched; 1419 1420 if (xe_exec_queue_is_lr(q)) 1421 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1422 1423 mutex_lock(&guc->submission_state.lock); 1424 1425 err = alloc_guc_id(guc, q); 1426 if (err) 1427 goto err_entity; 1428 1429 q->entity = &ge->entity; 1430 1431 if (guc_read_stopped(guc)) 1432 xe_sched_stop(sched); 1433 1434 mutex_unlock(&guc->submission_state.lock); 1435 1436 xe_exec_queue_assign_name(q, q->guc->id); 1437 1438 trace_xe_exec_queue_create(q); 1439 1440 return 0; 1441 1442 err_entity: 1443 mutex_unlock(&guc->submission_state.lock); 1444 xe_sched_entity_fini(&ge->entity); 1445 err_sched: 1446 xe_sched_fini(&ge->sched); 1447 err_free: 1448 kfree(ge); 1449 1450 return err; 1451 } 1452 1453 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1454 { 1455 trace_xe_exec_queue_kill(q); 1456 set_exec_queue_killed(q); 1457 __suspend_fence_signal(q); 1458 xe_guc_exec_queue_trigger_cleanup(q); 1459 } 1460 1461 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1462 u32 opcode) 1463 { 1464 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q))); 1465 1466 INIT_LIST_HEAD(&msg->link); 1467 msg->opcode = opcode & OPCODE_MASK; 1468 msg->private_data = q; 1469 1470 trace_xe_sched_msg_add(msg); 1471 if (opcode & MSG_LOCKED) 1472 xe_sched_add_msg_locked(&q->guc->sched, msg); 1473 else 1474 xe_sched_add_msg(&q->guc->sched, msg); 1475 } 1476 1477 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q, 1478 struct xe_sched_msg *msg, 1479 u32 opcode) 1480 { 1481 if (!list_empty(&msg->link)) 1482 return false; 1483 1484 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED); 1485 1486 return true; 1487 } 1488 1489 #define STATIC_MSG_CLEANUP 0 1490 #define STATIC_MSG_SUSPEND 1 1491 #define STATIC_MSG_RESUME 2 1492 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1493 { 1494 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1495 1496 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1497 guc_exec_queue_add_msg(q, msg, CLEANUP); 1498 else 1499 __guc_exec_queue_fini(exec_queue_to_guc(q), q); 1500 } 1501 1502 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1503 enum xe_exec_queue_priority priority) 1504 { 1505 struct xe_sched_msg *msg; 1506 1507 if (q->sched_props.priority == priority || 1508 exec_queue_killed_or_banned_or_wedged(q)) 1509 return 0; 1510 1511 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1512 if (!msg) 1513 return -ENOMEM; 1514 1515 q->sched_props.priority = priority; 1516 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1517 1518 return 0; 1519 } 1520 1521 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1522 { 1523 struct xe_sched_msg *msg; 1524 1525 if (q->sched_props.timeslice_us == timeslice_us || 1526 exec_queue_killed_or_banned_or_wedged(q)) 1527 return 0; 1528 1529 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1530 if (!msg) 1531 return -ENOMEM; 1532 1533 q->sched_props.timeslice_us = timeslice_us; 1534 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1535 1536 return 0; 1537 } 1538 1539 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1540 u32 preempt_timeout_us) 1541 { 1542 struct xe_sched_msg *msg; 1543 1544 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1545 exec_queue_killed_or_banned_or_wedged(q)) 1546 return 0; 1547 1548 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1549 if (!msg) 1550 return -ENOMEM; 1551 1552 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1553 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1554 1555 return 0; 1556 } 1557 1558 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1559 { 1560 struct xe_gpu_scheduler *sched = &q->guc->sched; 1561 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1562 1563 if (exec_queue_killed_or_banned_or_wedged(q)) 1564 return -EINVAL; 1565 1566 xe_sched_msg_lock(sched); 1567 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND)) 1568 q->guc->suspend_pending = true; 1569 xe_sched_msg_unlock(sched); 1570 1571 return 0; 1572 } 1573 1574 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1575 { 1576 struct xe_guc *guc = exec_queue_to_guc(q); 1577 int ret; 1578 1579 /* 1580 * Likely don't need to check exec_queue_killed() as we clear 1581 * suspend_pending upon kill but to be paranoid but races in which 1582 * suspend_pending is set after kill also check kill here. 1583 */ 1584 ret = wait_event_interruptible_timeout(q->guc->suspend_wait, 1585 !READ_ONCE(q->guc->suspend_pending) || 1586 exec_queue_killed(q) || 1587 guc_read_stopped(guc), 1588 HZ * 5); 1589 1590 if (!ret) { 1591 xe_gt_warn(guc_to_gt(guc), 1592 "Suspend fence, guc_id=%d, failed to respond", 1593 q->guc->id); 1594 /* XXX: Trigger GT reset? */ 1595 return -ETIME; 1596 } 1597 1598 return ret < 0 ? ret : 0; 1599 } 1600 1601 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1602 { 1603 struct xe_gpu_scheduler *sched = &q->guc->sched; 1604 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1605 struct xe_guc *guc = exec_queue_to_guc(q); 1606 struct xe_device *xe = guc_to_xe(guc); 1607 1608 xe_assert(xe, !q->guc->suspend_pending); 1609 1610 xe_sched_msg_lock(sched); 1611 guc_exec_queue_try_add_msg(q, msg, RESUME); 1612 xe_sched_msg_unlock(sched); 1613 } 1614 1615 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1616 { 1617 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1618 } 1619 1620 /* 1621 * All of these functions are an abstraction layer which other parts of XE can 1622 * use to trap into the GuC backend. All of these functions, aside from init, 1623 * really shouldn't do much other than trap into the DRM scheduler which 1624 * synchronizes these operations. 1625 */ 1626 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1627 .init = guc_exec_queue_init, 1628 .kill = guc_exec_queue_kill, 1629 .fini = guc_exec_queue_fini, 1630 .set_priority = guc_exec_queue_set_priority, 1631 .set_timeslice = guc_exec_queue_set_timeslice, 1632 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1633 .suspend = guc_exec_queue_suspend, 1634 .suspend_wait = guc_exec_queue_suspend_wait, 1635 .resume = guc_exec_queue_resume, 1636 .reset_status = guc_exec_queue_reset_status, 1637 }; 1638 1639 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1640 { 1641 struct xe_gpu_scheduler *sched = &q->guc->sched; 1642 1643 /* Stop scheduling + flush any DRM scheduler operations */ 1644 xe_sched_submission_stop(sched); 1645 1646 /* Clean up lost G2H + reset engine state */ 1647 if (exec_queue_registered(q)) { 1648 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1649 xe_exec_queue_put(q); 1650 else if (exec_queue_destroyed(q)) 1651 __guc_exec_queue_fini(guc, q); 1652 } 1653 if (q->guc->suspend_pending) { 1654 set_exec_queue_suspended(q); 1655 suspend_fence_signal(q); 1656 } 1657 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED | 1658 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED | 1659 EXEC_QUEUE_STATE_SUSPENDED, 1660 &q->guc->state); 1661 q->guc->resume_time = 0; 1662 trace_xe_exec_queue_stop(q); 1663 1664 /* 1665 * Ban any engine (aside from kernel and engines used for VM ops) with a 1666 * started but not complete job or if a job has gone through a GT reset 1667 * more than twice. 1668 */ 1669 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1670 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1671 bool ban = false; 1672 1673 if (job) { 1674 if ((xe_sched_job_started(job) && 1675 !xe_sched_job_completed(job)) || 1676 xe_sched_invalidate_job(job, 2)) { 1677 trace_xe_sched_job_ban(job); 1678 ban = true; 1679 } 1680 } else if (xe_exec_queue_is_lr(q) && 1681 (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) { 1682 ban = true; 1683 } 1684 1685 if (ban) { 1686 set_exec_queue_banned(q); 1687 xe_guc_exec_queue_trigger_cleanup(q); 1688 } 1689 } 1690 } 1691 1692 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1693 { 1694 int ret; 1695 1696 /* 1697 * Using an atomic here rather than submission_state.lock as this 1698 * function can be called while holding the CT lock (engine reset 1699 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1700 * Atomic is not ideal, but it works to prevent against concurrent reset 1701 * and releasing any TDRs waiting on guc->submission_state.stopped. 1702 */ 1703 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1704 smp_wmb(); 1705 wake_up_all(&guc->ct.wq); 1706 1707 return ret; 1708 } 1709 1710 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1711 { 1712 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) || 1713 !guc_read_stopped(guc)); 1714 } 1715 1716 void xe_guc_submit_stop(struct xe_guc *guc) 1717 { 1718 struct xe_exec_queue *q; 1719 unsigned long index; 1720 struct xe_device *xe = guc_to_xe(guc); 1721 1722 xe_assert(xe, guc_read_stopped(guc) == 1); 1723 1724 mutex_lock(&guc->submission_state.lock); 1725 1726 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1727 guc_exec_queue_stop(guc, q); 1728 1729 mutex_unlock(&guc->submission_state.lock); 1730 1731 /* 1732 * No one can enter the backend at this point, aside from new engine 1733 * creation which is protected by guc->submission_state.lock. 1734 */ 1735 1736 } 1737 1738 static void guc_exec_queue_start(struct xe_exec_queue *q) 1739 { 1740 struct xe_gpu_scheduler *sched = &q->guc->sched; 1741 1742 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1743 int i; 1744 1745 trace_xe_exec_queue_resubmit(q); 1746 for (i = 0; i < q->width; ++i) 1747 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1748 xe_sched_resubmit_jobs(sched); 1749 } 1750 1751 xe_sched_submission_start(sched); 1752 xe_sched_submission_resume_tdr(sched); 1753 } 1754 1755 int xe_guc_submit_start(struct xe_guc *guc) 1756 { 1757 struct xe_exec_queue *q; 1758 unsigned long index; 1759 struct xe_device *xe = guc_to_xe(guc); 1760 1761 xe_assert(xe, guc_read_stopped(guc) == 1); 1762 1763 mutex_lock(&guc->submission_state.lock); 1764 atomic_dec(&guc->submission_state.stopped); 1765 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1766 guc_exec_queue_start(q); 1767 mutex_unlock(&guc->submission_state.lock); 1768 1769 wake_up_all(&guc->ct.wq); 1770 1771 return 0; 1772 } 1773 1774 static struct xe_exec_queue * 1775 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1776 { 1777 struct xe_device *xe = guc_to_xe(guc); 1778 struct xe_exec_queue *q; 1779 1780 if (unlikely(guc_id >= GUC_ID_MAX)) { 1781 drm_err(&xe->drm, "Invalid guc_id %u", guc_id); 1782 return NULL; 1783 } 1784 1785 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1786 if (unlikely(!q)) { 1787 drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id); 1788 return NULL; 1789 } 1790 1791 xe_assert(xe, guc_id >= q->guc->id); 1792 xe_assert(xe, guc_id < (q->guc->id + q->width)); 1793 1794 return q; 1795 } 1796 1797 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1798 { 1799 u32 action[] = { 1800 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1801 q->guc->id, 1802 }; 1803 1804 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q)); 1805 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1806 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1807 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1808 1809 trace_xe_exec_queue_deregister(q); 1810 1811 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1812 } 1813 1814 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q, 1815 u32 runnable_state) 1816 { 1817 trace_xe_exec_queue_scheduling_done(q); 1818 1819 if (runnable_state == 1) { 1820 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q)); 1821 1822 q->guc->resume_time = ktime_get(); 1823 clear_exec_queue_pending_enable(q); 1824 smp_wmb(); 1825 wake_up_all(&guc->ct.wq); 1826 } else { 1827 bool check_timeout = exec_queue_check_timeout(q); 1828 1829 xe_gt_assert(guc_to_gt(guc), runnable_state == 0); 1830 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q)); 1831 1832 clear_exec_queue_pending_disable(q); 1833 if (q->guc->suspend_pending) { 1834 suspend_fence_signal(q); 1835 } else { 1836 if (exec_queue_banned(q) || check_timeout) { 1837 smp_wmb(); 1838 wake_up_all(&guc->ct.wq); 1839 } 1840 if (!check_timeout) 1841 deregister_exec_queue(guc, q); 1842 } 1843 } 1844 } 1845 1846 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1847 { 1848 struct xe_device *xe = guc_to_xe(guc); 1849 struct xe_exec_queue *q; 1850 u32 guc_id = msg[0]; 1851 u32 runnable_state = msg[1]; 1852 1853 if (unlikely(len < 2)) { 1854 drm_err(&xe->drm, "Invalid length %u", len); 1855 return -EPROTO; 1856 } 1857 1858 q = g2h_exec_queue_lookup(guc, guc_id); 1859 if (unlikely(!q)) 1860 return -EPROTO; 1861 1862 if (unlikely(!exec_queue_pending_enable(q) && 1863 !exec_queue_pending_disable(q))) { 1864 xe_gt_err(guc_to_gt(guc), 1865 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u", 1866 atomic_read(&q->guc->state), q->guc->id, 1867 runnable_state); 1868 return -EPROTO; 1869 } 1870 1871 handle_sched_done(guc, q, runnable_state); 1872 1873 return 0; 1874 } 1875 1876 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 1877 { 1878 trace_xe_exec_queue_deregister_done(q); 1879 1880 clear_exec_queue_registered(q); 1881 1882 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1883 xe_exec_queue_put(q); 1884 else 1885 __guc_exec_queue_fini(guc, q); 1886 } 1887 1888 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1889 { 1890 struct xe_device *xe = guc_to_xe(guc); 1891 struct xe_exec_queue *q; 1892 u32 guc_id = msg[0]; 1893 1894 if (unlikely(len < 1)) { 1895 drm_err(&xe->drm, "Invalid length %u", len); 1896 return -EPROTO; 1897 } 1898 1899 q = g2h_exec_queue_lookup(guc, guc_id); 1900 if (unlikely(!q)) 1901 return -EPROTO; 1902 1903 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 1904 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 1905 xe_gt_err(guc_to_gt(guc), 1906 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d", 1907 atomic_read(&q->guc->state), q->guc->id); 1908 return -EPROTO; 1909 } 1910 1911 handle_deregister_done(guc, q); 1912 1913 return 0; 1914 } 1915 1916 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 1917 { 1918 struct xe_gt *gt = guc_to_gt(guc); 1919 struct xe_device *xe = guc_to_xe(guc); 1920 struct xe_exec_queue *q; 1921 u32 guc_id = msg[0]; 1922 1923 if (unlikely(len < 1)) { 1924 drm_err(&xe->drm, "Invalid length %u", len); 1925 return -EPROTO; 1926 } 1927 1928 q = g2h_exec_queue_lookup(guc, guc_id); 1929 if (unlikely(!q)) 1930 return -EPROTO; 1931 1932 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1933 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1934 1935 /* FIXME: Do error capture, most likely async */ 1936 1937 trace_xe_exec_queue_reset(q); 1938 1939 /* 1940 * A banned engine is a NOP at this point (came from 1941 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 1942 * jobs by setting timeout of the job to the minimum value kicking 1943 * guc_exec_queue_timedout_job. 1944 */ 1945 set_exec_queue_reset(q); 1946 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 1947 xe_guc_exec_queue_trigger_cleanup(q); 1948 1949 return 0; 1950 } 1951 1952 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 1953 u32 len) 1954 { 1955 struct xe_gt *gt = guc_to_gt(guc); 1956 struct xe_device *xe = guc_to_xe(guc); 1957 struct xe_exec_queue *q; 1958 u32 guc_id = msg[0]; 1959 1960 if (unlikely(len < 1)) { 1961 drm_err(&xe->drm, "Invalid length %u", len); 1962 return -EPROTO; 1963 } 1964 1965 q = g2h_exec_queue_lookup(guc, guc_id); 1966 if (unlikely(!q)) 1967 return -EPROTO; 1968 1969 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 1970 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 1971 1972 trace_xe_exec_queue_memory_cat_error(q); 1973 1974 /* Treat the same as engine reset */ 1975 set_exec_queue_reset(q); 1976 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 1977 xe_guc_exec_queue_trigger_cleanup(q); 1978 1979 return 0; 1980 } 1981 1982 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 1983 { 1984 struct xe_device *xe = guc_to_xe(guc); 1985 u8 guc_class, instance; 1986 u32 reason; 1987 1988 if (unlikely(len != 3)) { 1989 drm_err(&xe->drm, "Invalid length %u", len); 1990 return -EPROTO; 1991 } 1992 1993 guc_class = msg[0]; 1994 instance = msg[1]; 1995 reason = msg[2]; 1996 1997 /* Unexpected failure of a hardware feature, log an actual error */ 1998 drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X", 1999 guc_class, instance, reason); 2000 2001 xe_gt_reset_async(guc_to_gt(guc)); 2002 2003 return 0; 2004 } 2005 2006 static void 2007 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 2008 struct xe_guc_submit_exec_queue_snapshot *snapshot) 2009 { 2010 struct xe_guc *guc = exec_queue_to_guc(q); 2011 struct xe_device *xe = guc_to_xe(guc); 2012 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 2013 int i; 2014 2015 snapshot->guc.wqi_head = q->guc->wqi_head; 2016 snapshot->guc.wqi_tail = q->guc->wqi_tail; 2017 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 2018 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 2019 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 2020 wq_desc.wq_status); 2021 2022 if (snapshot->parallel.wq_desc.head != 2023 snapshot->parallel.wq_desc.tail) { 2024 for (i = snapshot->parallel.wq_desc.head; 2025 i != snapshot->parallel.wq_desc.tail; 2026 i = (i + sizeof(u32)) % WQ_SIZE) 2027 snapshot->parallel.wq[i / sizeof(u32)] = 2028 parallel_read(xe, map, wq[i / sizeof(u32)]); 2029 } 2030 } 2031 2032 static void 2033 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2034 struct drm_printer *p) 2035 { 2036 int i; 2037 2038 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 2039 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 2040 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 2041 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 2042 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 2043 2044 if (snapshot->parallel.wq_desc.head != 2045 snapshot->parallel.wq_desc.tail) { 2046 for (i = snapshot->parallel.wq_desc.head; 2047 i != snapshot->parallel.wq_desc.tail; 2048 i = (i + sizeof(u32)) % WQ_SIZE) 2049 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 2050 snapshot->parallel.wq[i / sizeof(u32)]); 2051 } 2052 } 2053 2054 /** 2055 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 2056 * @q: faulty exec queue 2057 * 2058 * This can be printed out in a later stage like during dev_coredump 2059 * analysis. 2060 * 2061 * Returns: a GuC Submit Engine snapshot object that must be freed by the 2062 * caller, using `xe_guc_exec_queue_snapshot_free`. 2063 */ 2064 struct xe_guc_submit_exec_queue_snapshot * 2065 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 2066 { 2067 struct xe_gpu_scheduler *sched = &q->guc->sched; 2068 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2069 int i; 2070 2071 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 2072 2073 if (!snapshot) 2074 return NULL; 2075 2076 snapshot->guc.id = q->guc->id; 2077 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 2078 snapshot->class = q->class; 2079 snapshot->logical_mask = q->logical_mask; 2080 snapshot->width = q->width; 2081 snapshot->refcount = kref_read(&q->refcount); 2082 snapshot->sched_timeout = sched->base.timeout; 2083 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 2084 snapshot->sched_props.preempt_timeout_us = 2085 q->sched_props.preempt_timeout_us; 2086 2087 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 2088 GFP_ATOMIC); 2089 2090 if (snapshot->lrc) { 2091 for (i = 0; i < q->width; ++i) { 2092 struct xe_lrc *lrc = q->lrc[i]; 2093 2094 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 2095 } 2096 } 2097 2098 snapshot->schedule_state = atomic_read(&q->guc->state); 2099 snapshot->exec_queue_flags = q->flags; 2100 2101 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 2102 if (snapshot->parallel_execution) 2103 guc_exec_queue_wq_snapshot_capture(q, snapshot); 2104 2105 spin_lock(&sched->base.job_list_lock); 2106 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 2107 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 2108 sizeof(struct pending_list_snapshot), 2109 GFP_ATOMIC); 2110 2111 if (snapshot->pending_list) { 2112 struct xe_sched_job *job_iter; 2113 2114 i = 0; 2115 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 2116 snapshot->pending_list[i].seqno = 2117 xe_sched_job_seqno(job_iter); 2118 snapshot->pending_list[i].fence = 2119 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 2120 snapshot->pending_list[i].finished = 2121 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 2122 ? 1 : 0; 2123 i++; 2124 } 2125 } 2126 2127 spin_unlock(&sched->base.job_list_lock); 2128 2129 return snapshot; 2130 } 2131 2132 /** 2133 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 2134 * @snapshot: Previously captured snapshot of job. 2135 * 2136 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 2137 */ 2138 void 2139 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2140 { 2141 int i; 2142 2143 if (!snapshot || !snapshot->lrc) 2144 return; 2145 2146 for (i = 0; i < snapshot->width; ++i) 2147 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 2148 } 2149 2150 /** 2151 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 2152 * @snapshot: GuC Submit Engine snapshot object. 2153 * @p: drm_printer where it will be printed out. 2154 * 2155 * This function prints out a given GuC Submit Engine snapshot object. 2156 */ 2157 void 2158 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2159 struct drm_printer *p) 2160 { 2161 int i; 2162 2163 if (!snapshot) 2164 return; 2165 2166 drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id); 2167 drm_printf(p, "\tName: %s\n", snapshot->name); 2168 drm_printf(p, "\tClass: %d\n", snapshot->class); 2169 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 2170 drm_printf(p, "\tWidth: %d\n", snapshot->width); 2171 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 2172 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 2173 drm_printf(p, "\tTimeslice: %u (us)\n", 2174 snapshot->sched_props.timeslice_us); 2175 drm_printf(p, "\tPreempt timeout: %u (us)\n", 2176 snapshot->sched_props.preempt_timeout_us); 2177 2178 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 2179 xe_lrc_snapshot_print(snapshot->lrc[i], p); 2180 2181 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 2182 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 2183 2184 if (snapshot->parallel_execution) 2185 guc_exec_queue_wq_snapshot_print(snapshot, p); 2186 2187 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 2188 i++) 2189 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 2190 snapshot->pending_list[i].seqno, 2191 snapshot->pending_list[i].fence, 2192 snapshot->pending_list[i].finished); 2193 } 2194 2195 /** 2196 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 2197 * snapshot. 2198 * @snapshot: GuC Submit Engine snapshot object. 2199 * 2200 * This function free all the memory that needed to be allocated at capture 2201 * time. 2202 */ 2203 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2204 { 2205 int i; 2206 2207 if (!snapshot) 2208 return; 2209 2210 if (snapshot->lrc) { 2211 for (i = 0; i < snapshot->width; i++) 2212 xe_lrc_snapshot_free(snapshot->lrc[i]); 2213 kfree(snapshot->lrc); 2214 } 2215 kfree(snapshot->pending_list); 2216 kfree(snapshot); 2217 } 2218 2219 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 2220 { 2221 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2222 2223 snapshot = xe_guc_exec_queue_snapshot_capture(q); 2224 xe_guc_exec_queue_snapshot_print(snapshot, p); 2225 xe_guc_exec_queue_snapshot_free(snapshot); 2226 } 2227 2228 /** 2229 * xe_guc_submit_print - GuC Submit Print. 2230 * @guc: GuC. 2231 * @p: drm_printer where it will be printed out. 2232 * 2233 * This function capture and prints snapshots of **all** GuC Engines. 2234 */ 2235 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2236 { 2237 struct xe_exec_queue *q; 2238 unsigned long index; 2239 2240 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2241 return; 2242 2243 mutex_lock(&guc->submission_state.lock); 2244 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2245 guc_exec_queue_print(q, p); 2246 mutex_unlock(&guc->submission_state.lock); 2247 } 2248