xref: /linux/drivers/gpu/drm/xe/xe_guc_submit.c (revision 08516de501fae647fb29bf3b62718de56cc24014)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_submit.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 
14 #include <drm/drm_managed.h>
15 
16 #include "regs/xe_lrc_layout.h"
17 #include "xe_devcoredump.h"
18 #include "xe_device.h"
19 #include "xe_engine.h"
20 #include "xe_force_wake.h"
21 #include "xe_gpu_scheduler.h"
22 #include "xe_gt.h"
23 #include "xe_guc.h"
24 #include "xe_guc_ct.h"
25 #include "xe_guc_engine_types.h"
26 #include "xe_guc_submit_types.h"
27 #include "xe_hw_engine.h"
28 #include "xe_hw_fence.h"
29 #include "xe_lrc.h"
30 #include "xe_macros.h"
31 #include "xe_map.h"
32 #include "xe_mocs.h"
33 #include "xe_ring_ops_types.h"
34 #include "xe_sched_job.h"
35 #include "xe_trace.h"
36 #include "xe_vm.h"
37 
38 static struct xe_gt *
39 guc_to_gt(struct xe_guc *guc)
40 {
41 	return container_of(guc, struct xe_gt, uc.guc);
42 }
43 
44 static struct xe_device *
45 guc_to_xe(struct xe_guc *guc)
46 {
47 	return gt_to_xe(guc_to_gt(guc));
48 }
49 
50 static struct xe_guc *
51 engine_to_guc(struct xe_engine *e)
52 {
53 	return &e->gt->uc.guc;
54 }
55 
56 /*
57  * Helpers for engine state, using an atomic as some of the bits can transition
58  * as the same time (e.g. a suspend can be happning at the same time as schedule
59  * engine done being processed).
60  */
61 #define ENGINE_STATE_REGISTERED		(1 << 0)
62 #define ENGINE_STATE_ENABLED		(1 << 1)
63 #define ENGINE_STATE_PENDING_ENABLE	(1 << 2)
64 #define ENGINE_STATE_PENDING_DISABLE	(1 << 3)
65 #define ENGINE_STATE_DESTROYED		(1 << 4)
66 #define ENGINE_STATE_SUSPENDED		(1 << 5)
67 #define ENGINE_STATE_RESET		(1 << 6)
68 #define ENGINE_STATE_KILLED		(1 << 7)
69 
70 static bool engine_registered(struct xe_engine *e)
71 {
72 	return atomic_read(&e->guc->state) & ENGINE_STATE_REGISTERED;
73 }
74 
75 static void set_engine_registered(struct xe_engine *e)
76 {
77 	atomic_or(ENGINE_STATE_REGISTERED, &e->guc->state);
78 }
79 
80 static void clear_engine_registered(struct xe_engine *e)
81 {
82 	atomic_and(~ENGINE_STATE_REGISTERED, &e->guc->state);
83 }
84 
85 static bool engine_enabled(struct xe_engine *e)
86 {
87 	return atomic_read(&e->guc->state) & ENGINE_STATE_ENABLED;
88 }
89 
90 static void set_engine_enabled(struct xe_engine *e)
91 {
92 	atomic_or(ENGINE_STATE_ENABLED, &e->guc->state);
93 }
94 
95 static void clear_engine_enabled(struct xe_engine *e)
96 {
97 	atomic_and(~ENGINE_STATE_ENABLED, &e->guc->state);
98 }
99 
100 static bool engine_pending_enable(struct xe_engine *e)
101 {
102 	return atomic_read(&e->guc->state) & ENGINE_STATE_PENDING_ENABLE;
103 }
104 
105 static void set_engine_pending_enable(struct xe_engine *e)
106 {
107 	atomic_or(ENGINE_STATE_PENDING_ENABLE, &e->guc->state);
108 }
109 
110 static void clear_engine_pending_enable(struct xe_engine *e)
111 {
112 	atomic_and(~ENGINE_STATE_PENDING_ENABLE, &e->guc->state);
113 }
114 
115 static bool engine_pending_disable(struct xe_engine *e)
116 {
117 	return atomic_read(&e->guc->state) & ENGINE_STATE_PENDING_DISABLE;
118 }
119 
120 static void set_engine_pending_disable(struct xe_engine *e)
121 {
122 	atomic_or(ENGINE_STATE_PENDING_DISABLE, &e->guc->state);
123 }
124 
125 static void clear_engine_pending_disable(struct xe_engine *e)
126 {
127 	atomic_and(~ENGINE_STATE_PENDING_DISABLE, &e->guc->state);
128 }
129 
130 static bool engine_destroyed(struct xe_engine *e)
131 {
132 	return atomic_read(&e->guc->state) & ENGINE_STATE_DESTROYED;
133 }
134 
135 static void set_engine_destroyed(struct xe_engine *e)
136 {
137 	atomic_or(ENGINE_STATE_DESTROYED, &e->guc->state);
138 }
139 
140 static bool engine_banned(struct xe_engine *e)
141 {
142 	return (e->flags & ENGINE_FLAG_BANNED);
143 }
144 
145 static void set_engine_banned(struct xe_engine *e)
146 {
147 	e->flags |= ENGINE_FLAG_BANNED;
148 }
149 
150 static bool engine_suspended(struct xe_engine *e)
151 {
152 	return atomic_read(&e->guc->state) & ENGINE_STATE_SUSPENDED;
153 }
154 
155 static void set_engine_suspended(struct xe_engine *e)
156 {
157 	atomic_or(ENGINE_STATE_SUSPENDED, &e->guc->state);
158 }
159 
160 static void clear_engine_suspended(struct xe_engine *e)
161 {
162 	atomic_and(~ENGINE_STATE_SUSPENDED, &e->guc->state);
163 }
164 
165 static bool engine_reset(struct xe_engine *e)
166 {
167 	return atomic_read(&e->guc->state) & ENGINE_STATE_RESET;
168 }
169 
170 static void set_engine_reset(struct xe_engine *e)
171 {
172 	atomic_or(ENGINE_STATE_RESET, &e->guc->state);
173 }
174 
175 static bool engine_killed(struct xe_engine *e)
176 {
177 	return atomic_read(&e->guc->state) & ENGINE_STATE_KILLED;
178 }
179 
180 static void set_engine_killed(struct xe_engine *e)
181 {
182 	atomic_or(ENGINE_STATE_KILLED, &e->guc->state);
183 }
184 
185 static bool engine_killed_or_banned(struct xe_engine *e)
186 {
187 	return engine_killed(e) || engine_banned(e);
188 }
189 
190 static void guc_submit_fini(struct drm_device *drm, void *arg)
191 {
192 	struct xe_guc *guc = arg;
193 
194 	xa_destroy(&guc->submission_state.engine_lookup);
195 	ida_destroy(&guc->submission_state.guc_ids);
196 	bitmap_free(guc->submission_state.guc_ids_bitmap);
197 }
198 
199 #define GUC_ID_MAX		65535
200 #define GUC_ID_NUMBER_MLRC	4096
201 #define GUC_ID_NUMBER_SLRC	(GUC_ID_MAX - GUC_ID_NUMBER_MLRC)
202 #define GUC_ID_START_MLRC	GUC_ID_NUMBER_SLRC
203 
204 static const struct xe_engine_ops guc_engine_ops;
205 
206 static void primelockdep(struct xe_guc *guc)
207 {
208 	if (!IS_ENABLED(CONFIG_LOCKDEP))
209 		return;
210 
211 	fs_reclaim_acquire(GFP_KERNEL);
212 
213 	mutex_lock(&guc->submission_state.lock);
214 	might_lock(&guc->submission_state.suspend.lock);
215 	mutex_unlock(&guc->submission_state.lock);
216 
217 	fs_reclaim_release(GFP_KERNEL);
218 }
219 
220 int xe_guc_submit_init(struct xe_guc *guc)
221 {
222 	struct xe_device *xe = guc_to_xe(guc);
223 	struct xe_gt *gt = guc_to_gt(guc);
224 	int err;
225 
226 	guc->submission_state.guc_ids_bitmap =
227 		bitmap_zalloc(GUC_ID_NUMBER_MLRC, GFP_KERNEL);
228 	if (!guc->submission_state.guc_ids_bitmap)
229 		return -ENOMEM;
230 
231 	gt->engine_ops = &guc_engine_ops;
232 
233 	mutex_init(&guc->submission_state.lock);
234 	xa_init(&guc->submission_state.engine_lookup);
235 	ida_init(&guc->submission_state.guc_ids);
236 
237 	spin_lock_init(&guc->submission_state.suspend.lock);
238 	guc->submission_state.suspend.context = dma_fence_context_alloc(1);
239 
240 	primelockdep(guc);
241 
242 	err = drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
243 	if (err)
244 		return err;
245 
246 	return 0;
247 }
248 
249 static int alloc_guc_id(struct xe_guc *guc, struct xe_engine *e)
250 {
251 	int ret;
252 	void *ptr;
253 
254 	/*
255 	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
256 	 * worse case user gets -ENOMEM on engine create and has to try again.
257 	 *
258 	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
259 	 * failure.
260 	 */
261 	lockdep_assert_held(&guc->submission_state.lock);
262 
263 	if (xe_engine_is_parallel(e)) {
264 		void *bitmap = guc->submission_state.guc_ids_bitmap;
265 
266 		ret = bitmap_find_free_region(bitmap, GUC_ID_NUMBER_MLRC,
267 					      order_base_2(e->width));
268 	} else {
269 		ret = ida_simple_get(&guc->submission_state.guc_ids, 0,
270 				     GUC_ID_NUMBER_SLRC, GFP_NOWAIT);
271 	}
272 	if (ret < 0)
273 		return ret;
274 
275 	e->guc->id = ret;
276 	if (xe_engine_is_parallel(e))
277 		e->guc->id += GUC_ID_START_MLRC;
278 
279 	ptr = xa_store(&guc->submission_state.engine_lookup,
280 		       e->guc->id, e, GFP_NOWAIT);
281 	if (IS_ERR(ptr)) {
282 		ret = PTR_ERR(ptr);
283 		goto err_release;
284 	}
285 
286 	return 0;
287 
288 err_release:
289 	ida_simple_remove(&guc->submission_state.guc_ids, e->guc->id);
290 	return ret;
291 }
292 
293 static void release_guc_id(struct xe_guc *guc, struct xe_engine *e)
294 {
295 	mutex_lock(&guc->submission_state.lock);
296 	xa_erase(&guc->submission_state.engine_lookup, e->guc->id);
297 	if (xe_engine_is_parallel(e))
298 		bitmap_release_region(guc->submission_state.guc_ids_bitmap,
299 				      e->guc->id - GUC_ID_START_MLRC,
300 				      order_base_2(e->width));
301 	else
302 		ida_simple_remove(&guc->submission_state.guc_ids, e->guc->id);
303 	mutex_unlock(&guc->submission_state.lock);
304 }
305 
306 struct engine_policy {
307 	u32 count;
308 	struct guc_update_engine_policy h2g;
309 };
310 
311 static u32 __guc_engine_policy_action_size(struct engine_policy *policy)
312 {
313 	size_t bytes = sizeof(policy->h2g.header) +
314 		       (sizeof(policy->h2g.klv[0]) * policy->count);
315 
316 	return bytes / sizeof(u32);
317 }
318 
319 static void __guc_engine_policy_start_klv(struct engine_policy *policy,
320 					  u16 guc_id)
321 {
322 	policy->h2g.header.action =
323 		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
324 	policy->h2g.header.guc_id = guc_id;
325 	policy->count = 0;
326 }
327 
328 #define MAKE_ENGINE_POLICY_ADD(func, id) \
329 static void __guc_engine_policy_add_##func(struct engine_policy *policy, \
330 					   u32 data) \
331 { \
332 	XE_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
333  \
334 	policy->h2g.klv[policy->count].kl = \
335 		FIELD_PREP(GUC_KLV_0_KEY, \
336 			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
337 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
338 	policy->h2g.klv[policy->count].value = data; \
339 	policy->count++; \
340 }
341 
342 MAKE_ENGINE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
343 MAKE_ENGINE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
344 MAKE_ENGINE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
345 #undef MAKE_ENGINE_POLICY_ADD
346 
347 static const int xe_engine_prio_to_guc[] = {
348 	[XE_ENGINE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
349 	[XE_ENGINE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
350 	[XE_ENGINE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
351 	[XE_ENGINE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
352 };
353 
354 static void init_policies(struct xe_guc *guc, struct xe_engine *e)
355 {
356         struct engine_policy policy;
357 	enum xe_engine_priority prio = e->priority;
358 	u32 timeslice_us = e->sched_props.timeslice_us;
359 	u32 preempt_timeout_us = e->sched_props.preempt_timeout_us;
360 
361 	XE_BUG_ON(!engine_registered(e));
362 
363         __guc_engine_policy_start_klv(&policy, e->guc->id);
364         __guc_engine_policy_add_priority(&policy, xe_engine_prio_to_guc[prio]);
365         __guc_engine_policy_add_execution_quantum(&policy, timeslice_us);
366         __guc_engine_policy_add_preemption_timeout(&policy, preempt_timeout_us);
367 
368 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
369 		       __guc_engine_policy_action_size(&policy), 0, 0);
370 }
371 
372 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_engine *e)
373 {
374 	struct engine_policy policy;
375 
376         __guc_engine_policy_start_klv(&policy, e->guc->id);
377         __guc_engine_policy_add_preemption_timeout(&policy, 1);
378 
379 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
380 		       __guc_engine_policy_action_size(&policy), 0, 0);
381 }
382 
383 #define parallel_read(xe_, map_, field_) \
384 	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
385 			field_)
386 #define parallel_write(xe_, map_, field_, val_) \
387 	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
388 			field_, val_)
389 
390 static void __register_mlrc_engine(struct xe_guc *guc,
391 				   struct xe_engine *e,
392 				   struct guc_ctxt_registration_info *info)
393 {
394 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
395 	u32 action[MAX_MLRC_REG_SIZE];
396 	int len = 0;
397 	int i;
398 
399 	XE_BUG_ON(!xe_engine_is_parallel(e));
400 
401 	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
402 	action[len++] = info->flags;
403 	action[len++] = info->context_idx;
404 	action[len++] = info->engine_class;
405 	action[len++] = info->engine_submit_mask;
406 	action[len++] = info->wq_desc_lo;
407 	action[len++] = info->wq_desc_hi;
408 	action[len++] = info->wq_base_lo;
409 	action[len++] = info->wq_base_hi;
410 	action[len++] = info->wq_size;
411 	action[len++] = e->width;
412 	action[len++] = info->hwlrca_lo;
413 	action[len++] = info->hwlrca_hi;
414 
415 	for (i = 1; i < e->width; ++i) {
416 		struct xe_lrc *lrc = e->lrc + i;
417 
418 		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
419 		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
420 	}
421 
422 	XE_BUG_ON(len > MAX_MLRC_REG_SIZE);
423 #undef MAX_MLRC_REG_SIZE
424 
425 	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
426 }
427 
428 static void __register_engine(struct xe_guc *guc,
429 			      struct guc_ctxt_registration_info *info)
430 {
431 	u32 action[] = {
432 		XE_GUC_ACTION_REGISTER_CONTEXT,
433 		info->flags,
434 		info->context_idx,
435 		info->engine_class,
436 		info->engine_submit_mask,
437 		info->wq_desc_lo,
438 		info->wq_desc_hi,
439 		info->wq_base_lo,
440 		info->wq_base_hi,
441 		info->wq_size,
442 		info->hwlrca_lo,
443 		info->hwlrca_hi,
444 	};
445 
446 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
447 }
448 
449 static void register_engine(struct xe_engine *e)
450 {
451 	struct xe_guc *guc = engine_to_guc(e);
452 	struct xe_device *xe = guc_to_xe(guc);
453 	struct xe_lrc *lrc = e->lrc;
454 	struct guc_ctxt_registration_info info;
455 
456 	XE_BUG_ON(engine_registered(e));
457 
458 	memset(&info, 0, sizeof(info));
459 	info.context_idx = e->guc->id;
460 	info.engine_class = xe_engine_class_to_guc_class(e->class);
461 	info.engine_submit_mask = e->logical_mask;
462 	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
463 	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
464 	info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
465 
466 	if (xe_engine_is_parallel(e)) {
467 		u32 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
468 		struct iosys_map map = xe_lrc_parallel_map(lrc);
469 
470 		info.wq_desc_lo = lower_32_bits(ggtt_addr +
471 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
472 		info.wq_desc_hi = upper_32_bits(ggtt_addr +
473 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
474 		info.wq_base_lo = lower_32_bits(ggtt_addr +
475 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
476 		info.wq_base_hi = upper_32_bits(ggtt_addr +
477 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
478 		info.wq_size = WQ_SIZE;
479 
480 		e->guc->wqi_head = 0;
481 		e->guc->wqi_tail = 0;
482 		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
483 		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
484 	}
485 
486 	set_engine_registered(e);
487 	trace_xe_engine_register(e);
488 	if (xe_engine_is_parallel(e))
489 		__register_mlrc_engine(guc, e, &info);
490 	else
491 		__register_engine(guc, &info);
492 	init_policies(guc, e);
493 }
494 
495 static u32 wq_space_until_wrap(struct xe_engine *e)
496 {
497 	return (WQ_SIZE - e->guc->wqi_tail);
498 }
499 
500 static int wq_wait_for_space(struct xe_engine *e, u32 wqi_size)
501 {
502 	struct xe_guc *guc = engine_to_guc(e);
503 	struct xe_device *xe = guc_to_xe(guc);
504 	struct iosys_map map = xe_lrc_parallel_map(e->lrc);
505 	unsigned int sleep_period_ms = 1;
506 
507 #define AVAILABLE_SPACE \
508 	CIRC_SPACE(e->guc->wqi_tail, e->guc->wqi_head, WQ_SIZE)
509 	if (wqi_size > AVAILABLE_SPACE) {
510 try_again:
511 		e->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
512 		if (wqi_size > AVAILABLE_SPACE) {
513 			if (sleep_period_ms == 1024) {
514 				xe_gt_reset_async(e->gt);
515 				return -ENODEV;
516 			}
517 
518 			msleep(sleep_period_ms);
519 			sleep_period_ms <<= 1;
520 			goto try_again;
521 		}
522 	}
523 #undef AVAILABLE_SPACE
524 
525 	return 0;
526 }
527 
528 static int wq_noop_append(struct xe_engine *e)
529 {
530 	struct xe_guc *guc = engine_to_guc(e);
531 	struct xe_device *xe = guc_to_xe(guc);
532 	struct iosys_map map = xe_lrc_parallel_map(e->lrc);
533 	u32 len_dw = wq_space_until_wrap(e) / sizeof(u32) - 1;
534 
535 	if (wq_wait_for_space(e, wq_space_until_wrap(e)))
536 		return -ENODEV;
537 
538 	XE_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
539 
540 	parallel_write(xe, map, wq[e->guc->wqi_tail / sizeof(u32)],
541 		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
542 		       FIELD_PREP(WQ_LEN_MASK, len_dw));
543 	e->guc->wqi_tail = 0;
544 
545 	return 0;
546 }
547 
548 static void wq_item_append(struct xe_engine *e)
549 {
550 	struct xe_guc *guc = engine_to_guc(e);
551 	struct xe_device *xe = guc_to_xe(guc);
552 	struct iosys_map map = xe_lrc_parallel_map(e->lrc);
553 	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + 3];
554 	u32 wqi_size = (e->width + 3) * sizeof(u32);
555 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
556 	int i = 0, j;
557 
558 	if (wqi_size > wq_space_until_wrap(e)) {
559 		if (wq_noop_append(e))
560 			return;
561 	}
562 	if (wq_wait_for_space(e, wqi_size))
563 		return;
564 
565 	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
566 		FIELD_PREP(WQ_LEN_MASK, len_dw);
567 	wqi[i++] = xe_lrc_descriptor(e->lrc);
568 	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, e->guc->id) |
569 		FIELD_PREP(WQ_RING_TAIL_MASK, e->lrc->ring.tail / sizeof(u64));
570 	wqi[i++] = 0;
571 	for (j = 1; j < e->width; ++j) {
572 		struct xe_lrc *lrc = e->lrc + j;
573 
574 		wqi[i++] = lrc->ring.tail / sizeof(u64);
575 	}
576 
577 	XE_BUG_ON(i != wqi_size / sizeof(u32));
578 
579 	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
580 				      wq[e->guc->wqi_tail / sizeof(u32)]));
581 	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
582 	e->guc->wqi_tail += wqi_size;
583 	XE_BUG_ON(e->guc->wqi_tail > WQ_SIZE);
584 
585 	xe_device_wmb(xe);
586 
587 	map = xe_lrc_parallel_map(e->lrc);
588 	parallel_write(xe, map, wq_desc.tail, e->guc->wqi_tail);
589 }
590 
591 #define RESUME_PENDING	~0x0ull
592 static void submit_engine(struct xe_engine *e)
593 {
594 	struct xe_guc *guc = engine_to_guc(e);
595 	struct xe_lrc *lrc = e->lrc;
596 	u32 action[3];
597 	u32 g2h_len = 0;
598 	u32 num_g2h = 0;
599 	int len = 0;
600 	bool extra_submit = false;
601 
602 	XE_BUG_ON(!engine_registered(e));
603 
604 	if (xe_engine_is_parallel(e))
605 		wq_item_append(e);
606 	else
607 		xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, lrc->ring.tail);
608 
609 	if (engine_suspended(e) && !xe_engine_is_parallel(e))
610 		return;
611 
612 	if (!engine_enabled(e) && !engine_suspended(e)) {
613 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
614 		action[len++] = e->guc->id;
615 		action[len++] = GUC_CONTEXT_ENABLE;
616 		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
617 		num_g2h = 1;
618 		if (xe_engine_is_parallel(e))
619 			extra_submit = true;
620 
621 		e->guc->resume_time = RESUME_PENDING;
622 		set_engine_pending_enable(e);
623 		set_engine_enabled(e);
624 		trace_xe_engine_scheduling_enable(e);
625 	} else {
626 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
627 		action[len++] = e->guc->id;
628 		trace_xe_engine_submit(e);
629 	}
630 
631 	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
632 
633 	if (extra_submit) {
634 		len = 0;
635 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
636 		action[len++] = e->guc->id;
637 		trace_xe_engine_submit(e);
638 
639 		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
640 	}
641 }
642 
643 static struct dma_fence *
644 guc_engine_run_job(struct drm_sched_job *drm_job)
645 {
646 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
647 	struct xe_engine *e = job->engine;
648 
649 	XE_BUG_ON((engine_destroyed(e) || engine_pending_disable(e)) &&
650 		  !engine_banned(e) && !engine_suspended(e));
651 
652 	trace_xe_sched_job_run(job);
653 
654 	if (!engine_killed_or_banned(e) && !xe_sched_job_is_error(job)) {
655 		if (!engine_registered(e))
656 			register_engine(e);
657 		e->ring_ops->emit_job(job);
658 		submit_engine(e);
659 	}
660 
661 	if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags))
662 		return job->fence;
663 	else
664 		return dma_fence_get(job->fence);
665 }
666 
667 static void guc_engine_free_job(struct drm_sched_job *drm_job)
668 {
669 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
670 
671 	trace_xe_sched_job_free(job);
672 	xe_sched_job_put(job);
673 }
674 
675 static int guc_read_stopped(struct xe_guc *guc)
676 {
677 	return atomic_read(&guc->submission_state.stopped);
678 }
679 
680 #define MAKE_SCHED_CONTEXT_ACTION(e, enable_disable)			\
681 	u32 action[] = {						\
682 		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
683 		e->guc->id,						\
684 		GUC_CONTEXT_##enable_disable,				\
685 	}
686 
687 static void disable_scheduling_deregister(struct xe_guc *guc,
688 					  struct xe_engine *e)
689 {
690 	MAKE_SCHED_CONTEXT_ACTION(e, DISABLE);
691 	int ret;
692 
693 	set_min_preemption_timeout(guc, e);
694 	smp_rmb();
695 	ret = wait_event_timeout(guc->ct.wq, !engine_pending_enable(e) ||
696 				 guc_read_stopped(guc), HZ * 5);
697 	if (!ret) {
698 		struct xe_gpu_scheduler *sched = &e->guc->sched;
699 
700 		XE_WARN_ON("Pending enable failed to respond");
701 		xe_sched_submission_start(sched);
702 		xe_gt_reset_async(e->gt);
703 		xe_sched_tdr_queue_imm(sched);
704 		return;
705 	}
706 
707 	clear_engine_enabled(e);
708 	set_engine_pending_disable(e);
709 	set_engine_destroyed(e);
710 	trace_xe_engine_scheduling_disable(e);
711 
712 	/*
713 	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
714 	 * handler and we are not allowed to reserved G2H space in handlers.
715 	 */
716 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
717 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
718 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
719 }
720 
721 static void guc_engine_print(struct xe_engine *e, struct drm_printer *p);
722 
723 #if IS_ENABLED(CONFIG_DRM_XE_SIMPLE_ERROR_CAPTURE)
724 static void simple_error_capture(struct xe_engine *e)
725 {
726 	struct xe_guc *guc = engine_to_guc(e);
727 	struct drm_printer p = drm_err_printer("");
728 	struct xe_hw_engine *hwe;
729 	enum xe_hw_engine_id id;
730 	u32 adj_logical_mask = e->logical_mask;
731 	u32 width_mask = (0x1 << e->width) - 1;
732 	int i;
733 	bool cookie;
734 
735 	if (e->vm && !e->vm->error_capture.capture_once) {
736 		e->vm->error_capture.capture_once = true;
737 		cookie = dma_fence_begin_signalling();
738 		for (i = 0; e->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
739 			if (adj_logical_mask & BIT(i)) {
740 				adj_logical_mask |= width_mask << i;
741 				i += e->width;
742 			} else {
743 				++i;
744 			}
745 		}
746 
747 		xe_force_wake_get(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
748 		xe_guc_ct_print(&guc->ct, &p, true);
749 		guc_engine_print(e, &p);
750 		for_each_hw_engine(hwe, guc_to_gt(guc), id) {
751 			if (hwe->class != e->hwe->class ||
752 			    !(BIT(hwe->logical_instance) & adj_logical_mask))
753 				continue;
754 			xe_hw_engine_print(hwe, &p);
755 		}
756 		xe_analyze_vm(&p, e->vm, e->gt->info.id);
757 		xe_force_wake_put(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
758 		dma_fence_end_signalling(cookie);
759 	}
760 }
761 #else
762 static void simple_error_capture(struct xe_engine *e)
763 {
764 }
765 #endif
766 
767 static enum drm_gpu_sched_stat
768 guc_engine_timedout_job(struct drm_sched_job *drm_job)
769 {
770 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
771 	struct xe_sched_job *tmp_job;
772 	struct xe_engine *e = job->engine;
773 	struct xe_gpu_scheduler *sched = &e->guc->sched;
774 	struct xe_device *xe = guc_to_xe(engine_to_guc(e));
775 	int err = -ETIME;
776 	int i = 0;
777 
778 	if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
779 		XE_WARN_ON(e->flags & ENGINE_FLAG_KERNEL);
780 		XE_WARN_ON(e->flags & ENGINE_FLAG_VM && !engine_killed(e));
781 
782 		drm_notice(&xe->drm, "Timedout job: seqno=%u, guc_id=%d, flags=0x%lx",
783 			   xe_sched_job_seqno(job), e->guc->id, e->flags);
784 		simple_error_capture(e);
785 		xe_devcoredump(e);
786 	} else {
787 		drm_dbg(&xe->drm, "Timedout signaled job: seqno=%u, guc_id=%d, flags=0x%lx",
788 			 xe_sched_job_seqno(job), e->guc->id, e->flags);
789 	}
790 	trace_xe_sched_job_timedout(job);
791 
792 	/* Kill the run_job entry point */
793 	xe_sched_submission_stop(sched);
794 
795 	/*
796 	 * Kernel jobs should never fail, nor should VM jobs if they do
797 	 * somethings has gone wrong and the GT needs a reset
798 	 */
799 	if (e->flags & ENGINE_FLAG_KERNEL ||
800 	    (e->flags & ENGINE_FLAG_VM && !engine_killed(e))) {
801 		if (!xe_sched_invalidate_job(job, 2)) {
802 			xe_sched_add_pending_job(sched, job);
803 			xe_sched_submission_start(sched);
804 			xe_gt_reset_async(e->gt);
805 			goto out;
806 		}
807 	}
808 
809 	/* Engine state now stable, disable scheduling if needed */
810 	if (engine_enabled(e)) {
811 		struct xe_guc *guc = engine_to_guc(e);
812 		int ret;
813 
814 		if (engine_reset(e))
815 			err = -EIO;
816 		set_engine_banned(e);
817 		xe_engine_get(e);
818 		disable_scheduling_deregister(engine_to_guc(e), e);
819 
820 		/*
821 		 * Must wait for scheduling to be disabled before signalling
822 		 * any fences, if GT broken the GT reset code should signal us.
823 		 *
824 		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
825 		 * error) messages which can cause the schedule disable to get
826 		 * lost. If this occurs, trigger a GT reset to recover.
827 		 */
828 		smp_rmb();
829 		ret = wait_event_timeout(guc->ct.wq,
830 					 !engine_pending_disable(e) ||
831 					 guc_read_stopped(guc), HZ * 5);
832 		if (!ret) {
833 			XE_WARN_ON("Schedule disable failed to respond");
834 			xe_sched_add_pending_job(sched, job);
835 			xe_sched_submission_start(sched);
836 			xe_gt_reset_async(e->gt);
837 			xe_sched_tdr_queue_imm(sched);
838 			goto out;
839 		}
840 	}
841 
842 	/* Stop fence signaling */
843 	xe_hw_fence_irq_stop(e->fence_irq);
844 
845 	/*
846 	 * Fence state now stable, stop / start scheduler which cleans up any
847 	 * fences that are complete
848 	 */
849 	xe_sched_add_pending_job(sched, job);
850 	xe_sched_submission_start(sched);
851 	xe_sched_tdr_queue_imm(&e->guc->sched);
852 
853 	/* Mark all outstanding jobs as bad, thus completing them */
854 	spin_lock(&sched->base.job_list_lock);
855 	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
856 		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
857 	spin_unlock(&sched->base.job_list_lock);
858 
859 	/* Start fence signaling */
860 	xe_hw_fence_irq_start(e->fence_irq);
861 
862 out:
863 	return DRM_GPU_SCHED_STAT_NOMINAL;
864 }
865 
866 static void __guc_engine_fini_async(struct work_struct *w)
867 {
868 	struct xe_guc_engine *ge =
869 		container_of(w, struct xe_guc_engine, fini_async);
870 	struct xe_engine *e = ge->engine;
871 	struct xe_guc *guc = engine_to_guc(e);
872 
873 	trace_xe_engine_destroy(e);
874 
875 	if (e->flags & ENGINE_FLAG_PERSISTENT)
876 		xe_device_remove_persistent_engines(gt_to_xe(e->gt), e);
877 	release_guc_id(guc, e);
878 	xe_sched_entity_fini(&ge->entity);
879 	xe_sched_fini(&ge->sched);
880 
881 	if (!(e->flags & ENGINE_FLAG_KERNEL)) {
882 		kfree(ge);
883 		xe_engine_fini(e);
884 	}
885 }
886 
887 static void guc_engine_fini_async(struct xe_engine *e)
888 {
889 	bool kernel = e->flags & ENGINE_FLAG_KERNEL;
890 
891 	INIT_WORK(&e->guc->fini_async, __guc_engine_fini_async);
892 	queue_work(system_unbound_wq, &e->guc->fini_async);
893 
894 	/* We must block on kernel engines so slabs are empty on driver unload */
895 	if (kernel) {
896 		struct xe_guc_engine *ge = e->guc;
897 
898 		flush_work(&ge->fini_async);
899 		kfree(ge);
900 		xe_engine_fini(e);
901 	}
902 }
903 
904 static void __guc_engine_fini(struct xe_guc *guc, struct xe_engine *e)
905 {
906 	/*
907 	 * Might be done from within the GPU scheduler, need to do async as we
908 	 * fini the scheduler when the engine is fini'd, the scheduler can't
909 	 * complete fini within itself (circular dependency). Async resolves
910 	 * this we and don't really care when everything is fini'd, just that it
911 	 * is.
912 	 */
913 	guc_engine_fini_async(e);
914 }
915 
916 static void __guc_engine_process_msg_cleanup(struct xe_sched_msg *msg)
917 {
918 	struct xe_engine *e = msg->private_data;
919 	struct xe_guc *guc = engine_to_guc(e);
920 
921 	XE_BUG_ON(e->flags & ENGINE_FLAG_KERNEL);
922 	trace_xe_engine_cleanup_entity(e);
923 
924 	if (engine_registered(e))
925 		disable_scheduling_deregister(guc, e);
926 	else
927 		__guc_engine_fini(guc, e);
928 }
929 
930 static bool guc_engine_allowed_to_change_state(struct xe_engine *e)
931 {
932 	return !engine_killed_or_banned(e) && engine_registered(e);
933 }
934 
935 static void __guc_engine_process_msg_set_sched_props(struct xe_sched_msg *msg)
936 {
937 	struct xe_engine *e = msg->private_data;
938 	struct xe_guc *guc = engine_to_guc(e);
939 
940 	if (guc_engine_allowed_to_change_state(e))
941 		init_policies(guc, e);
942 	kfree(msg);
943 }
944 
945 static void suspend_fence_signal(struct xe_engine *e)
946 {
947 	struct xe_guc *guc = engine_to_guc(e);
948 
949 	XE_BUG_ON(!engine_suspended(e) && !engine_killed(e) &&
950 		  !guc_read_stopped(guc));
951 	XE_BUG_ON(!e->guc->suspend_pending);
952 
953 	e->guc->suspend_pending = false;
954 	smp_wmb();
955 	wake_up(&e->guc->suspend_wait);
956 }
957 
958 static void __guc_engine_process_msg_suspend(struct xe_sched_msg *msg)
959 {
960 	struct xe_engine *e = msg->private_data;
961 	struct xe_guc *guc = engine_to_guc(e);
962 
963 	if (guc_engine_allowed_to_change_state(e) && !engine_suspended(e) &&
964 	    engine_enabled(e)) {
965 		wait_event(guc->ct.wq, e->guc->resume_time != RESUME_PENDING ||
966 			   guc_read_stopped(guc));
967 
968 		if (!guc_read_stopped(guc)) {
969 			MAKE_SCHED_CONTEXT_ACTION(e, DISABLE);
970 			s64 since_resume_ms =
971 				ktime_ms_delta(ktime_get(),
972 					       e->guc->resume_time);
973 			s64 wait_ms = e->vm->preempt.min_run_period_ms -
974 				since_resume_ms;
975 
976 			if (wait_ms > 0 && e->guc->resume_time)
977 				msleep(wait_ms);
978 
979 			set_engine_suspended(e);
980 			clear_engine_enabled(e);
981 			set_engine_pending_disable(e);
982 			trace_xe_engine_scheduling_disable(e);
983 
984 			xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
985 				       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
986 		}
987 	} else if (e->guc->suspend_pending) {
988 		set_engine_suspended(e);
989 		suspend_fence_signal(e);
990 	}
991 }
992 
993 static void __guc_engine_process_msg_resume(struct xe_sched_msg *msg)
994 {
995 	struct xe_engine *e = msg->private_data;
996 	struct xe_guc *guc = engine_to_guc(e);
997 
998 	if (guc_engine_allowed_to_change_state(e)) {
999 		MAKE_SCHED_CONTEXT_ACTION(e, ENABLE);
1000 
1001 		e->guc->resume_time = RESUME_PENDING;
1002 		clear_engine_suspended(e);
1003 		set_engine_pending_enable(e);
1004 		set_engine_enabled(e);
1005 		trace_xe_engine_scheduling_enable(e);
1006 
1007 		xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1008 			       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1009 	} else {
1010 		clear_engine_suspended(e);
1011 	}
1012 }
1013 
1014 #define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1015 #define SET_SCHED_PROPS	2
1016 #define SUSPEND		3
1017 #define RESUME		4
1018 
1019 static void guc_engine_process_msg(struct xe_sched_msg *msg)
1020 {
1021 	trace_xe_sched_msg_recv(msg);
1022 
1023 	switch (msg->opcode) {
1024 	case CLEANUP:
1025 		__guc_engine_process_msg_cleanup(msg);
1026 		break;
1027 	case SET_SCHED_PROPS:
1028 		__guc_engine_process_msg_set_sched_props(msg);
1029 		break;
1030 	case SUSPEND:
1031 		__guc_engine_process_msg_suspend(msg);
1032 		break;
1033 	case RESUME:
1034 		__guc_engine_process_msg_resume(msg);
1035 		break;
1036 	default:
1037 		XE_BUG_ON("Unknown message type");
1038 	}
1039 }
1040 
1041 static const struct drm_sched_backend_ops drm_sched_ops = {
1042 	.run_job = guc_engine_run_job,
1043 	.free_job = guc_engine_free_job,
1044 	.timedout_job = guc_engine_timedout_job,
1045 };
1046 
1047 static const struct xe_sched_backend_ops xe_sched_ops = {
1048 	.process_msg = guc_engine_process_msg,
1049 };
1050 
1051 static int guc_engine_init(struct xe_engine *e)
1052 {
1053 	struct xe_gpu_scheduler *sched;
1054 	struct xe_guc *guc = engine_to_guc(e);
1055 	struct xe_guc_engine *ge;
1056 	long timeout;
1057 	int err;
1058 
1059 	XE_BUG_ON(!xe_device_guc_submission_enabled(guc_to_xe(guc)));
1060 
1061 	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1062 	if (!ge)
1063 		return -ENOMEM;
1064 
1065 	e->guc = ge;
1066 	ge->engine = e;
1067 	init_waitqueue_head(&ge->suspend_wait);
1068 
1069 	timeout = xe_vm_no_dma_fences(e->vm) ? MAX_SCHEDULE_TIMEOUT : HZ * 5;
1070 	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, NULL,
1071 			     e->lrc[0].ring.size / MAX_JOB_SIZE_BYTES,
1072 			     64, timeout, guc_to_gt(guc)->ordered_wq, NULL,
1073 			     e->name, gt_to_xe(e->gt)->drm.dev);
1074 	if (err)
1075 		goto err_free;
1076 
1077 	sched = &ge->sched;
1078 	err = xe_sched_entity_init(&ge->entity, sched);
1079 	if (err)
1080 		goto err_sched;
1081 	e->priority = XE_ENGINE_PRIORITY_NORMAL;
1082 
1083 	mutex_lock(&guc->submission_state.lock);
1084 
1085 	err = alloc_guc_id(guc, e);
1086 	if (err)
1087 		goto err_entity;
1088 
1089 	e->entity = &ge->entity;
1090 
1091 	if (guc_read_stopped(guc))
1092 		xe_sched_stop(sched);
1093 
1094 	mutex_unlock(&guc->submission_state.lock);
1095 
1096 	switch (e->class) {
1097 	case XE_ENGINE_CLASS_RENDER:
1098 		sprintf(e->name, "rcs%d", e->guc->id);
1099 		break;
1100 	case XE_ENGINE_CLASS_VIDEO_DECODE:
1101 		sprintf(e->name, "vcs%d", e->guc->id);
1102 		break;
1103 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
1104 		sprintf(e->name, "vecs%d", e->guc->id);
1105 		break;
1106 	case XE_ENGINE_CLASS_COPY:
1107 		sprintf(e->name, "bcs%d", e->guc->id);
1108 		break;
1109 	case XE_ENGINE_CLASS_COMPUTE:
1110 		sprintf(e->name, "ccs%d", e->guc->id);
1111 		break;
1112 	default:
1113 		XE_WARN_ON(e->class);
1114 	}
1115 
1116 	trace_xe_engine_create(e);
1117 
1118 	return 0;
1119 
1120 err_entity:
1121 	xe_sched_entity_fini(&ge->entity);
1122 err_sched:
1123 	xe_sched_fini(&ge->sched);
1124 err_free:
1125 	kfree(ge);
1126 
1127 	return err;
1128 }
1129 
1130 static void guc_engine_kill(struct xe_engine *e)
1131 {
1132 	trace_xe_engine_kill(e);
1133 	set_engine_killed(e);
1134 	xe_sched_tdr_queue_imm(&e->guc->sched);
1135 }
1136 
1137 static void guc_engine_add_msg(struct xe_engine *e, struct xe_sched_msg *msg,
1138 			       u32 opcode)
1139 {
1140 	INIT_LIST_HEAD(&msg->link);
1141 	msg->opcode = opcode;
1142 	msg->private_data = e;
1143 
1144 	trace_xe_sched_msg_add(msg);
1145 	xe_sched_add_msg(&e->guc->sched, msg);
1146 }
1147 
1148 #define STATIC_MSG_CLEANUP	0
1149 #define STATIC_MSG_SUSPEND	1
1150 #define STATIC_MSG_RESUME	2
1151 static void guc_engine_fini(struct xe_engine *e)
1152 {
1153 	struct xe_sched_msg *msg = e->guc->static_msgs + STATIC_MSG_CLEANUP;
1154 
1155 	if (!(e->flags & ENGINE_FLAG_KERNEL))
1156 		guc_engine_add_msg(e, msg, CLEANUP);
1157 	else
1158 		__guc_engine_fini(engine_to_guc(e), e);
1159 }
1160 
1161 static int guc_engine_set_priority(struct xe_engine *e,
1162 				   enum xe_engine_priority priority)
1163 {
1164 	struct xe_sched_msg *msg;
1165 
1166 	if (e->priority == priority || engine_killed_or_banned(e))
1167 		return 0;
1168 
1169 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1170 	if (!msg)
1171 		return -ENOMEM;
1172 
1173 	guc_engine_add_msg(e, msg, SET_SCHED_PROPS);
1174 	e->priority = priority;
1175 
1176 	return 0;
1177 }
1178 
1179 static int guc_engine_set_timeslice(struct xe_engine *e, u32 timeslice_us)
1180 {
1181 	struct xe_sched_msg *msg;
1182 
1183 	if (e->sched_props.timeslice_us == timeslice_us ||
1184 	    engine_killed_or_banned(e))
1185 		return 0;
1186 
1187 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1188 	if (!msg)
1189 		return -ENOMEM;
1190 
1191 	e->sched_props.timeslice_us = timeslice_us;
1192 	guc_engine_add_msg(e, msg, SET_SCHED_PROPS);
1193 
1194 	return 0;
1195 }
1196 
1197 static int guc_engine_set_preempt_timeout(struct xe_engine *e,
1198 					  u32 preempt_timeout_us)
1199 {
1200 	struct xe_sched_msg *msg;
1201 
1202 	if (e->sched_props.preempt_timeout_us == preempt_timeout_us ||
1203 	    engine_killed_or_banned(e))
1204 		return 0;
1205 
1206 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1207 	if (!msg)
1208 		return -ENOMEM;
1209 
1210 	e->sched_props.preempt_timeout_us = preempt_timeout_us;
1211 	guc_engine_add_msg(e, msg, SET_SCHED_PROPS);
1212 
1213 	return 0;
1214 }
1215 
1216 static int guc_engine_set_job_timeout(struct xe_engine *e, u32 job_timeout_ms)
1217 {
1218 	struct xe_gpu_scheduler *sched = &e->guc->sched;
1219 
1220 	XE_BUG_ON(engine_registered(e));
1221 	XE_BUG_ON(engine_banned(e));
1222 	XE_BUG_ON(engine_killed(e));
1223 
1224 	sched->base.timeout = job_timeout_ms;
1225 
1226 	return 0;
1227 }
1228 
1229 static int guc_engine_suspend(struct xe_engine *e)
1230 {
1231 	struct xe_sched_msg *msg = e->guc->static_msgs + STATIC_MSG_SUSPEND;
1232 
1233 	if (engine_killed_or_banned(e) || e->guc->suspend_pending)
1234 		return -EINVAL;
1235 
1236 	e->guc->suspend_pending = true;
1237 	guc_engine_add_msg(e, msg, SUSPEND);
1238 
1239 	return 0;
1240 }
1241 
1242 static void guc_engine_suspend_wait(struct xe_engine *e)
1243 {
1244 	struct xe_guc *guc = engine_to_guc(e);
1245 
1246 	wait_event(e->guc->suspend_wait, !e->guc->suspend_pending ||
1247 		   guc_read_stopped(guc));
1248 }
1249 
1250 static void guc_engine_resume(struct xe_engine *e)
1251 {
1252 	struct xe_sched_msg *msg = e->guc->static_msgs + STATIC_MSG_RESUME;
1253 
1254 	XE_BUG_ON(e->guc->suspend_pending);
1255 
1256 	guc_engine_add_msg(e, msg, RESUME);
1257 }
1258 
1259 /*
1260  * All of these functions are an abstraction layer which other parts of XE can
1261  * use to trap into the GuC backend. All of these functions, aside from init,
1262  * really shouldn't do much other than trap into the DRM scheduler which
1263  * synchronizes these operations.
1264  */
1265 static const struct xe_engine_ops guc_engine_ops = {
1266 	.init = guc_engine_init,
1267 	.kill = guc_engine_kill,
1268 	.fini = guc_engine_fini,
1269 	.set_priority = guc_engine_set_priority,
1270 	.set_timeslice = guc_engine_set_timeslice,
1271 	.set_preempt_timeout = guc_engine_set_preempt_timeout,
1272 	.set_job_timeout = guc_engine_set_job_timeout,
1273 	.suspend = guc_engine_suspend,
1274 	.suspend_wait = guc_engine_suspend_wait,
1275 	.resume = guc_engine_resume,
1276 };
1277 
1278 static void guc_engine_stop(struct xe_guc *guc, struct xe_engine *e)
1279 {
1280 	struct xe_gpu_scheduler *sched = &e->guc->sched;
1281 
1282 	/* Stop scheduling + flush any DRM scheduler operations */
1283 	xe_sched_submission_stop(sched);
1284 
1285 	/* Clean up lost G2H + reset engine state */
1286 	if (engine_destroyed(e) && engine_registered(e)) {
1287 		if (engine_banned(e))
1288 			xe_engine_put(e);
1289 		else
1290 			__guc_engine_fini(guc, e);
1291 	}
1292 	if (e->guc->suspend_pending) {
1293 		set_engine_suspended(e);
1294 		suspend_fence_signal(e);
1295 	}
1296 	atomic_and(ENGINE_STATE_DESTROYED | ENGINE_STATE_SUSPENDED,
1297 		   &e->guc->state);
1298 	e->guc->resume_time = 0;
1299 	trace_xe_engine_stop(e);
1300 
1301 	/*
1302 	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1303 	 * started but not complete job or if a job has gone through a GT reset
1304 	 * more than twice.
1305 	 */
1306 	if (!(e->flags & (ENGINE_FLAG_KERNEL | ENGINE_FLAG_VM))) {
1307 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1308 
1309 		if (job) {
1310 			if ((xe_sched_job_started(job) &&
1311 			    !xe_sched_job_completed(job)) ||
1312 			    xe_sched_invalidate_job(job, 2)) {
1313 				trace_xe_sched_job_ban(job);
1314 				xe_sched_tdr_queue_imm(&e->guc->sched);
1315 				set_engine_banned(e);
1316 			}
1317 		}
1318 	}
1319 }
1320 
1321 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1322 {
1323 	int ret;
1324 
1325 	/*
1326 	 * Using an atomic here rather than submission_state.lock as this
1327 	 * function can be called while holding the CT lock (engine reset
1328 	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1329 	 * Atomic is not ideal, but it works to prevent against concurrent reset
1330 	 * and releasing any TDRs waiting on guc->submission_state.stopped.
1331 	 */
1332 	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1333 	smp_wmb();
1334 	wake_up_all(&guc->ct.wq);
1335 
1336 	return ret;
1337 }
1338 
1339 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1340 {
1341 	wait_event(guc->ct.wq, !guc_read_stopped(guc));
1342 }
1343 
1344 int xe_guc_submit_stop(struct xe_guc *guc)
1345 {
1346 	struct xe_engine *e;
1347 	unsigned long index;
1348 
1349 	XE_BUG_ON(guc_read_stopped(guc) != 1);
1350 
1351 	mutex_lock(&guc->submission_state.lock);
1352 
1353 	xa_for_each(&guc->submission_state.engine_lookup, index, e)
1354 		guc_engine_stop(guc, e);
1355 
1356 	mutex_unlock(&guc->submission_state.lock);
1357 
1358 	/*
1359 	 * No one can enter the backend at this point, aside from new engine
1360 	 * creation which is protected by guc->submission_state.lock.
1361 	 */
1362 
1363 	return 0;
1364 }
1365 
1366 static void guc_engine_start(struct xe_engine *e)
1367 {
1368 	struct xe_gpu_scheduler *sched = &e->guc->sched;
1369 
1370 	if (!engine_killed_or_banned(e)) {
1371 		int i;
1372 
1373 		trace_xe_engine_resubmit(e);
1374 		for (i = 0; i < e->width; ++i)
1375 			xe_lrc_set_ring_head(e->lrc + i, e->lrc[i].ring.tail);
1376 		xe_sched_resubmit_jobs(sched);
1377 	}
1378 
1379 	xe_sched_submission_start(sched);
1380 }
1381 
1382 int xe_guc_submit_start(struct xe_guc *guc)
1383 {
1384 	struct xe_engine *e;
1385 	unsigned long index;
1386 
1387 	XE_BUG_ON(guc_read_stopped(guc) != 1);
1388 
1389 	mutex_lock(&guc->submission_state.lock);
1390 	atomic_dec(&guc->submission_state.stopped);
1391 	xa_for_each(&guc->submission_state.engine_lookup, index, e)
1392 		guc_engine_start(e);
1393 	mutex_unlock(&guc->submission_state.lock);
1394 
1395 	wake_up_all(&guc->ct.wq);
1396 
1397 	return 0;
1398 }
1399 
1400 static struct xe_engine *
1401 g2h_engine_lookup(struct xe_guc *guc, u32 guc_id)
1402 {
1403 	struct xe_device *xe = guc_to_xe(guc);
1404 	struct xe_engine *e;
1405 
1406 	if (unlikely(guc_id >= GUC_ID_MAX)) {
1407 		drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1408 		return NULL;
1409 	}
1410 
1411 	e = xa_load(&guc->submission_state.engine_lookup, guc_id);
1412 	if (unlikely(!e)) {
1413 		drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1414 		return NULL;
1415 	}
1416 
1417 	XE_BUG_ON(e->guc->id != guc_id);
1418 
1419 	return e;
1420 }
1421 
1422 static void deregister_engine(struct xe_guc *guc, struct xe_engine *e)
1423 {
1424 	u32 action[] = {
1425 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1426 		e->guc->id,
1427 	};
1428 
1429 	trace_xe_engine_deregister(e);
1430 
1431 	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1432 }
1433 
1434 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1435 {
1436 	struct xe_device *xe = guc_to_xe(guc);
1437 	struct xe_engine *e;
1438 	u32 guc_id = msg[0];
1439 
1440 	if (unlikely(len < 2)) {
1441 		drm_err(&xe->drm, "Invalid length %u", len);
1442 		return -EPROTO;
1443 	}
1444 
1445 	e = g2h_engine_lookup(guc, guc_id);
1446 	if (unlikely(!e))
1447 		return -EPROTO;
1448 
1449 	if (unlikely(!engine_pending_enable(e) &&
1450 		     !engine_pending_disable(e))) {
1451 		drm_err(&xe->drm, "Unexpected engine state 0x%04x",
1452 			atomic_read(&e->guc->state));
1453 		return -EPROTO;
1454 	}
1455 
1456 	trace_xe_engine_scheduling_done(e);
1457 
1458 	if (engine_pending_enable(e)) {
1459 		e->guc->resume_time = ktime_get();
1460 		clear_engine_pending_enable(e);
1461 		smp_wmb();
1462 		wake_up_all(&guc->ct.wq);
1463 	} else {
1464 		clear_engine_pending_disable(e);
1465 		if (e->guc->suspend_pending) {
1466 			suspend_fence_signal(e);
1467 		} else {
1468 			if (engine_banned(e)) {
1469 				smp_wmb();
1470 				wake_up_all(&guc->ct.wq);
1471 			}
1472 			deregister_engine(guc, e);
1473 		}
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1480 {
1481 	struct xe_device *xe = guc_to_xe(guc);
1482 	struct xe_engine *e;
1483 	u32 guc_id = msg[0];
1484 
1485 	if (unlikely(len < 1)) {
1486 		drm_err(&xe->drm, "Invalid length %u", len);
1487 		return -EPROTO;
1488 	}
1489 
1490 	e = g2h_engine_lookup(guc, guc_id);
1491 	if (unlikely(!e))
1492 		return -EPROTO;
1493 
1494 	if (!engine_destroyed(e) || engine_pending_disable(e) ||
1495 	    engine_pending_enable(e) || engine_enabled(e)) {
1496 		drm_err(&xe->drm, "Unexpected engine state 0x%04x",
1497 			atomic_read(&e->guc->state));
1498 		return -EPROTO;
1499 	}
1500 
1501 	trace_xe_engine_deregister_done(e);
1502 
1503 	clear_engine_registered(e);
1504 	if (engine_banned(e))
1505 		xe_engine_put(e);
1506 	else
1507 		__guc_engine_fini(guc, e);
1508 
1509 	return 0;
1510 }
1511 
1512 int xe_guc_engine_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1513 {
1514 	struct xe_device *xe = guc_to_xe(guc);
1515 	struct xe_engine *e;
1516 	u32 guc_id = msg[0];
1517 
1518 	if (unlikely(len < 1)) {
1519 		drm_err(&xe->drm, "Invalid length %u", len);
1520 		return -EPROTO;
1521 	}
1522 
1523 	e = g2h_engine_lookup(guc, guc_id);
1524 	if (unlikely(!e))
1525 		return -EPROTO;
1526 
1527 	drm_info(&xe->drm, "Engine reset: guc_id=%d", guc_id);
1528 
1529 	/* FIXME: Do error capture, most likely async */
1530 
1531 	trace_xe_engine_reset(e);
1532 
1533 	/*
1534 	 * A banned engine is a NOP at this point (came from
1535 	 * guc_engine_timedout_job). Otherwise, kick drm scheduler to cancel
1536 	 * jobs by setting timeout of the job to the minimum value kicking
1537 	 * guc_engine_timedout_job.
1538 	 */
1539 	set_engine_reset(e);
1540 	if (!engine_banned(e))
1541 		xe_sched_tdr_queue_imm(&e->guc->sched);
1542 
1543 	return 0;
1544 }
1545 
1546 int xe_guc_engine_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
1547 					   u32 len)
1548 {
1549 	struct xe_device *xe = guc_to_xe(guc);
1550 	struct xe_engine *e;
1551 	u32 guc_id = msg[0];
1552 
1553 	if (unlikely(len < 1)) {
1554 		drm_err(&xe->drm, "Invalid length %u", len);
1555 		return -EPROTO;
1556 	}
1557 
1558 	e = g2h_engine_lookup(guc, guc_id);
1559 	if (unlikely(!e))
1560 		return -EPROTO;
1561 
1562 	drm_warn(&xe->drm, "Engine memory cat error: guc_id=%d", guc_id);
1563 	trace_xe_engine_memory_cat_error(e);
1564 
1565 	/* Treat the same as engine reset */
1566 	set_engine_reset(e);
1567 	if (!engine_banned(e))
1568 		xe_sched_tdr_queue_imm(&e->guc->sched);
1569 
1570 	return 0;
1571 }
1572 
1573 int xe_guc_engine_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
1574 {
1575 	struct xe_device *xe = guc_to_xe(guc);
1576 	u8 guc_class, instance;
1577 	u32 reason;
1578 
1579 	if (unlikely(len != 3)) {
1580 		drm_err(&xe->drm, "Invalid length %u", len);
1581 		return -EPROTO;
1582 	}
1583 
1584 	guc_class = msg[0];
1585 	instance = msg[1];
1586 	reason = msg[2];
1587 
1588 	/* Unexpected failure of a hardware feature, log an actual error */
1589 	drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
1590 		guc_class, instance, reason);
1591 
1592 	xe_gt_reset_async(guc_to_gt(guc));
1593 
1594 	return 0;
1595 }
1596 
1597 static void
1598 guc_engine_wq_snapshot_capture(struct xe_engine *e,
1599 			       struct xe_guc_submit_engine_snapshot *snapshot)
1600 {
1601 	struct xe_guc *guc = engine_to_guc(e);
1602 	struct xe_device *xe = guc_to_xe(guc);
1603 	struct iosys_map map = xe_lrc_parallel_map(e->lrc);
1604 	int i;
1605 
1606 	snapshot->guc.wqi_head = e->guc->wqi_head;
1607 	snapshot->guc.wqi_tail = e->guc->wqi_tail;
1608 	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
1609 	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
1610 	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
1611 							  wq_desc.wq_status);
1612 
1613 	if (snapshot->parallel.wq_desc.head !=
1614 	    snapshot->parallel.wq_desc.tail) {
1615 		for (i = snapshot->parallel.wq_desc.head;
1616 		     i != snapshot->parallel.wq_desc.tail;
1617 		     i = (i + sizeof(u32)) % WQ_SIZE)
1618 			snapshot->parallel.wq[i / sizeof(u32)] =
1619 				parallel_read(xe, map, wq[i / sizeof(u32)]);
1620 	}
1621 }
1622 
1623 static void
1624 guc_engine_wq_snapshot_print(struct xe_guc_submit_engine_snapshot *snapshot,
1625 			     struct drm_printer *p)
1626 {
1627 	int i;
1628 
1629 	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
1630 		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
1631 	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
1632 		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
1633 	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
1634 
1635 	if (snapshot->parallel.wq_desc.head !=
1636 	    snapshot->parallel.wq_desc.tail) {
1637 		for (i = snapshot->parallel.wq_desc.head;
1638 		     i != snapshot->parallel.wq_desc.tail;
1639 		     i = (i + sizeof(u32)) % WQ_SIZE)
1640 			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
1641 				   snapshot->parallel.wq[i / sizeof(u32)]);
1642 	}
1643 }
1644 
1645 /**
1646  * xe_guc_engine_snapshot_capture - Take a quick snapshot of the GuC Engine.
1647  * @e: Xe Engine.
1648  *
1649  * This can be printed out in a later stage like during dev_coredump
1650  * analysis.
1651  *
1652  * Returns: a GuC Submit Engine snapshot object that must be freed by the
1653  * caller, using `xe_guc_engine_snapshot_free`.
1654  */
1655 struct xe_guc_submit_engine_snapshot *
1656 xe_guc_engine_snapshot_capture(struct xe_engine *e)
1657 {
1658 	struct xe_guc *guc = engine_to_guc(e);
1659 	struct xe_device *xe = guc_to_xe(guc);
1660 	struct xe_gpu_scheduler *sched = &e->guc->sched;
1661 	struct xe_sched_job *job;
1662 	struct xe_guc_submit_engine_snapshot *snapshot;
1663 	int i;
1664 
1665 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
1666 
1667 	if (!snapshot) {
1668 		drm_err(&xe->drm, "Skipping GuC Engine snapshot entirely.\n");
1669 		return NULL;
1670 	}
1671 
1672 	snapshot->guc.id = e->guc->id;
1673 	memcpy(&snapshot->name, &e->name, sizeof(snapshot->name));
1674 	snapshot->class = e->class;
1675 	snapshot->logical_mask = e->logical_mask;
1676 	snapshot->width = e->width;
1677 	snapshot->refcount = kref_read(&e->refcount);
1678 	snapshot->sched_timeout = sched->base.timeout;
1679 	snapshot->sched_props.timeslice_us = e->sched_props.timeslice_us;
1680 	snapshot->sched_props.preempt_timeout_us =
1681 		e->sched_props.preempt_timeout_us;
1682 
1683 	snapshot->lrc = kmalloc_array(e->width, sizeof(struct lrc_snapshot),
1684 				      GFP_ATOMIC);
1685 
1686 	if (!snapshot->lrc) {
1687 		drm_err(&xe->drm, "Skipping GuC Engine LRC snapshot.\n");
1688 	} else {
1689 		for (i = 0; i < e->width; ++i) {
1690 			struct xe_lrc *lrc = e->lrc + i;
1691 
1692 			snapshot->lrc[i].context_desc =
1693 				lower_32_bits(xe_lrc_ggtt_addr(lrc));
1694 			snapshot->lrc[i].head = xe_lrc_ring_head(lrc);
1695 			snapshot->lrc[i].tail.internal = lrc->ring.tail;
1696 			snapshot->lrc[i].tail.memory =
1697 				xe_lrc_read_ctx_reg(lrc, CTX_RING_TAIL);
1698 			snapshot->lrc[i].start_seqno = xe_lrc_start_seqno(lrc);
1699 			snapshot->lrc[i].seqno = xe_lrc_seqno(lrc);
1700 		}
1701 	}
1702 
1703 	snapshot->schedule_state = atomic_read(&e->guc->state);
1704 	snapshot->engine_flags = e->flags;
1705 
1706 	snapshot->parallel_execution = xe_engine_is_parallel(e);
1707 	if (snapshot->parallel_execution)
1708 		guc_engine_wq_snapshot_capture(e, snapshot);
1709 
1710 	spin_lock(&sched->base.job_list_lock);
1711 	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
1712 	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
1713 					       sizeof(struct pending_list_snapshot),
1714 					       GFP_ATOMIC);
1715 
1716 	if (!snapshot->pending_list) {
1717 		drm_err(&xe->drm, "Skipping GuC Engine pending_list snapshot.\n");
1718 	} else {
1719 		i = 0;
1720 		list_for_each_entry(job, &sched->base.pending_list, drm.list) {
1721 			snapshot->pending_list[i].seqno =
1722 				xe_sched_job_seqno(job);
1723 			snapshot->pending_list[i].fence =
1724 				dma_fence_is_signaled(job->fence) ? 1 : 0;
1725 			snapshot->pending_list[i].finished =
1726 				dma_fence_is_signaled(&job->drm.s_fence->finished)
1727 				? 1 : 0;
1728 			i++;
1729 		}
1730 	}
1731 
1732 	spin_unlock(&sched->base.job_list_lock);
1733 
1734 	return snapshot;
1735 }
1736 
1737 /**
1738  * xe_guc_engine_snapshot_print - Print out a given GuC Engine snapshot.
1739  * @snapshot: GuC Submit Engine snapshot object.
1740  * @p: drm_printer where it will be printed out.
1741  *
1742  * This function prints out a given GuC Submit Engine snapshot object.
1743  */
1744 void
1745 xe_guc_engine_snapshot_print(struct xe_guc_submit_engine_snapshot *snapshot,
1746 			     struct drm_printer *p)
1747 {
1748 	int i;
1749 
1750 	if (!snapshot)
1751 		return;
1752 
1753 	drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id);
1754 	drm_printf(p, "\tName: %s\n", snapshot->name);
1755 	drm_printf(p, "\tClass: %d\n", snapshot->class);
1756 	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
1757 	drm_printf(p, "\tWidth: %d\n", snapshot->width);
1758 	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
1759 	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
1760 	drm_printf(p, "\tTimeslice: %u (us)\n",
1761 		   snapshot->sched_props.timeslice_us);
1762 	drm_printf(p, "\tPreempt timeout: %u (us)\n",
1763 		   snapshot->sched_props.preempt_timeout_us);
1764 
1765 	for (i = 0; snapshot->lrc && i < snapshot->width; ++i) {
1766 		drm_printf(p, "\tHW Context Desc: 0x%08x\n",
1767 			   snapshot->lrc[i].context_desc);
1768 		drm_printf(p, "\tLRC Head: (memory) %u\n",
1769 			   snapshot->lrc[i].head);
1770 		drm_printf(p, "\tLRC Tail: (internal) %u, (memory) %u\n",
1771 			   snapshot->lrc[i].tail.internal,
1772 			   snapshot->lrc[i].tail.memory);
1773 		drm_printf(p, "\tStart seqno: (memory) %d\n",
1774 			   snapshot->lrc[i].start_seqno);
1775 		drm_printf(p, "\tSeqno: (memory) %d\n", snapshot->lrc[i].seqno);
1776 	}
1777 	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
1778 	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->engine_flags);
1779 
1780 	if (snapshot->parallel_execution)
1781 		guc_engine_wq_snapshot_print(snapshot, p);
1782 
1783 	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
1784 	     i++)
1785 		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
1786 			   snapshot->pending_list[i].seqno,
1787 			   snapshot->pending_list[i].fence,
1788 			   snapshot->pending_list[i].finished);
1789 }
1790 
1791 /**
1792  * xe_guc_engine_snapshot_free - Free all allocated objects for a given
1793  * snapshot.
1794  * @snapshot: GuC Submit Engine snapshot object.
1795  *
1796  * This function free all the memory that needed to be allocated at capture
1797  * time.
1798  */
1799 void xe_guc_engine_snapshot_free(struct xe_guc_submit_engine_snapshot *snapshot)
1800 {
1801 	if (!snapshot)
1802 		return;
1803 
1804 	kfree(snapshot->lrc);
1805 	kfree(snapshot->pending_list);
1806 	kfree(snapshot);
1807 }
1808 
1809 static void guc_engine_print(struct xe_engine *e, struct drm_printer *p)
1810 {
1811 	struct xe_guc_submit_engine_snapshot *snapshot;
1812 
1813 	snapshot = xe_guc_engine_snapshot_capture(e);
1814 	xe_guc_engine_snapshot_print(snapshot, p);
1815 	xe_guc_engine_snapshot_free(snapshot);
1816 }
1817 
1818 /**
1819  * xe_guc_submit_print - GuC Submit Print.
1820  * @guc: GuC.
1821  * @p: drm_printer where it will be printed out.
1822  *
1823  * This function capture and prints snapshots of **all** GuC Engines.
1824  */
1825 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
1826 {
1827 	struct xe_engine *e;
1828 	unsigned long index;
1829 
1830 	if (!xe_device_guc_submission_enabled(guc_to_xe(guc)))
1831 		return;
1832 
1833 	mutex_lock(&guc->submission_state.lock);
1834 	xa_for_each(&guc->submission_state.engine_lookup, index, e)
1835 		guc_engine_print(e, p);
1836 	mutex_unlock(&guc->submission_state.lock);
1837 }
1838