xref: /linux/drivers/gpu/drm/xe/xe_guc_submit.c (revision 2cd86f02c017bf9733e5cd891381b7d40f6f37ad)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_submit.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "regs/xe_lrc_layout.h"
20 #include "xe_assert.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_exec_queue.h"
24 #include "xe_force_wake.h"
25 #include "xe_gpu_scheduler.h"
26 #include "xe_gt.h"
27 #include "xe_gt_clock.h"
28 #include "xe_gt_printk.h"
29 #include "xe_guc.h"
30 #include "xe_guc_ct.h"
31 #include "xe_guc_exec_queue_types.h"
32 #include "xe_guc_id_mgr.h"
33 #include "xe_guc_submit_types.h"
34 #include "xe_hw_engine.h"
35 #include "xe_hw_fence.h"
36 #include "xe_lrc.h"
37 #include "xe_macros.h"
38 #include "xe_map.h"
39 #include "xe_mocs.h"
40 #include "xe_pm.h"
41 #include "xe_ring_ops_types.h"
42 #include "xe_sched_job.h"
43 #include "xe_trace.h"
44 #include "xe_vm.h"
45 
46 static struct xe_guc *
47 exec_queue_to_guc(struct xe_exec_queue *q)
48 {
49 	return &q->gt->uc.guc;
50 }
51 
52 /*
53  * Helpers for engine state, using an atomic as some of the bits can transition
54  * as the same time (e.g. a suspend can be happning at the same time as schedule
55  * engine done being processed).
56  */
57 #define EXEC_QUEUE_STATE_REGISTERED		(1 << 0)
58 #define EXEC_QUEUE_STATE_ENABLED		(1 << 1)
59 #define EXEC_QUEUE_STATE_PENDING_ENABLE		(1 << 2)
60 #define EXEC_QUEUE_STATE_PENDING_DISABLE	(1 << 3)
61 #define EXEC_QUEUE_STATE_DESTROYED		(1 << 4)
62 #define EXEC_QUEUE_STATE_SUSPENDED		(1 << 5)
63 #define EXEC_QUEUE_STATE_RESET			(1 << 6)
64 #define EXEC_QUEUE_STATE_KILLED			(1 << 7)
65 #define EXEC_QUEUE_STATE_WEDGED			(1 << 8)
66 #define EXEC_QUEUE_STATE_BANNED			(1 << 9)
67 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT		(1 << 10)
68 #define EXEC_QUEUE_STATE_EXTRA_REF		(1 << 11)
69 
70 static bool exec_queue_registered(struct xe_exec_queue *q)
71 {
72 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
73 }
74 
75 static void set_exec_queue_registered(struct xe_exec_queue *q)
76 {
77 	atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
78 }
79 
80 static void clear_exec_queue_registered(struct xe_exec_queue *q)
81 {
82 	atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
83 }
84 
85 static bool exec_queue_enabled(struct xe_exec_queue *q)
86 {
87 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
88 }
89 
90 static void set_exec_queue_enabled(struct xe_exec_queue *q)
91 {
92 	atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
93 }
94 
95 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
96 {
97 	atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
98 }
99 
100 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
101 {
102 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
103 }
104 
105 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
106 {
107 	atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
108 }
109 
110 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
111 {
112 	atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
113 }
114 
115 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
116 {
117 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
118 }
119 
120 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
121 {
122 	atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
123 }
124 
125 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
126 {
127 	atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
128 }
129 
130 static bool exec_queue_destroyed(struct xe_exec_queue *q)
131 {
132 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
133 }
134 
135 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
136 {
137 	atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
138 }
139 
140 static bool exec_queue_banned(struct xe_exec_queue *q)
141 {
142 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
143 }
144 
145 static void set_exec_queue_banned(struct xe_exec_queue *q)
146 {
147 	atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
148 }
149 
150 static bool exec_queue_suspended(struct xe_exec_queue *q)
151 {
152 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
153 }
154 
155 static void set_exec_queue_suspended(struct xe_exec_queue *q)
156 {
157 	atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
158 }
159 
160 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
161 {
162 	atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
163 }
164 
165 static bool exec_queue_reset(struct xe_exec_queue *q)
166 {
167 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
168 }
169 
170 static void set_exec_queue_reset(struct xe_exec_queue *q)
171 {
172 	atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
173 }
174 
175 static bool exec_queue_killed(struct xe_exec_queue *q)
176 {
177 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
178 }
179 
180 static void set_exec_queue_killed(struct xe_exec_queue *q)
181 {
182 	atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
183 }
184 
185 static bool exec_queue_wedged(struct xe_exec_queue *q)
186 {
187 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
188 }
189 
190 static void set_exec_queue_wedged(struct xe_exec_queue *q)
191 {
192 	atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
193 }
194 
195 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
196 {
197 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
198 }
199 
200 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
201 {
202 	atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
203 }
204 
205 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
206 {
207 	atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
208 }
209 
210 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
211 {
212 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
213 }
214 
215 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
216 {
217 	atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
218 }
219 
220 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
221 {
222 	return (atomic_read(&q->guc->state) &
223 		(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
224 		 EXEC_QUEUE_STATE_BANNED));
225 }
226 
227 #ifdef CONFIG_PROVE_LOCKING
228 static int alloc_submit_wq(struct xe_guc *guc)
229 {
230 	int i;
231 
232 	for (i = 0; i < NUM_SUBMIT_WQ; ++i) {
233 		guc->submission_state.submit_wq_pool[i] =
234 			alloc_ordered_workqueue("submit_wq", 0);
235 		if (!guc->submission_state.submit_wq_pool[i])
236 			goto err_free;
237 	}
238 
239 	return 0;
240 
241 err_free:
242 	while (i)
243 		destroy_workqueue(guc->submission_state.submit_wq_pool[--i]);
244 
245 	return -ENOMEM;
246 }
247 
248 static void free_submit_wq(struct xe_guc *guc)
249 {
250 	int i;
251 
252 	for (i = 0; i < NUM_SUBMIT_WQ; ++i)
253 		destroy_workqueue(guc->submission_state.submit_wq_pool[i]);
254 }
255 
256 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc)
257 {
258 	int idx = guc->submission_state.submit_wq_idx++ % NUM_SUBMIT_WQ;
259 
260 	return guc->submission_state.submit_wq_pool[idx];
261 }
262 #else
263 static int alloc_submit_wq(struct xe_guc *guc)
264 {
265 	return 0;
266 }
267 
268 static void free_submit_wq(struct xe_guc *guc)
269 {
270 
271 }
272 
273 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc)
274 {
275 	return NULL;
276 }
277 #endif
278 
279 static void guc_submit_fini(struct drm_device *drm, void *arg)
280 {
281 	struct xe_guc *guc = arg;
282 
283 	xa_destroy(&guc->submission_state.exec_queue_lookup);
284 	free_submit_wq(guc);
285 }
286 
287 static void guc_submit_wedged_fini(void *arg)
288 {
289 	struct xe_guc *guc = arg;
290 	struct xe_exec_queue *q;
291 	unsigned long index;
292 
293 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
294 		if (exec_queue_wedged(q))
295 			xe_exec_queue_put(q);
296 }
297 
298 static const struct xe_exec_queue_ops guc_exec_queue_ops;
299 
300 static void primelockdep(struct xe_guc *guc)
301 {
302 	if (!IS_ENABLED(CONFIG_LOCKDEP))
303 		return;
304 
305 	fs_reclaim_acquire(GFP_KERNEL);
306 
307 	mutex_lock(&guc->submission_state.lock);
308 	mutex_unlock(&guc->submission_state.lock);
309 
310 	fs_reclaim_release(GFP_KERNEL);
311 }
312 
313 /**
314  * xe_guc_submit_init() - Initialize GuC submission.
315  * @guc: the &xe_guc to initialize
316  * @num_ids: number of GuC context IDs to use
317  *
318  * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
319  * GuC context IDs supported by the GuC firmware should be used for submission.
320  *
321  * Only VF drivers will have to provide explicit number of GuC context IDs
322  * that they can use for submission.
323  *
324  * Return: 0 on success or a negative error code on failure.
325  */
326 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
327 {
328 	struct xe_device *xe = guc_to_xe(guc);
329 	struct xe_gt *gt = guc_to_gt(guc);
330 	int err;
331 
332 	err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
333 	if (err)
334 		return err;
335 
336 	err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
337 	if (err)
338 		return err;
339 
340 	err = alloc_submit_wq(guc);
341 	if (err)
342 		return err;
343 
344 	gt->exec_queue_ops = &guc_exec_queue_ops;
345 
346 	xa_init(&guc->submission_state.exec_queue_lookup);
347 
348 	primelockdep(guc);
349 
350 	return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
351 }
352 
353 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
354 {
355 	int i;
356 
357 	lockdep_assert_held(&guc->submission_state.lock);
358 
359 	for (i = 0; i < xa_count; ++i)
360 		xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
361 
362 	xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
363 				     q->guc->id, q->width);
364 }
365 
366 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
367 {
368 	int ret;
369 	void *ptr;
370 	int i;
371 
372 	/*
373 	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
374 	 * worse case user gets -ENOMEM on engine create and has to try again.
375 	 *
376 	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
377 	 * failure.
378 	 */
379 	lockdep_assert_held(&guc->submission_state.lock);
380 
381 	ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
382 					   q->width);
383 	if (ret < 0)
384 		return ret;
385 
386 	q->guc->id = ret;
387 
388 	for (i = 0; i < q->width; ++i) {
389 		ptr = xa_store(&guc->submission_state.exec_queue_lookup,
390 			       q->guc->id + i, q, GFP_NOWAIT);
391 		if (IS_ERR(ptr)) {
392 			ret = PTR_ERR(ptr);
393 			goto err_release;
394 		}
395 	}
396 
397 	return 0;
398 
399 err_release:
400 	__release_guc_id(guc, q, i);
401 
402 	return ret;
403 }
404 
405 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
406 {
407 	mutex_lock(&guc->submission_state.lock);
408 	__release_guc_id(guc, q, q->width);
409 	mutex_unlock(&guc->submission_state.lock);
410 }
411 
412 struct exec_queue_policy {
413 	u32 count;
414 	struct guc_update_exec_queue_policy h2g;
415 };
416 
417 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
418 {
419 	size_t bytes = sizeof(policy->h2g.header) +
420 		       (sizeof(policy->h2g.klv[0]) * policy->count);
421 
422 	return bytes / sizeof(u32);
423 }
424 
425 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
426 					      u16 guc_id)
427 {
428 	policy->h2g.header.action =
429 		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
430 	policy->h2g.header.guc_id = guc_id;
431 	policy->count = 0;
432 }
433 
434 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
435 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
436 					   u32 data) \
437 { \
438 	XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
439 \
440 	policy->h2g.klv[policy->count].kl = \
441 		FIELD_PREP(GUC_KLV_0_KEY, \
442 			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
443 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
444 	policy->h2g.klv[policy->count].value = data; \
445 	policy->count++; \
446 }
447 
448 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
449 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
450 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
451 #undef MAKE_EXEC_QUEUE_POLICY_ADD
452 
453 static const int xe_exec_queue_prio_to_guc[] = {
454 	[XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
455 	[XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
456 	[XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
457 	[XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
458 };
459 
460 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
461 {
462 	struct exec_queue_policy policy;
463 	struct xe_device *xe = guc_to_xe(guc);
464 	enum xe_exec_queue_priority prio = q->sched_props.priority;
465 	u32 timeslice_us = q->sched_props.timeslice_us;
466 	u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
467 
468 	xe_assert(xe, exec_queue_registered(q));
469 
470 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
471 	__guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
472 	__guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
473 	__guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
474 
475 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
476 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
477 }
478 
479 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
480 {
481 	struct exec_queue_policy policy;
482 
483 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
484 	__guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
485 
486 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
487 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
488 }
489 
490 #define parallel_read(xe_, map_, field_) \
491 	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
492 			field_)
493 #define parallel_write(xe_, map_, field_, val_) \
494 	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
495 			field_, val_)
496 
497 static void __register_mlrc_exec_queue(struct xe_guc *guc,
498 				       struct xe_exec_queue *q,
499 				       struct guc_ctxt_registration_info *info)
500 {
501 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
502 	struct xe_device *xe = guc_to_xe(guc);
503 	u32 action[MAX_MLRC_REG_SIZE];
504 	int len = 0;
505 	int i;
506 
507 	xe_assert(xe, xe_exec_queue_is_parallel(q));
508 
509 	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
510 	action[len++] = info->flags;
511 	action[len++] = info->context_idx;
512 	action[len++] = info->engine_class;
513 	action[len++] = info->engine_submit_mask;
514 	action[len++] = info->wq_desc_lo;
515 	action[len++] = info->wq_desc_hi;
516 	action[len++] = info->wq_base_lo;
517 	action[len++] = info->wq_base_hi;
518 	action[len++] = info->wq_size;
519 	action[len++] = q->width;
520 	action[len++] = info->hwlrca_lo;
521 	action[len++] = info->hwlrca_hi;
522 
523 	for (i = 1; i < q->width; ++i) {
524 		struct xe_lrc *lrc = q->lrc[i];
525 
526 		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
527 		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
528 	}
529 
530 	xe_assert(xe, len <= MAX_MLRC_REG_SIZE);
531 #undef MAX_MLRC_REG_SIZE
532 
533 	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
534 }
535 
536 static void __register_exec_queue(struct xe_guc *guc,
537 				  struct guc_ctxt_registration_info *info)
538 {
539 	u32 action[] = {
540 		XE_GUC_ACTION_REGISTER_CONTEXT,
541 		info->flags,
542 		info->context_idx,
543 		info->engine_class,
544 		info->engine_submit_mask,
545 		info->wq_desc_lo,
546 		info->wq_desc_hi,
547 		info->wq_base_lo,
548 		info->wq_base_hi,
549 		info->wq_size,
550 		info->hwlrca_lo,
551 		info->hwlrca_hi,
552 	};
553 
554 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
555 }
556 
557 static void register_exec_queue(struct xe_exec_queue *q)
558 {
559 	struct xe_guc *guc = exec_queue_to_guc(q);
560 	struct xe_device *xe = guc_to_xe(guc);
561 	struct xe_lrc *lrc = q->lrc[0];
562 	struct guc_ctxt_registration_info info;
563 
564 	xe_assert(xe, !exec_queue_registered(q));
565 
566 	memset(&info, 0, sizeof(info));
567 	info.context_idx = q->guc->id;
568 	info.engine_class = xe_engine_class_to_guc_class(q->class);
569 	info.engine_submit_mask = q->logical_mask;
570 	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
571 	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
572 	info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
573 
574 	if (xe_exec_queue_is_parallel(q)) {
575 		u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
576 		struct iosys_map map = xe_lrc_parallel_map(lrc);
577 
578 		info.wq_desc_lo = lower_32_bits(ggtt_addr +
579 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
580 		info.wq_desc_hi = upper_32_bits(ggtt_addr +
581 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
582 		info.wq_base_lo = lower_32_bits(ggtt_addr +
583 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
584 		info.wq_base_hi = upper_32_bits(ggtt_addr +
585 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
586 		info.wq_size = WQ_SIZE;
587 
588 		q->guc->wqi_head = 0;
589 		q->guc->wqi_tail = 0;
590 		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
591 		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
592 	}
593 
594 	/*
595 	 * We must keep a reference for LR engines if engine is registered with
596 	 * the GuC as jobs signal immediately and can't destroy an engine if the
597 	 * GuC has a reference to it.
598 	 */
599 	if (xe_exec_queue_is_lr(q))
600 		xe_exec_queue_get(q);
601 
602 	set_exec_queue_registered(q);
603 	trace_xe_exec_queue_register(q);
604 	if (xe_exec_queue_is_parallel(q))
605 		__register_mlrc_exec_queue(guc, q, &info);
606 	else
607 		__register_exec_queue(guc, &info);
608 	init_policies(guc, q);
609 }
610 
611 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
612 {
613 	return (WQ_SIZE - q->guc->wqi_tail);
614 }
615 
616 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
617 {
618 	struct xe_guc *guc = exec_queue_to_guc(q);
619 	struct xe_device *xe = guc_to_xe(guc);
620 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
621 	unsigned int sleep_period_ms = 1;
622 
623 #define AVAILABLE_SPACE \
624 	CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
625 	if (wqi_size > AVAILABLE_SPACE) {
626 try_again:
627 		q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
628 		if (wqi_size > AVAILABLE_SPACE) {
629 			if (sleep_period_ms == 1024) {
630 				xe_gt_reset_async(q->gt);
631 				return -ENODEV;
632 			}
633 
634 			msleep(sleep_period_ms);
635 			sleep_period_ms <<= 1;
636 			goto try_again;
637 		}
638 	}
639 #undef AVAILABLE_SPACE
640 
641 	return 0;
642 }
643 
644 static int wq_noop_append(struct xe_exec_queue *q)
645 {
646 	struct xe_guc *guc = exec_queue_to_guc(q);
647 	struct xe_device *xe = guc_to_xe(guc);
648 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
649 	u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
650 
651 	if (wq_wait_for_space(q, wq_space_until_wrap(q)))
652 		return -ENODEV;
653 
654 	xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw));
655 
656 	parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
657 		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
658 		       FIELD_PREP(WQ_LEN_MASK, len_dw));
659 	q->guc->wqi_tail = 0;
660 
661 	return 0;
662 }
663 
664 static void wq_item_append(struct xe_exec_queue *q)
665 {
666 	struct xe_guc *guc = exec_queue_to_guc(q);
667 	struct xe_device *xe = guc_to_xe(guc);
668 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
669 #define WQ_HEADER_SIZE	4	/* Includes 1 LRC address too */
670 	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
671 	u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
672 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
673 	int i = 0, j;
674 
675 	if (wqi_size > wq_space_until_wrap(q)) {
676 		if (wq_noop_append(q))
677 			return;
678 	}
679 	if (wq_wait_for_space(q, wqi_size))
680 		return;
681 
682 	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
683 		FIELD_PREP(WQ_LEN_MASK, len_dw);
684 	wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
685 	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
686 		FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
687 	wqi[i++] = 0;
688 	for (j = 1; j < q->width; ++j) {
689 		struct xe_lrc *lrc = q->lrc[j];
690 
691 		wqi[i++] = lrc->ring.tail / sizeof(u64);
692 	}
693 
694 	xe_assert(xe, i == wqi_size / sizeof(u32));
695 
696 	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
697 				      wq[q->guc->wqi_tail / sizeof(u32)]));
698 	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
699 	q->guc->wqi_tail += wqi_size;
700 	xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE);
701 
702 	xe_device_wmb(xe);
703 
704 	map = xe_lrc_parallel_map(q->lrc[0]);
705 	parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
706 }
707 
708 #define RESUME_PENDING	~0x0ull
709 static void submit_exec_queue(struct xe_exec_queue *q)
710 {
711 	struct xe_guc *guc = exec_queue_to_guc(q);
712 	struct xe_device *xe = guc_to_xe(guc);
713 	struct xe_lrc *lrc = q->lrc[0];
714 	u32 action[3];
715 	u32 g2h_len = 0;
716 	u32 num_g2h = 0;
717 	int len = 0;
718 	bool extra_submit = false;
719 
720 	xe_assert(xe, exec_queue_registered(q));
721 
722 	if (xe_exec_queue_is_parallel(q))
723 		wq_item_append(q);
724 	else
725 		xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
726 
727 	if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
728 		return;
729 
730 	if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
731 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
732 		action[len++] = q->guc->id;
733 		action[len++] = GUC_CONTEXT_ENABLE;
734 		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
735 		num_g2h = 1;
736 		if (xe_exec_queue_is_parallel(q))
737 			extra_submit = true;
738 
739 		q->guc->resume_time = RESUME_PENDING;
740 		set_exec_queue_pending_enable(q);
741 		set_exec_queue_enabled(q);
742 		trace_xe_exec_queue_scheduling_enable(q);
743 	} else {
744 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
745 		action[len++] = q->guc->id;
746 		trace_xe_exec_queue_submit(q);
747 	}
748 
749 	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
750 
751 	if (extra_submit) {
752 		len = 0;
753 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
754 		action[len++] = q->guc->id;
755 		trace_xe_exec_queue_submit(q);
756 
757 		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
758 	}
759 }
760 
761 static struct dma_fence *
762 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
763 {
764 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
765 	struct xe_exec_queue *q = job->q;
766 	struct xe_guc *guc = exec_queue_to_guc(q);
767 	struct xe_device *xe = guc_to_xe(guc);
768 	bool lr = xe_exec_queue_is_lr(q);
769 
770 	xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
771 		  exec_queue_banned(q) || exec_queue_suspended(q));
772 
773 	trace_xe_sched_job_run(job);
774 
775 	if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
776 		if (!exec_queue_registered(q))
777 			register_exec_queue(q);
778 		if (!lr)	/* LR jobs are emitted in the exec IOCTL */
779 			q->ring_ops->emit_job(job);
780 		submit_exec_queue(q);
781 	}
782 
783 	if (lr) {
784 		xe_sched_job_set_error(job, -EOPNOTSUPP);
785 		return NULL;
786 	} else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) {
787 		return job->fence;
788 	} else {
789 		return dma_fence_get(job->fence);
790 	}
791 }
792 
793 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
794 {
795 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
796 
797 	xe_exec_queue_update_run_ticks(job->q);
798 
799 	trace_xe_sched_job_free(job);
800 	xe_sched_job_put(job);
801 }
802 
803 static int guc_read_stopped(struct xe_guc *guc)
804 {
805 	return atomic_read(&guc->submission_state.stopped);
806 }
807 
808 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)			\
809 	u32 action[] = {						\
810 		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
811 		q->guc->id,						\
812 		GUC_CONTEXT_##enable_disable,				\
813 	}
814 
815 static void disable_scheduling_deregister(struct xe_guc *guc,
816 					  struct xe_exec_queue *q)
817 {
818 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
819 	struct xe_device *xe = guc_to_xe(guc);
820 	int ret;
821 
822 	set_min_preemption_timeout(guc, q);
823 	smp_rmb();
824 	ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) ||
825 				 guc_read_stopped(guc), HZ * 5);
826 	if (!ret) {
827 		struct xe_gpu_scheduler *sched = &q->guc->sched;
828 
829 		drm_warn(&xe->drm, "Pending enable failed to respond");
830 		xe_sched_submission_start(sched);
831 		xe_gt_reset_async(q->gt);
832 		xe_sched_tdr_queue_imm(sched);
833 		return;
834 	}
835 
836 	clear_exec_queue_enabled(q);
837 	set_exec_queue_pending_disable(q);
838 	set_exec_queue_destroyed(q);
839 	trace_xe_exec_queue_scheduling_disable(q);
840 
841 	/*
842 	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
843 	 * handler and we are not allowed to reserved G2H space in handlers.
844 	 */
845 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
846 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
847 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
848 }
849 
850 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
851 {
852 	struct xe_guc *guc = exec_queue_to_guc(q);
853 	struct xe_device *xe = guc_to_xe(guc);
854 
855 	/** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
856 	wake_up_all(&xe->ufence_wq);
857 
858 	if (xe_exec_queue_is_lr(q))
859 		queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
860 	else
861 		xe_sched_tdr_queue_imm(&q->guc->sched);
862 }
863 
864 /**
865  * xe_guc_submit_wedge() - Wedge GuC submission
866  * @guc: the GuC object
867  *
868  * Save exec queue's registered with GuC state by taking a ref to each queue.
869  * Register a DRMM handler to drop refs upon driver unload.
870  */
871 void xe_guc_submit_wedge(struct xe_guc *guc)
872 {
873 	struct xe_device *xe = guc_to_xe(guc);
874 	struct xe_exec_queue *q;
875 	unsigned long index;
876 	int err;
877 
878 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
879 
880 	err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
881 				       guc_submit_wedged_fini, guc);
882 	if (err) {
883 		drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n");
884 		return;
885 	}
886 
887 	mutex_lock(&guc->submission_state.lock);
888 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
889 		if (xe_exec_queue_get_unless_zero(q))
890 			set_exec_queue_wedged(q);
891 	mutex_unlock(&guc->submission_state.lock);
892 }
893 
894 static bool guc_submit_hint_wedged(struct xe_guc *guc)
895 {
896 	struct xe_device *xe = guc_to_xe(guc);
897 
898 	if (xe->wedged.mode != 2)
899 		return false;
900 
901 	if (xe_device_wedged(xe))
902 		return true;
903 
904 	xe_device_declare_wedged(xe);
905 
906 	return true;
907 }
908 
909 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
910 {
911 	struct xe_guc_exec_queue *ge =
912 		container_of(w, struct xe_guc_exec_queue, lr_tdr);
913 	struct xe_exec_queue *q = ge->q;
914 	struct xe_guc *guc = exec_queue_to_guc(q);
915 	struct xe_device *xe = guc_to_xe(guc);
916 	struct xe_gpu_scheduler *sched = &ge->sched;
917 	bool wedged;
918 
919 	xe_assert(xe, xe_exec_queue_is_lr(q));
920 	trace_xe_exec_queue_lr_cleanup(q);
921 
922 	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
923 
924 	/* Kill the run_job / process_msg entry points */
925 	xe_sched_submission_stop(sched);
926 
927 	/*
928 	 * Engine state now mostly stable, disable scheduling / deregister if
929 	 * needed. This cleanup routine might be called multiple times, where
930 	 * the actual async engine deregister drops the final engine ref.
931 	 * Calling disable_scheduling_deregister will mark the engine as
932 	 * destroyed and fire off the CT requests to disable scheduling /
933 	 * deregister, which we only want to do once. We also don't want to mark
934 	 * the engine as pending_disable again as this may race with the
935 	 * xe_guc_deregister_done_handler() which treats it as an unexpected
936 	 * state.
937 	 */
938 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
939 		struct xe_guc *guc = exec_queue_to_guc(q);
940 		int ret;
941 
942 		set_exec_queue_banned(q);
943 		disable_scheduling_deregister(guc, q);
944 
945 		/*
946 		 * Must wait for scheduling to be disabled before signalling
947 		 * any fences, if GT broken the GT reset code should signal us.
948 		 */
949 		ret = wait_event_timeout(guc->ct.wq,
950 					 !exec_queue_pending_disable(q) ||
951 					 guc_read_stopped(guc), HZ * 5);
952 		if (!ret) {
953 			drm_warn(&xe->drm, "Schedule disable failed to respond");
954 			xe_sched_submission_start(sched);
955 			xe_gt_reset_async(q->gt);
956 			return;
957 		}
958 	}
959 
960 	xe_sched_submission_start(sched);
961 }
962 
963 #define ADJUST_FIVE_PERCENT(__t)	mul_u64_u32_div(__t, 105, 100)
964 
965 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
966 {
967 	struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
968 	u32 ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]);
969 	u32 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
970 	u32 timeout_ms = q->sched_props.job_timeout_ms;
971 	u32 diff;
972 	u64 running_time_ms;
973 
974 	/*
975 	 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
976 	 * possible overflows with a high timeout.
977 	 */
978 	xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
979 
980 	if (ctx_timestamp < ctx_job_timestamp)
981 		diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
982 	else
983 		diff = ctx_timestamp - ctx_job_timestamp;
984 
985 	/*
986 	 * Ensure timeout is within 5% to account for an GuC scheduling latency
987 	 */
988 	running_time_ms =
989 		ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
990 
991 	xe_gt_dbg(gt,
992 		  "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
993 		  xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
994 		  q->guc->id, running_time_ms, timeout_ms, diff);
995 
996 	return running_time_ms >= timeout_ms;
997 }
998 
999 static void enable_scheduling(struct xe_exec_queue *q)
1000 {
1001 	MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
1002 	struct xe_guc *guc = exec_queue_to_guc(q);
1003 	int ret;
1004 
1005 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1006 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1007 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1008 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1009 
1010 	set_exec_queue_pending_enable(q);
1011 	set_exec_queue_enabled(q);
1012 	trace_xe_exec_queue_scheduling_enable(q);
1013 
1014 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1015 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1016 
1017 	ret = wait_event_timeout(guc->ct.wq,
1018 				 !exec_queue_pending_enable(q) ||
1019 				 guc_read_stopped(guc), HZ * 5);
1020 	if (!ret || guc_read_stopped(guc)) {
1021 		xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
1022 		set_exec_queue_banned(q);
1023 		xe_gt_reset_async(q->gt);
1024 		xe_sched_tdr_queue_imm(&q->guc->sched);
1025 	}
1026 }
1027 
1028 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
1029 {
1030 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1031 	struct xe_guc *guc = exec_queue_to_guc(q);
1032 
1033 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1034 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1035 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1036 
1037 	if (immediate)
1038 		set_min_preemption_timeout(guc, q);
1039 	clear_exec_queue_enabled(q);
1040 	set_exec_queue_pending_disable(q);
1041 	trace_xe_exec_queue_scheduling_disable(q);
1042 
1043 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1044 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1045 }
1046 
1047 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1048 {
1049 	u32 action[] = {
1050 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1051 		q->guc->id,
1052 	};
1053 
1054 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1055 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1056 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1057 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1058 
1059 	set_exec_queue_destroyed(q);
1060 	trace_xe_exec_queue_deregister(q);
1061 
1062 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1063 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1064 }
1065 
1066 static enum drm_gpu_sched_stat
1067 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1068 {
1069 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
1070 	struct xe_sched_job *tmp_job;
1071 	struct xe_exec_queue *q = job->q;
1072 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1073 	struct xe_guc *guc = exec_queue_to_guc(q);
1074 	const char *process_name = "no process";
1075 	int err = -ETIME;
1076 	pid_t pid = -1;
1077 	int i = 0;
1078 	bool wedged, skip_timeout_check;
1079 
1080 	/*
1081 	 * TDR has fired before free job worker. Common if exec queue
1082 	 * immediately closed after last fence signaled.
1083 	 */
1084 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1085 		guc_exec_queue_free_job(drm_job);
1086 
1087 		return DRM_GPU_SCHED_STAT_NOMINAL;
1088 	}
1089 
1090 	/* Kill the run_job entry point */
1091 	xe_sched_submission_stop(sched);
1092 
1093 	/* Must check all state after stopping scheduler */
1094 	skip_timeout_check = exec_queue_reset(q) ||
1095 		exec_queue_killed_or_banned_or_wedged(q) ||
1096 		exec_queue_destroyed(q);
1097 
1098 	/* Job hasn't started, can't be timed out */
1099 	if (!skip_timeout_check && !xe_sched_job_started(job))
1100 		goto rearm;
1101 
1102 	/*
1103 	 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1104 	 * modify scheduling state to read timestamp. We could read the
1105 	 * timestamp from a register to accumulate current running time but this
1106 	 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1107 	 * genuine timeouts.
1108 	 */
1109 	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1110 
1111 	/* Engine state now stable, disable scheduling to check timestamp */
1112 	if (!wedged && exec_queue_registered(q)) {
1113 		int ret;
1114 
1115 		if (exec_queue_reset(q))
1116 			err = -EIO;
1117 
1118 		if (!exec_queue_destroyed(q)) {
1119 			/*
1120 			 * Wait for any pending G2H to flush out before
1121 			 * modifying state
1122 			 */
1123 			ret = wait_event_timeout(guc->ct.wq,
1124 						 !exec_queue_pending_enable(q) ||
1125 						 guc_read_stopped(guc), HZ * 5);
1126 			if (!ret || guc_read_stopped(guc))
1127 				goto trigger_reset;
1128 
1129 			/*
1130 			 * Flag communicates to G2H handler that schedule
1131 			 * disable originated from a timeout check. The G2H then
1132 			 * avoid triggering cleanup or deregistering the exec
1133 			 * queue.
1134 			 */
1135 			set_exec_queue_check_timeout(q);
1136 			disable_scheduling(q, skip_timeout_check);
1137 		}
1138 
1139 		/*
1140 		 * Must wait for scheduling to be disabled before signalling
1141 		 * any fences, if GT broken the GT reset code should signal us.
1142 		 *
1143 		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1144 		 * error) messages which can cause the schedule disable to get
1145 		 * lost. If this occurs, trigger a GT reset to recover.
1146 		 */
1147 		smp_rmb();
1148 		ret = wait_event_timeout(guc->ct.wq,
1149 					 !exec_queue_pending_disable(q) ||
1150 					 guc_read_stopped(guc), HZ * 5);
1151 		if (!ret || guc_read_stopped(guc)) {
1152 trigger_reset:
1153 			if (!ret)
1154 				xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond");
1155 			set_exec_queue_extra_ref(q);
1156 			xe_exec_queue_get(q);	/* GT reset owns this */
1157 			set_exec_queue_banned(q);
1158 			xe_gt_reset_async(q->gt);
1159 			xe_sched_tdr_queue_imm(sched);
1160 			goto rearm;
1161 		}
1162 	}
1163 
1164 	/*
1165 	 * Check if job is actually timed out, if so restart job execution and TDR
1166 	 */
1167 	if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1168 	    !exec_queue_reset(q) && exec_queue_registered(q)) {
1169 		clear_exec_queue_check_timeout(q);
1170 		goto sched_enable;
1171 	}
1172 
1173 	if (q->vm && q->vm->xef) {
1174 		process_name = q->vm->xef->process_name;
1175 		pid = q->vm->xef->pid;
1176 	}
1177 	xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1178 		     xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1179 		     q->guc->id, q->flags, process_name, pid);
1180 
1181 	trace_xe_sched_job_timedout(job);
1182 
1183 	if (!exec_queue_killed(q))
1184 		xe_devcoredump(job);
1185 
1186 	/*
1187 	 * Kernel jobs should never fail, nor should VM jobs if they do
1188 	 * somethings has gone wrong and the GT needs a reset
1189 	 */
1190 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1191 		   "Kernel-submitted job timed out\n");
1192 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1193 		   "VM job timed out on non-killed execqueue\n");
1194 	if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1195 			(q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1196 		if (!xe_sched_invalidate_job(job, 2)) {
1197 			clear_exec_queue_check_timeout(q);
1198 			xe_gt_reset_async(q->gt);
1199 			goto rearm;
1200 		}
1201 	}
1202 
1203 	/* Finish cleaning up exec queue via deregister */
1204 	set_exec_queue_banned(q);
1205 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1206 		set_exec_queue_extra_ref(q);
1207 		xe_exec_queue_get(q);
1208 		__deregister_exec_queue(guc, q);
1209 	}
1210 
1211 	/* Stop fence signaling */
1212 	xe_hw_fence_irq_stop(q->fence_irq);
1213 
1214 	/*
1215 	 * Fence state now stable, stop / start scheduler which cleans up any
1216 	 * fences that are complete
1217 	 */
1218 	xe_sched_add_pending_job(sched, job);
1219 	xe_sched_submission_start(sched);
1220 
1221 	xe_guc_exec_queue_trigger_cleanup(q);
1222 
1223 	/* Mark all outstanding jobs as bad, thus completing them */
1224 	spin_lock(&sched->base.job_list_lock);
1225 	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1226 		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1227 	spin_unlock(&sched->base.job_list_lock);
1228 
1229 	/* Start fence signaling */
1230 	xe_hw_fence_irq_start(q->fence_irq);
1231 
1232 	return DRM_GPU_SCHED_STAT_NOMINAL;
1233 
1234 sched_enable:
1235 	enable_scheduling(q);
1236 rearm:
1237 	/*
1238 	 * XXX: Ideally want to adjust timeout based on current exection time
1239 	 * but there is not currently an easy way to do in DRM scheduler. With
1240 	 * some thought, do this in a follow up.
1241 	 */
1242 	xe_sched_add_pending_job(sched, job);
1243 	xe_sched_submission_start(sched);
1244 
1245 	return DRM_GPU_SCHED_STAT_NOMINAL;
1246 }
1247 
1248 static void __guc_exec_queue_fini_async(struct work_struct *w)
1249 {
1250 	struct xe_guc_exec_queue *ge =
1251 		container_of(w, struct xe_guc_exec_queue, fini_async);
1252 	struct xe_exec_queue *q = ge->q;
1253 	struct xe_guc *guc = exec_queue_to_guc(q);
1254 
1255 	xe_pm_runtime_get(guc_to_xe(guc));
1256 	trace_xe_exec_queue_destroy(q);
1257 
1258 	if (xe_exec_queue_is_lr(q))
1259 		cancel_work_sync(&ge->lr_tdr);
1260 	release_guc_id(guc, q);
1261 	xe_sched_entity_fini(&ge->entity);
1262 	xe_sched_fini(&ge->sched);
1263 
1264 	kfree(ge);
1265 	xe_exec_queue_fini(q);
1266 	xe_pm_runtime_put(guc_to_xe(guc));
1267 }
1268 
1269 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1270 {
1271 	INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1272 
1273 	/* We must block on kernel engines so slabs are empty on driver unload */
1274 	if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1275 		__guc_exec_queue_fini_async(&q->guc->fini_async);
1276 	else
1277 		queue_work(system_wq, &q->guc->fini_async);
1278 }
1279 
1280 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1281 {
1282 	/*
1283 	 * Might be done from within the GPU scheduler, need to do async as we
1284 	 * fini the scheduler when the engine is fini'd, the scheduler can't
1285 	 * complete fini within itself (circular dependency). Async resolves
1286 	 * this we and don't really care when everything is fini'd, just that it
1287 	 * is.
1288 	 */
1289 	guc_exec_queue_fini_async(q);
1290 }
1291 
1292 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1293 {
1294 	struct xe_exec_queue *q = msg->private_data;
1295 	struct xe_guc *guc = exec_queue_to_guc(q);
1296 	struct xe_device *xe = guc_to_xe(guc);
1297 
1298 	xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1299 	trace_xe_exec_queue_cleanup_entity(q);
1300 
1301 	if (exec_queue_registered(q))
1302 		disable_scheduling_deregister(guc, q);
1303 	else
1304 		__guc_exec_queue_fini(guc, q);
1305 }
1306 
1307 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1308 {
1309 	return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1310 }
1311 
1312 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1313 {
1314 	struct xe_exec_queue *q = msg->private_data;
1315 	struct xe_guc *guc = exec_queue_to_guc(q);
1316 
1317 	if (guc_exec_queue_allowed_to_change_state(q))
1318 		init_policies(guc, q);
1319 	kfree(msg);
1320 }
1321 
1322 static void __suspend_fence_signal(struct xe_exec_queue *q)
1323 {
1324 	if (!q->guc->suspend_pending)
1325 		return;
1326 
1327 	WRITE_ONCE(q->guc->suspend_pending, false);
1328 	wake_up(&q->guc->suspend_wait);
1329 }
1330 
1331 static void suspend_fence_signal(struct xe_exec_queue *q)
1332 {
1333 	struct xe_guc *guc = exec_queue_to_guc(q);
1334 	struct xe_device *xe = guc_to_xe(guc);
1335 
1336 	xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) ||
1337 		  guc_read_stopped(guc));
1338 	xe_assert(xe, q->guc->suspend_pending);
1339 
1340 	__suspend_fence_signal(q);
1341 }
1342 
1343 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1344 {
1345 	struct xe_exec_queue *q = msg->private_data;
1346 	struct xe_guc *guc = exec_queue_to_guc(q);
1347 
1348 	if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1349 	    exec_queue_enabled(q)) {
1350 		wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING ||
1351 			   guc_read_stopped(guc));
1352 
1353 		if (!guc_read_stopped(guc)) {
1354 			s64 since_resume_ms =
1355 				ktime_ms_delta(ktime_get(),
1356 					       q->guc->resume_time);
1357 			s64 wait_ms = q->vm->preempt.min_run_period_ms -
1358 				since_resume_ms;
1359 
1360 			if (wait_ms > 0 && q->guc->resume_time)
1361 				msleep(wait_ms);
1362 
1363 			set_exec_queue_suspended(q);
1364 			disable_scheduling(q, false);
1365 		}
1366 	} else if (q->guc->suspend_pending) {
1367 		set_exec_queue_suspended(q);
1368 		suspend_fence_signal(q);
1369 	}
1370 }
1371 
1372 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1373 {
1374 	struct xe_exec_queue *q = msg->private_data;
1375 
1376 	if (guc_exec_queue_allowed_to_change_state(q)) {
1377 		clear_exec_queue_suspended(q);
1378 		if (!exec_queue_enabled(q)) {
1379 			q->guc->resume_time = RESUME_PENDING;
1380 			enable_scheduling(q);
1381 		}
1382 	} else {
1383 		clear_exec_queue_suspended(q);
1384 	}
1385 }
1386 
1387 #define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1388 #define SET_SCHED_PROPS	2
1389 #define SUSPEND		3
1390 #define RESUME		4
1391 #define OPCODE_MASK	0xf
1392 #define MSG_LOCKED	BIT(8)
1393 
1394 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1395 {
1396 	struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1397 
1398 	trace_xe_sched_msg_recv(msg);
1399 
1400 	switch (msg->opcode) {
1401 	case CLEANUP:
1402 		__guc_exec_queue_process_msg_cleanup(msg);
1403 		break;
1404 	case SET_SCHED_PROPS:
1405 		__guc_exec_queue_process_msg_set_sched_props(msg);
1406 		break;
1407 	case SUSPEND:
1408 		__guc_exec_queue_process_msg_suspend(msg);
1409 		break;
1410 	case RESUME:
1411 		__guc_exec_queue_process_msg_resume(msg);
1412 		break;
1413 	default:
1414 		XE_WARN_ON("Unknown message type");
1415 	}
1416 
1417 	xe_pm_runtime_put(xe);
1418 }
1419 
1420 static const struct drm_sched_backend_ops drm_sched_ops = {
1421 	.run_job = guc_exec_queue_run_job,
1422 	.free_job = guc_exec_queue_free_job,
1423 	.timedout_job = guc_exec_queue_timedout_job,
1424 };
1425 
1426 static const struct xe_sched_backend_ops xe_sched_ops = {
1427 	.process_msg = guc_exec_queue_process_msg,
1428 };
1429 
1430 static int guc_exec_queue_init(struct xe_exec_queue *q)
1431 {
1432 	struct xe_gpu_scheduler *sched;
1433 	struct xe_guc *guc = exec_queue_to_guc(q);
1434 	struct xe_device *xe = guc_to_xe(guc);
1435 	struct xe_guc_exec_queue *ge;
1436 	long timeout;
1437 	int err, i;
1438 
1439 	xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc)));
1440 
1441 	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1442 	if (!ge)
1443 		return -ENOMEM;
1444 
1445 	q->guc = ge;
1446 	ge->q = q;
1447 	init_waitqueue_head(&ge->suspend_wait);
1448 
1449 	for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1450 		INIT_LIST_HEAD(&ge->static_msgs[i].link);
1451 
1452 	timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1453 		  msecs_to_jiffies(q->sched_props.job_timeout_ms);
1454 	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1455 			    get_submit_wq(guc),
1456 			    q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1457 			    timeout, guc_to_gt(guc)->ordered_wq, NULL,
1458 			    q->name, gt_to_xe(q->gt)->drm.dev);
1459 	if (err)
1460 		goto err_free;
1461 
1462 	sched = &ge->sched;
1463 	err = xe_sched_entity_init(&ge->entity, sched);
1464 	if (err)
1465 		goto err_sched;
1466 
1467 	if (xe_exec_queue_is_lr(q))
1468 		INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1469 
1470 	mutex_lock(&guc->submission_state.lock);
1471 
1472 	err = alloc_guc_id(guc, q);
1473 	if (err)
1474 		goto err_entity;
1475 
1476 	q->entity = &ge->entity;
1477 
1478 	if (guc_read_stopped(guc))
1479 		xe_sched_stop(sched);
1480 
1481 	mutex_unlock(&guc->submission_state.lock);
1482 
1483 	xe_exec_queue_assign_name(q, q->guc->id);
1484 
1485 	trace_xe_exec_queue_create(q);
1486 
1487 	return 0;
1488 
1489 err_entity:
1490 	mutex_unlock(&guc->submission_state.lock);
1491 	xe_sched_entity_fini(&ge->entity);
1492 err_sched:
1493 	xe_sched_fini(&ge->sched);
1494 err_free:
1495 	kfree(ge);
1496 
1497 	return err;
1498 }
1499 
1500 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1501 {
1502 	trace_xe_exec_queue_kill(q);
1503 	set_exec_queue_killed(q);
1504 	__suspend_fence_signal(q);
1505 	xe_guc_exec_queue_trigger_cleanup(q);
1506 }
1507 
1508 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1509 				   u32 opcode)
1510 {
1511 	xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1512 
1513 	INIT_LIST_HEAD(&msg->link);
1514 	msg->opcode = opcode & OPCODE_MASK;
1515 	msg->private_data = q;
1516 
1517 	trace_xe_sched_msg_add(msg);
1518 	if (opcode & MSG_LOCKED)
1519 		xe_sched_add_msg_locked(&q->guc->sched, msg);
1520 	else
1521 		xe_sched_add_msg(&q->guc->sched, msg);
1522 }
1523 
1524 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1525 				       struct xe_sched_msg *msg,
1526 				       u32 opcode)
1527 {
1528 	if (!list_empty(&msg->link))
1529 		return false;
1530 
1531 	guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1532 
1533 	return true;
1534 }
1535 
1536 #define STATIC_MSG_CLEANUP	0
1537 #define STATIC_MSG_SUSPEND	1
1538 #define STATIC_MSG_RESUME	2
1539 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1540 {
1541 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1542 
1543 	if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1544 		guc_exec_queue_add_msg(q, msg, CLEANUP);
1545 	else
1546 		__guc_exec_queue_fini(exec_queue_to_guc(q), q);
1547 }
1548 
1549 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1550 				       enum xe_exec_queue_priority priority)
1551 {
1552 	struct xe_sched_msg *msg;
1553 
1554 	if (q->sched_props.priority == priority ||
1555 	    exec_queue_killed_or_banned_or_wedged(q))
1556 		return 0;
1557 
1558 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1559 	if (!msg)
1560 		return -ENOMEM;
1561 
1562 	q->sched_props.priority = priority;
1563 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1564 
1565 	return 0;
1566 }
1567 
1568 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1569 {
1570 	struct xe_sched_msg *msg;
1571 
1572 	if (q->sched_props.timeslice_us == timeslice_us ||
1573 	    exec_queue_killed_or_banned_or_wedged(q))
1574 		return 0;
1575 
1576 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1577 	if (!msg)
1578 		return -ENOMEM;
1579 
1580 	q->sched_props.timeslice_us = timeslice_us;
1581 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1582 
1583 	return 0;
1584 }
1585 
1586 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1587 					      u32 preempt_timeout_us)
1588 {
1589 	struct xe_sched_msg *msg;
1590 
1591 	if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1592 	    exec_queue_killed_or_banned_or_wedged(q))
1593 		return 0;
1594 
1595 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1596 	if (!msg)
1597 		return -ENOMEM;
1598 
1599 	q->sched_props.preempt_timeout_us = preempt_timeout_us;
1600 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1601 
1602 	return 0;
1603 }
1604 
1605 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1606 {
1607 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1608 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1609 
1610 	if (exec_queue_killed_or_banned_or_wedged(q))
1611 		return -EINVAL;
1612 
1613 	xe_sched_msg_lock(sched);
1614 	if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1615 		q->guc->suspend_pending = true;
1616 	xe_sched_msg_unlock(sched);
1617 
1618 	return 0;
1619 }
1620 
1621 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1622 {
1623 	struct xe_guc *guc = exec_queue_to_guc(q);
1624 	int ret;
1625 
1626 	/*
1627 	 * Likely don't need to check exec_queue_killed() as we clear
1628 	 * suspend_pending upon kill but to be paranoid but races in which
1629 	 * suspend_pending is set after kill also check kill here.
1630 	 */
1631 	ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1632 					       !READ_ONCE(q->guc->suspend_pending) ||
1633 					       exec_queue_killed(q) ||
1634 					       guc_read_stopped(guc),
1635 					       HZ * 5);
1636 
1637 	if (!ret) {
1638 		xe_gt_warn(guc_to_gt(guc),
1639 			   "Suspend fence, guc_id=%d, failed to respond",
1640 			   q->guc->id);
1641 		/* XXX: Trigger GT reset? */
1642 		return -ETIME;
1643 	}
1644 
1645 	return ret < 0 ? ret : 0;
1646 }
1647 
1648 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1649 {
1650 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1651 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1652 	struct xe_guc *guc = exec_queue_to_guc(q);
1653 	struct xe_device *xe = guc_to_xe(guc);
1654 
1655 	xe_assert(xe, !q->guc->suspend_pending);
1656 
1657 	xe_sched_msg_lock(sched);
1658 	guc_exec_queue_try_add_msg(q, msg, RESUME);
1659 	xe_sched_msg_unlock(sched);
1660 }
1661 
1662 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1663 {
1664 	return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1665 }
1666 
1667 /*
1668  * All of these functions are an abstraction layer which other parts of XE can
1669  * use to trap into the GuC backend. All of these functions, aside from init,
1670  * really shouldn't do much other than trap into the DRM scheduler which
1671  * synchronizes these operations.
1672  */
1673 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1674 	.init = guc_exec_queue_init,
1675 	.kill = guc_exec_queue_kill,
1676 	.fini = guc_exec_queue_fini,
1677 	.set_priority = guc_exec_queue_set_priority,
1678 	.set_timeslice = guc_exec_queue_set_timeslice,
1679 	.set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1680 	.suspend = guc_exec_queue_suspend,
1681 	.suspend_wait = guc_exec_queue_suspend_wait,
1682 	.resume = guc_exec_queue_resume,
1683 	.reset_status = guc_exec_queue_reset_status,
1684 };
1685 
1686 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1687 {
1688 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1689 
1690 	/* Stop scheduling + flush any DRM scheduler operations */
1691 	xe_sched_submission_stop(sched);
1692 
1693 	/* Clean up lost G2H + reset engine state */
1694 	if (exec_queue_registered(q)) {
1695 		if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1696 			xe_exec_queue_put(q);
1697 		else if (exec_queue_destroyed(q))
1698 			__guc_exec_queue_fini(guc, q);
1699 	}
1700 	if (q->guc->suspend_pending) {
1701 		set_exec_queue_suspended(q);
1702 		suspend_fence_signal(q);
1703 	}
1704 	atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1705 		   EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1706 		   EXEC_QUEUE_STATE_SUSPENDED,
1707 		   &q->guc->state);
1708 	q->guc->resume_time = 0;
1709 	trace_xe_exec_queue_stop(q);
1710 
1711 	/*
1712 	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1713 	 * started but not complete job or if a job has gone through a GT reset
1714 	 * more than twice.
1715 	 */
1716 	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1717 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1718 		bool ban = false;
1719 
1720 		if (job) {
1721 			if ((xe_sched_job_started(job) &&
1722 			    !xe_sched_job_completed(job)) ||
1723 			    xe_sched_invalidate_job(job, 2)) {
1724 				trace_xe_sched_job_ban(job);
1725 				ban = true;
1726 			}
1727 		} else if (xe_exec_queue_is_lr(q) &&
1728 			   (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) {
1729 			ban = true;
1730 		}
1731 
1732 		if (ban) {
1733 			set_exec_queue_banned(q);
1734 			xe_guc_exec_queue_trigger_cleanup(q);
1735 		}
1736 	}
1737 }
1738 
1739 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1740 {
1741 	int ret;
1742 
1743 	/*
1744 	 * Using an atomic here rather than submission_state.lock as this
1745 	 * function can be called while holding the CT lock (engine reset
1746 	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1747 	 * Atomic is not ideal, but it works to prevent against concurrent reset
1748 	 * and releasing any TDRs waiting on guc->submission_state.stopped.
1749 	 */
1750 	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1751 	smp_wmb();
1752 	wake_up_all(&guc->ct.wq);
1753 
1754 	return ret;
1755 }
1756 
1757 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1758 {
1759 	wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1760 		   !guc_read_stopped(guc));
1761 }
1762 
1763 void xe_guc_submit_stop(struct xe_guc *guc)
1764 {
1765 	struct xe_exec_queue *q;
1766 	unsigned long index;
1767 	struct xe_device *xe = guc_to_xe(guc);
1768 
1769 	xe_assert(xe, guc_read_stopped(guc) == 1);
1770 
1771 	mutex_lock(&guc->submission_state.lock);
1772 
1773 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1774 		guc_exec_queue_stop(guc, q);
1775 
1776 	mutex_unlock(&guc->submission_state.lock);
1777 
1778 	/*
1779 	 * No one can enter the backend at this point, aside from new engine
1780 	 * creation which is protected by guc->submission_state.lock.
1781 	 */
1782 
1783 }
1784 
1785 static void guc_exec_queue_start(struct xe_exec_queue *q)
1786 {
1787 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1788 
1789 	if (!exec_queue_killed_or_banned_or_wedged(q)) {
1790 		int i;
1791 
1792 		trace_xe_exec_queue_resubmit(q);
1793 		for (i = 0; i < q->width; ++i)
1794 			xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1795 		xe_sched_resubmit_jobs(sched);
1796 	}
1797 
1798 	xe_sched_submission_start(sched);
1799 }
1800 
1801 int xe_guc_submit_start(struct xe_guc *guc)
1802 {
1803 	struct xe_exec_queue *q;
1804 	unsigned long index;
1805 	struct xe_device *xe = guc_to_xe(guc);
1806 
1807 	xe_assert(xe, guc_read_stopped(guc) == 1);
1808 
1809 	mutex_lock(&guc->submission_state.lock);
1810 	atomic_dec(&guc->submission_state.stopped);
1811 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1812 		guc_exec_queue_start(q);
1813 	mutex_unlock(&guc->submission_state.lock);
1814 
1815 	wake_up_all(&guc->ct.wq);
1816 
1817 	return 0;
1818 }
1819 
1820 static struct xe_exec_queue *
1821 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1822 {
1823 	struct xe_device *xe = guc_to_xe(guc);
1824 	struct xe_exec_queue *q;
1825 
1826 	if (unlikely(guc_id >= GUC_ID_MAX)) {
1827 		drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1828 		return NULL;
1829 	}
1830 
1831 	q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1832 	if (unlikely(!q)) {
1833 		drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1834 		return NULL;
1835 	}
1836 
1837 	xe_assert(xe, guc_id >= q->guc->id);
1838 	xe_assert(xe, guc_id < (q->guc->id + q->width));
1839 
1840 	return q;
1841 }
1842 
1843 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1844 {
1845 	u32 action[] = {
1846 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1847 		q->guc->id,
1848 	};
1849 
1850 	xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1851 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1852 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1853 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1854 
1855 	trace_xe_exec_queue_deregister(q);
1856 
1857 	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1858 }
1859 
1860 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1861 			      u32 runnable_state)
1862 {
1863 	trace_xe_exec_queue_scheduling_done(q);
1864 
1865 	if (runnable_state == 1) {
1866 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1867 
1868 		q->guc->resume_time = ktime_get();
1869 		clear_exec_queue_pending_enable(q);
1870 		smp_wmb();
1871 		wake_up_all(&guc->ct.wq);
1872 	} else {
1873 		bool check_timeout = exec_queue_check_timeout(q);
1874 
1875 		xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1876 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1877 
1878 		clear_exec_queue_pending_disable(q);
1879 		if (q->guc->suspend_pending) {
1880 			suspend_fence_signal(q);
1881 		} else {
1882 			if (exec_queue_banned(q) || check_timeout) {
1883 				smp_wmb();
1884 				wake_up_all(&guc->ct.wq);
1885 			}
1886 			if (!check_timeout)
1887 				deregister_exec_queue(guc, q);
1888 		}
1889 	}
1890 }
1891 
1892 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1893 {
1894 	struct xe_device *xe = guc_to_xe(guc);
1895 	struct xe_exec_queue *q;
1896 	u32 guc_id = msg[0];
1897 	u32 runnable_state = msg[1];
1898 
1899 	if (unlikely(len < 2)) {
1900 		drm_err(&xe->drm, "Invalid length %u", len);
1901 		return -EPROTO;
1902 	}
1903 
1904 	q = g2h_exec_queue_lookup(guc, guc_id);
1905 	if (unlikely(!q))
1906 		return -EPROTO;
1907 
1908 	if (unlikely(!exec_queue_pending_enable(q) &&
1909 		     !exec_queue_pending_disable(q))) {
1910 		xe_gt_err(guc_to_gt(guc),
1911 			  "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1912 			  atomic_read(&q->guc->state), q->guc->id,
1913 			  runnable_state);
1914 		return -EPROTO;
1915 	}
1916 
1917 	handle_sched_done(guc, q, runnable_state);
1918 
1919 	return 0;
1920 }
1921 
1922 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1923 {
1924 	trace_xe_exec_queue_deregister_done(q);
1925 
1926 	clear_exec_queue_registered(q);
1927 
1928 	if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1929 		xe_exec_queue_put(q);
1930 	else
1931 		__guc_exec_queue_fini(guc, q);
1932 }
1933 
1934 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1935 {
1936 	struct xe_device *xe = guc_to_xe(guc);
1937 	struct xe_exec_queue *q;
1938 	u32 guc_id = msg[0];
1939 
1940 	if (unlikely(len < 1)) {
1941 		drm_err(&xe->drm, "Invalid length %u", len);
1942 		return -EPROTO;
1943 	}
1944 
1945 	q = g2h_exec_queue_lookup(guc, guc_id);
1946 	if (unlikely(!q))
1947 		return -EPROTO;
1948 
1949 	if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1950 	    exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1951 		xe_gt_err(guc_to_gt(guc),
1952 			  "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
1953 			  atomic_read(&q->guc->state), q->guc->id);
1954 		return -EPROTO;
1955 	}
1956 
1957 	handle_deregister_done(guc, q);
1958 
1959 	return 0;
1960 }
1961 
1962 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1963 {
1964 	struct xe_gt *gt = guc_to_gt(guc);
1965 	struct xe_device *xe = guc_to_xe(guc);
1966 	struct xe_exec_queue *q;
1967 	u32 guc_id = msg[0];
1968 
1969 	if (unlikely(len < 1)) {
1970 		drm_err(&xe->drm, "Invalid length %u", len);
1971 		return -EPROTO;
1972 	}
1973 
1974 	q = g2h_exec_queue_lookup(guc, guc_id);
1975 	if (unlikely(!q))
1976 		return -EPROTO;
1977 
1978 	xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
1979 		   xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
1980 
1981 	/* FIXME: Do error capture, most likely async */
1982 
1983 	trace_xe_exec_queue_reset(q);
1984 
1985 	/*
1986 	 * A banned engine is a NOP at this point (came from
1987 	 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
1988 	 * jobs by setting timeout of the job to the minimum value kicking
1989 	 * guc_exec_queue_timedout_job.
1990 	 */
1991 	set_exec_queue_reset(q);
1992 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
1993 		xe_guc_exec_queue_trigger_cleanup(q);
1994 
1995 	return 0;
1996 }
1997 
1998 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
1999 					       u32 len)
2000 {
2001 	struct xe_gt *gt = guc_to_gt(guc);
2002 	struct xe_device *xe = guc_to_xe(guc);
2003 	struct xe_exec_queue *q;
2004 	u32 guc_id = msg[0];
2005 
2006 	if (unlikely(len < 1)) {
2007 		drm_err(&xe->drm, "Invalid length %u", len);
2008 		return -EPROTO;
2009 	}
2010 
2011 	q = g2h_exec_queue_lookup(guc, guc_id);
2012 	if (unlikely(!q))
2013 		return -EPROTO;
2014 
2015 	xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2016 		  xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2017 
2018 	trace_xe_exec_queue_memory_cat_error(q);
2019 
2020 	/* Treat the same as engine reset */
2021 	set_exec_queue_reset(q);
2022 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2023 		xe_guc_exec_queue_trigger_cleanup(q);
2024 
2025 	return 0;
2026 }
2027 
2028 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2029 {
2030 	struct xe_device *xe = guc_to_xe(guc);
2031 	u8 guc_class, instance;
2032 	u32 reason;
2033 
2034 	if (unlikely(len != 3)) {
2035 		drm_err(&xe->drm, "Invalid length %u", len);
2036 		return -EPROTO;
2037 	}
2038 
2039 	guc_class = msg[0];
2040 	instance = msg[1];
2041 	reason = msg[2];
2042 
2043 	/* Unexpected failure of a hardware feature, log an actual error */
2044 	drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
2045 		guc_class, instance, reason);
2046 
2047 	xe_gt_reset_async(guc_to_gt(guc));
2048 
2049 	return 0;
2050 }
2051 
2052 static void
2053 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2054 				   struct xe_guc_submit_exec_queue_snapshot *snapshot)
2055 {
2056 	struct xe_guc *guc = exec_queue_to_guc(q);
2057 	struct xe_device *xe = guc_to_xe(guc);
2058 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2059 	int i;
2060 
2061 	snapshot->guc.wqi_head = q->guc->wqi_head;
2062 	snapshot->guc.wqi_tail = q->guc->wqi_tail;
2063 	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2064 	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2065 	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2066 							  wq_desc.wq_status);
2067 
2068 	if (snapshot->parallel.wq_desc.head !=
2069 	    snapshot->parallel.wq_desc.tail) {
2070 		for (i = snapshot->parallel.wq_desc.head;
2071 		     i != snapshot->parallel.wq_desc.tail;
2072 		     i = (i + sizeof(u32)) % WQ_SIZE)
2073 			snapshot->parallel.wq[i / sizeof(u32)] =
2074 				parallel_read(xe, map, wq[i / sizeof(u32)]);
2075 	}
2076 }
2077 
2078 static void
2079 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2080 				 struct drm_printer *p)
2081 {
2082 	int i;
2083 
2084 	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2085 		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2086 	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2087 		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2088 	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2089 
2090 	if (snapshot->parallel.wq_desc.head !=
2091 	    snapshot->parallel.wq_desc.tail) {
2092 		for (i = snapshot->parallel.wq_desc.head;
2093 		     i != snapshot->parallel.wq_desc.tail;
2094 		     i = (i + sizeof(u32)) % WQ_SIZE)
2095 			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2096 				   snapshot->parallel.wq[i / sizeof(u32)]);
2097 	}
2098 }
2099 
2100 /**
2101  * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2102  * @q: faulty exec queue
2103  *
2104  * This can be printed out in a later stage like during dev_coredump
2105  * analysis.
2106  *
2107  * Returns: a GuC Submit Engine snapshot object that must be freed by the
2108  * caller, using `xe_guc_exec_queue_snapshot_free`.
2109  */
2110 struct xe_guc_submit_exec_queue_snapshot *
2111 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2112 {
2113 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2114 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2115 	int i;
2116 
2117 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2118 
2119 	if (!snapshot)
2120 		return NULL;
2121 
2122 	snapshot->guc.id = q->guc->id;
2123 	memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2124 	snapshot->class = q->class;
2125 	snapshot->logical_mask = q->logical_mask;
2126 	snapshot->width = q->width;
2127 	snapshot->refcount = kref_read(&q->refcount);
2128 	snapshot->sched_timeout = sched->base.timeout;
2129 	snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2130 	snapshot->sched_props.preempt_timeout_us =
2131 		q->sched_props.preempt_timeout_us;
2132 
2133 	snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2134 				      GFP_ATOMIC);
2135 
2136 	if (snapshot->lrc) {
2137 		for (i = 0; i < q->width; ++i) {
2138 			struct xe_lrc *lrc = q->lrc[i];
2139 
2140 			snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2141 		}
2142 	}
2143 
2144 	snapshot->schedule_state = atomic_read(&q->guc->state);
2145 	snapshot->exec_queue_flags = q->flags;
2146 
2147 	snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2148 	if (snapshot->parallel_execution)
2149 		guc_exec_queue_wq_snapshot_capture(q, snapshot);
2150 
2151 	spin_lock(&sched->base.job_list_lock);
2152 	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2153 	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2154 					       sizeof(struct pending_list_snapshot),
2155 					       GFP_ATOMIC);
2156 
2157 	if (snapshot->pending_list) {
2158 		struct xe_sched_job *job_iter;
2159 
2160 		i = 0;
2161 		list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2162 			snapshot->pending_list[i].seqno =
2163 				xe_sched_job_seqno(job_iter);
2164 			snapshot->pending_list[i].fence =
2165 				dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2166 			snapshot->pending_list[i].finished =
2167 				dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2168 				? 1 : 0;
2169 			i++;
2170 		}
2171 	}
2172 
2173 	spin_unlock(&sched->base.job_list_lock);
2174 
2175 	return snapshot;
2176 }
2177 
2178 /**
2179  * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2180  * @snapshot: Previously captured snapshot of job.
2181  *
2182  * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2183  */
2184 void
2185 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2186 {
2187 	int i;
2188 
2189 	if (!snapshot || !snapshot->lrc)
2190 		return;
2191 
2192 	for (i = 0; i < snapshot->width; ++i)
2193 		xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2194 }
2195 
2196 /**
2197  * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2198  * @snapshot: GuC Submit Engine snapshot object.
2199  * @p: drm_printer where it will be printed out.
2200  *
2201  * This function prints out a given GuC Submit Engine snapshot object.
2202  */
2203 void
2204 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2205 				 struct drm_printer *p)
2206 {
2207 	int i;
2208 
2209 	if (!snapshot)
2210 		return;
2211 
2212 	drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id);
2213 	drm_printf(p, "\tName: %s\n", snapshot->name);
2214 	drm_printf(p, "\tClass: %d\n", snapshot->class);
2215 	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2216 	drm_printf(p, "\tWidth: %d\n", snapshot->width);
2217 	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2218 	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2219 	drm_printf(p, "\tTimeslice: %u (us)\n",
2220 		   snapshot->sched_props.timeslice_us);
2221 	drm_printf(p, "\tPreempt timeout: %u (us)\n",
2222 		   snapshot->sched_props.preempt_timeout_us);
2223 
2224 	for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2225 		xe_lrc_snapshot_print(snapshot->lrc[i], p);
2226 
2227 	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2228 	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2229 
2230 	if (snapshot->parallel_execution)
2231 		guc_exec_queue_wq_snapshot_print(snapshot, p);
2232 
2233 	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2234 	     i++)
2235 		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2236 			   snapshot->pending_list[i].seqno,
2237 			   snapshot->pending_list[i].fence,
2238 			   snapshot->pending_list[i].finished);
2239 }
2240 
2241 /**
2242  * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2243  * snapshot.
2244  * @snapshot: GuC Submit Engine snapshot object.
2245  *
2246  * This function free all the memory that needed to be allocated at capture
2247  * time.
2248  */
2249 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2250 {
2251 	int i;
2252 
2253 	if (!snapshot)
2254 		return;
2255 
2256 	if (snapshot->lrc) {
2257 		for (i = 0; i < snapshot->width; i++)
2258 			xe_lrc_snapshot_free(snapshot->lrc[i]);
2259 		kfree(snapshot->lrc);
2260 	}
2261 	kfree(snapshot->pending_list);
2262 	kfree(snapshot);
2263 }
2264 
2265 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2266 {
2267 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2268 
2269 	snapshot = xe_guc_exec_queue_snapshot_capture(q);
2270 	xe_guc_exec_queue_snapshot_print(snapshot, p);
2271 	xe_guc_exec_queue_snapshot_free(snapshot);
2272 }
2273 
2274 /**
2275  * xe_guc_submit_print - GuC Submit Print.
2276  * @guc: GuC.
2277  * @p: drm_printer where it will be printed out.
2278  *
2279  * This function capture and prints snapshots of **all** GuC Engines.
2280  */
2281 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2282 {
2283 	struct xe_exec_queue *q;
2284 	unsigned long index;
2285 
2286 	if (!xe_device_uc_enabled(guc_to_xe(guc)))
2287 		return;
2288 
2289 	mutex_lock(&guc->submission_state.lock);
2290 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2291 		guc_exec_queue_print(q, p);
2292 	mutex_unlock(&guc->submission_state.lock);
2293 }
2294