1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_ct.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/circ_buf.h> 10 #include <linux/delay.h> 11 #include <linux/fault-inject.h> 12 13 #include <kunit/static_stub.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_actions_sriov_abi.h" 19 #include "abi/guc_klvs_abi.h" 20 #include "xe_bo.h" 21 #include "xe_devcoredump.h" 22 #include "xe_device.h" 23 #include "xe_gt.h" 24 #include "xe_gt_pagefault.h" 25 #include "xe_gt_printk.h" 26 #include "xe_gt_sriov_pf_control.h" 27 #include "xe_gt_sriov_pf_monitor.h" 28 #include "xe_gt_tlb_invalidation.h" 29 #include "xe_guc.h" 30 #include "xe_guc_log.h" 31 #include "xe_guc_relay.h" 32 #include "xe_guc_submit.h" 33 #include "xe_map.h" 34 #include "xe_pm.h" 35 #include "xe_trace_guc.h" 36 37 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG) 38 enum { 39 /* Internal states, not error conditions */ 40 CT_DEAD_STATE_REARM, /* 0x0001 */ 41 CT_DEAD_STATE_CAPTURE, /* 0x0002 */ 42 43 /* Error conditions */ 44 CT_DEAD_SETUP, /* 0x0004 */ 45 CT_DEAD_H2G_WRITE, /* 0x0008 */ 46 CT_DEAD_H2G_HAS_ROOM, /* 0x0010 */ 47 CT_DEAD_G2H_READ, /* 0x0020 */ 48 CT_DEAD_G2H_RECV, /* 0x0040 */ 49 CT_DEAD_G2H_RELEASE, /* 0x0080 */ 50 CT_DEAD_DEADLOCK, /* 0x0100 */ 51 CT_DEAD_PROCESS_FAILED, /* 0x0200 */ 52 CT_DEAD_FAST_G2H, /* 0x0400 */ 53 CT_DEAD_PARSE_G2H_RESPONSE, /* 0x0800 */ 54 CT_DEAD_PARSE_G2H_UNKNOWN, /* 0x1000 */ 55 CT_DEAD_PARSE_G2H_ORIGIN, /* 0x2000 */ 56 CT_DEAD_PARSE_G2H_TYPE, /* 0x4000 */ 57 CT_DEAD_CRASH, /* 0x8000 */ 58 }; 59 60 static void ct_dead_worker_func(struct work_struct *w); 61 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code); 62 63 #define CT_DEAD(ct, ctb, reason_code) ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code) 64 #else 65 #define CT_DEAD(ct, ctb, reason) \ 66 do { \ 67 struct guc_ctb *_ctb = (ctb); \ 68 if (_ctb) \ 69 _ctb->info.broken = true; \ 70 } while (0) 71 #endif 72 73 /* Used when a CT send wants to block and / or receive data */ 74 struct g2h_fence { 75 u32 *response_buffer; 76 u32 seqno; 77 u32 response_data; 78 u16 response_len; 79 u16 error; 80 u16 hint; 81 u16 reason; 82 bool retry; 83 bool fail; 84 bool done; 85 }; 86 87 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) 88 { 89 g2h_fence->response_buffer = response_buffer; 90 g2h_fence->response_data = 0; 91 g2h_fence->response_len = 0; 92 g2h_fence->fail = false; 93 g2h_fence->retry = false; 94 g2h_fence->done = false; 95 g2h_fence->seqno = ~0x0; 96 } 97 98 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) 99 { 100 return g2h_fence->seqno == ~0x0; 101 } 102 103 static struct xe_guc * 104 ct_to_guc(struct xe_guc_ct *ct) 105 { 106 return container_of(ct, struct xe_guc, ct); 107 } 108 109 static struct xe_gt * 110 ct_to_gt(struct xe_guc_ct *ct) 111 { 112 return container_of(ct, struct xe_gt, uc.guc.ct); 113 } 114 115 static struct xe_device * 116 ct_to_xe(struct xe_guc_ct *ct) 117 { 118 return gt_to_xe(ct_to_gt(ct)); 119 } 120 121 /** 122 * DOC: GuC CTB Blob 123 * 124 * We allocate single blob to hold both CTB descriptors and buffers: 125 * 126 * +--------+-----------------------------------------------+------+ 127 * | offset | contents | size | 128 * +========+===============================================+======+ 129 * | 0x0000 | H2G CTB Descriptor (send) | | 130 * +--------+-----------------------------------------------+ 4K | 131 * | 0x0800 | G2H CTB Descriptor (g2h) | | 132 * +--------+-----------------------------------------------+------+ 133 * | 0x1000 | H2G CT Buffer (send) | n*4K | 134 * | | | | 135 * +--------+-----------------------------------------------+------+ 136 * | 0x1000 | G2H CT Buffer (g2h) | m*4K | 137 * | + n*4K | | | 138 * +--------+-----------------------------------------------+------+ 139 * 140 * Size of each ``CT Buffer`` must be multiple of 4K. 141 * We don't expect too many messages in flight at any time, unless we are 142 * using the GuC submission. In that case each request requires a minimum 143 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this 144 * enough space to avoid backpressure on the driver. We increase the size 145 * of the receive buffer (relative to the send) to ensure a G2H response 146 * CTB has a landing spot. 147 * 148 * In addition to submissions, the G2H buffer needs to be able to hold 149 * enough space for recoverable page fault notifications. The number of 150 * page faults is interrupt driven and can be as much as the number of 151 * compute resources available. However, most of the actual work for these 152 * is in a separate page fault worker thread. Therefore we only need to 153 * make sure the queue has enough space to handle all of the submissions 154 * and responses and an extra buffer for incoming page faults. 155 */ 156 157 #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) 158 #define CTB_H2G_BUFFER_SIZE (SZ_4K) 159 #define CTB_G2H_BUFFER_SIZE (SZ_128K) 160 #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2) 161 162 /** 163 * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full 164 * CT command queue 165 * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future. 166 * 167 * Observation is that a 4KiB buffer full of commands takes a little over a 168 * second to process. Use that to calculate maximum time to process a full CT 169 * command queue. 170 * 171 * Return: Maximum time to process a full CT queue in jiffies. 172 */ 173 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct) 174 { 175 BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4)); 176 return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ; 177 } 178 179 static size_t guc_ct_size(void) 180 { 181 return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + 182 CTB_G2H_BUFFER_SIZE; 183 } 184 185 static void guc_ct_fini(struct drm_device *drm, void *arg) 186 { 187 struct xe_guc_ct *ct = arg; 188 189 destroy_workqueue(ct->g2h_wq); 190 xa_destroy(&ct->fence_lookup); 191 } 192 193 static void receive_g2h(struct xe_guc_ct *ct); 194 static void g2h_worker_func(struct work_struct *w); 195 static void safe_mode_worker_func(struct work_struct *w); 196 197 static void primelockdep(struct xe_guc_ct *ct) 198 { 199 if (!IS_ENABLED(CONFIG_LOCKDEP)) 200 return; 201 202 fs_reclaim_acquire(GFP_KERNEL); 203 might_lock(&ct->lock); 204 fs_reclaim_release(GFP_KERNEL); 205 } 206 207 int xe_guc_ct_init(struct xe_guc_ct *ct) 208 { 209 struct xe_device *xe = ct_to_xe(ct); 210 struct xe_gt *gt = ct_to_gt(ct); 211 struct xe_tile *tile = gt_to_tile(gt); 212 struct xe_bo *bo; 213 int err; 214 215 xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE)); 216 217 ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM); 218 if (!ct->g2h_wq) 219 return -ENOMEM; 220 221 spin_lock_init(&ct->fast_lock); 222 xa_init(&ct->fence_lookup); 223 INIT_WORK(&ct->g2h_worker, g2h_worker_func); 224 INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func); 225 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG) 226 spin_lock_init(&ct->dead.lock); 227 INIT_WORK(&ct->dead.worker, ct_dead_worker_func); 228 #endif 229 init_waitqueue_head(&ct->wq); 230 init_waitqueue_head(&ct->g2h_fence_wq); 231 232 err = drmm_mutex_init(&xe->drm, &ct->lock); 233 if (err) 234 return err; 235 236 primelockdep(ct); 237 238 bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), 239 XE_BO_FLAG_SYSTEM | 240 XE_BO_FLAG_GGTT | 241 XE_BO_FLAG_GGTT_INVALIDATE); 242 if (IS_ERR(bo)) 243 return PTR_ERR(bo); 244 245 ct->bo = bo; 246 247 err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); 248 if (err) 249 return err; 250 251 xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); 252 ct->state = XE_GUC_CT_STATE_DISABLED; 253 return 0; 254 } 255 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */ 256 257 #define desc_read(xe_, guc_ctb__, field_) \ 258 xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ 259 struct guc_ct_buffer_desc, field_) 260 261 #define desc_write(xe_, guc_ctb__, field_, val_) \ 262 xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ 263 struct guc_ct_buffer_desc, field_, val_) 264 265 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, 266 struct iosys_map *map) 267 { 268 h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); 269 h2g->info.resv_space = 0; 270 h2g->info.tail = 0; 271 h2g->info.head = 0; 272 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, 273 h2g->info.size) - 274 h2g->info.resv_space; 275 h2g->info.broken = false; 276 277 h2g->desc = *map; 278 xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); 279 280 h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); 281 } 282 283 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, 284 struct iosys_map *map) 285 { 286 g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); 287 g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); 288 g2h->info.head = 0; 289 g2h->info.tail = 0; 290 g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, 291 g2h->info.size) - 292 g2h->info.resv_space; 293 g2h->info.broken = false; 294 295 g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); 296 xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); 297 298 g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + 299 CTB_H2G_BUFFER_SIZE); 300 } 301 302 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) 303 { 304 struct xe_guc *guc = ct_to_guc(ct); 305 u32 desc_addr, ctb_addr, size; 306 int err; 307 308 desc_addr = xe_bo_ggtt_addr(ct->bo); 309 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; 310 size = ct->ctbs.h2g.info.size * sizeof(u32); 311 312 err = xe_guc_self_cfg64(guc, 313 GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, 314 desc_addr); 315 if (err) 316 return err; 317 318 err = xe_guc_self_cfg64(guc, 319 GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, 320 ctb_addr); 321 if (err) 322 return err; 323 324 return xe_guc_self_cfg32(guc, 325 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, 326 size); 327 } 328 329 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) 330 { 331 struct xe_guc *guc = ct_to_guc(ct); 332 u32 desc_addr, ctb_addr, size; 333 int err; 334 335 desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; 336 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + 337 CTB_H2G_BUFFER_SIZE; 338 size = ct->ctbs.g2h.info.size * sizeof(u32); 339 340 err = xe_guc_self_cfg64(guc, 341 GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, 342 desc_addr); 343 if (err) 344 return err; 345 346 err = xe_guc_self_cfg64(guc, 347 GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, 348 ctb_addr); 349 if (err) 350 return err; 351 352 return xe_guc_self_cfg32(guc, 353 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, 354 size); 355 } 356 357 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) 358 { 359 u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { 360 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 361 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 362 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, 363 GUC_ACTION_HOST2GUC_CONTROL_CTB), 364 FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, 365 enable ? GUC_CTB_CONTROL_ENABLE : 366 GUC_CTB_CONTROL_DISABLE), 367 }; 368 int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); 369 370 return ret > 0 ? -EPROTO : ret; 371 } 372 373 static void xe_guc_ct_set_state(struct xe_guc_ct *ct, 374 enum xe_guc_ct_state state) 375 { 376 mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ 377 spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ 378 379 xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || 380 state == XE_GUC_CT_STATE_STOPPED); 381 382 if (ct->g2h_outstanding) 383 xe_pm_runtime_put(ct_to_xe(ct)); 384 ct->g2h_outstanding = 0; 385 ct->state = state; 386 387 spin_unlock_irq(&ct->fast_lock); 388 389 /* 390 * Lockdep doesn't like this under the fast lock and he destroy only 391 * needs to be serialized with the send path which ct lock provides. 392 */ 393 xa_destroy(&ct->fence_lookup); 394 395 mutex_unlock(&ct->lock); 396 } 397 398 static bool ct_needs_safe_mode(struct xe_guc_ct *ct) 399 { 400 return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev)); 401 } 402 403 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct) 404 { 405 if (!ct_needs_safe_mode(ct)) 406 return false; 407 408 queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10); 409 return true; 410 } 411 412 static void safe_mode_worker_func(struct work_struct *w) 413 { 414 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work); 415 416 receive_g2h(ct); 417 418 if (!ct_restart_safe_mode_worker(ct)) 419 xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n"); 420 } 421 422 static void ct_enter_safe_mode(struct xe_guc_ct *ct) 423 { 424 if (ct_restart_safe_mode_worker(ct)) 425 xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n"); 426 } 427 428 static void ct_exit_safe_mode(struct xe_guc_ct *ct) 429 { 430 if (cancel_delayed_work_sync(&ct->safe_mode_worker)) 431 xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n"); 432 } 433 434 int xe_guc_ct_enable(struct xe_guc_ct *ct) 435 { 436 struct xe_device *xe = ct_to_xe(ct); 437 struct xe_gt *gt = ct_to_gt(ct); 438 int err; 439 440 xe_gt_assert(gt, !xe_guc_ct_enabled(ct)); 441 442 xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size); 443 guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); 444 guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); 445 446 err = guc_ct_ctb_h2g_register(ct); 447 if (err) 448 goto err_out; 449 450 err = guc_ct_ctb_g2h_register(ct); 451 if (err) 452 goto err_out; 453 454 err = guc_ct_control_toggle(ct, true); 455 if (err) 456 goto err_out; 457 458 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); 459 460 smp_mb(); 461 wake_up_all(&ct->wq); 462 xe_gt_dbg(gt, "GuC CT communication channel enabled\n"); 463 464 if (ct_needs_safe_mode(ct)) 465 ct_enter_safe_mode(ct); 466 467 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG) 468 /* 469 * The CT has now been reset so the dumper can be re-armed 470 * after any existing dead state has been dumped. 471 */ 472 spin_lock_irq(&ct->dead.lock); 473 if (ct->dead.reason) { 474 ct->dead.reason |= (1 << CT_DEAD_STATE_REARM); 475 queue_work(system_unbound_wq, &ct->dead.worker); 476 } 477 spin_unlock_irq(&ct->dead.lock); 478 #endif 479 480 return 0; 481 482 err_out: 483 xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err)); 484 CT_DEAD(ct, NULL, SETUP); 485 486 return err; 487 } 488 489 static void stop_g2h_handler(struct xe_guc_ct *ct) 490 { 491 cancel_work_sync(&ct->g2h_worker); 492 } 493 494 /** 495 * xe_guc_ct_disable - Set GuC to disabled state 496 * @ct: the &xe_guc_ct 497 * 498 * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected 499 * in this transition. 500 */ 501 void xe_guc_ct_disable(struct xe_guc_ct *ct) 502 { 503 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); 504 ct_exit_safe_mode(ct); 505 stop_g2h_handler(ct); 506 } 507 508 /** 509 * xe_guc_ct_stop - Set GuC to stopped state 510 * @ct: the &xe_guc_ct 511 * 512 * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h 513 */ 514 void xe_guc_ct_stop(struct xe_guc_ct *ct) 515 { 516 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); 517 stop_g2h_handler(ct); 518 } 519 520 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) 521 { 522 struct guc_ctb *h2g = &ct->ctbs.h2g; 523 524 lockdep_assert_held(&ct->lock); 525 526 if (cmd_len > h2g->info.space) { 527 h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); 528 529 if (h2g->info.head > h2g->info.size) { 530 struct xe_device *xe = ct_to_xe(ct); 531 u32 desc_status = desc_read(xe, h2g, status); 532 533 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); 534 535 xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n", 536 h2g->info.head, h2g->info.size); 537 CT_DEAD(ct, h2g, H2G_HAS_ROOM); 538 return false; 539 } 540 541 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, 542 h2g->info.size) - 543 h2g->info.resv_space; 544 if (cmd_len > h2g->info.space) 545 return false; 546 } 547 548 return true; 549 } 550 551 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) 552 { 553 if (!g2h_len) 554 return true; 555 556 lockdep_assert_held(&ct->fast_lock); 557 558 return ct->ctbs.g2h.info.space > g2h_len; 559 } 560 561 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) 562 { 563 lockdep_assert_held(&ct->lock); 564 565 if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) 566 return -EBUSY; 567 568 return 0; 569 } 570 571 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) 572 { 573 lockdep_assert_held(&ct->lock); 574 ct->ctbs.h2g.info.space -= cmd_len; 575 } 576 577 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) 578 { 579 xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space); 580 xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) || 581 (g2h_len && num_g2h)); 582 583 if (g2h_len) { 584 lockdep_assert_held(&ct->fast_lock); 585 586 if (!ct->g2h_outstanding) 587 xe_pm_runtime_get_noresume(ct_to_xe(ct)); 588 589 ct->ctbs.g2h.info.space -= g2h_len; 590 ct->g2h_outstanding += num_g2h; 591 } 592 } 593 594 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) 595 { 596 bool bad = false; 597 598 lockdep_assert_held(&ct->fast_lock); 599 600 bad = ct->ctbs.g2h.info.space + g2h_len > 601 ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space; 602 bad |= !ct->g2h_outstanding; 603 604 if (bad) { 605 xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n", 606 ct->ctbs.g2h.info.space, g2h_len, 607 ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space, 608 ct->ctbs.g2h.info.space + g2h_len, 609 ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space, 610 ct->g2h_outstanding); 611 CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE); 612 return; 613 } 614 615 ct->ctbs.g2h.info.space += g2h_len; 616 if (!--ct->g2h_outstanding) 617 xe_pm_runtime_put(ct_to_xe(ct)); 618 } 619 620 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) 621 { 622 spin_lock_irq(&ct->fast_lock); 623 __g2h_release_space(ct, g2h_len); 624 spin_unlock_irq(&ct->fast_lock); 625 } 626 627 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ 628 629 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, 630 u32 ct_fence_value, bool want_response) 631 { 632 struct xe_device *xe = ct_to_xe(ct); 633 struct xe_gt *gt = ct_to_gt(ct); 634 struct guc_ctb *h2g = &ct->ctbs.h2g; 635 u32 cmd[H2G_CT_HEADERS]; 636 u32 tail = h2g->info.tail; 637 u32 full_len; 638 struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, 639 tail * sizeof(u32)); 640 u32 desc_status; 641 642 full_len = len + GUC_CTB_HDR_LEN; 643 644 lockdep_assert_held(&ct->lock); 645 xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN); 646 647 desc_status = desc_read(xe, h2g, status); 648 if (desc_status) { 649 xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status); 650 goto corrupted; 651 } 652 653 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 654 u32 desc_tail = desc_read(xe, h2g, tail); 655 u32 desc_head = desc_read(xe, h2g, head); 656 657 if (tail != desc_tail) { 658 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH); 659 xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail); 660 goto corrupted; 661 } 662 663 if (tail > h2g->info.size) { 664 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); 665 xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n", 666 tail, h2g->info.size); 667 goto corrupted; 668 } 669 670 if (desc_head >= h2g->info.size) { 671 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); 672 xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n", 673 desc_head, h2g->info.size); 674 goto corrupted; 675 } 676 } 677 678 /* Command will wrap, zero fill (NOPs), return and check credits again */ 679 if (tail + full_len > h2g->info.size) { 680 xe_map_memset(xe, &map, 0, 0, 681 (h2g->info.size - tail) * sizeof(u32)); 682 h2g_reserve_space(ct, (h2g->info.size - tail)); 683 h2g->info.tail = 0; 684 desc_write(xe, h2g, tail, h2g->info.tail); 685 686 return -EAGAIN; 687 } 688 689 /* 690 * dw0: CT header (including fence) 691 * dw1: HXG header (including action code) 692 * dw2+: action data 693 */ 694 cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | 695 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | 696 FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); 697 if (want_response) { 698 cmd[1] = 699 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 700 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | 701 GUC_HXG_EVENT_MSG_0_DATA0, action[0]); 702 } else { 703 cmd[1] = 704 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | 705 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | 706 GUC_HXG_EVENT_MSG_0_DATA0, action[0]); 707 } 708 709 /* H2G header in cmd[1] replaces action[0] so: */ 710 --len; 711 ++action; 712 713 /* Write H2G ensuring visible before descriptor update */ 714 xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); 715 xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); 716 xe_device_wmb(xe); 717 718 /* Update local copies */ 719 h2g->info.tail = (tail + full_len) % h2g->info.size; 720 h2g_reserve_space(ct, full_len); 721 722 /* Update descriptor */ 723 desc_write(xe, h2g, tail, h2g->info.tail); 724 725 trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len, 726 desc_read(xe, h2g, head), h2g->info.tail); 727 728 return 0; 729 730 corrupted: 731 CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE); 732 return -EPIPE; 733 } 734 735 /* 736 * The CT protocol accepts a 16 bits fence. This field is fully owned by the 737 * driver, the GuC will just copy it to the reply message. Since we need to 738 * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, 739 * we use one bit of the seqno as an indicator for that and a rolling counter 740 * for the remaining 15 bits. 741 */ 742 #define CT_SEQNO_MASK GENMASK(14, 0) 743 #define CT_SEQNO_UNTRACKED BIT(15) 744 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) 745 { 746 u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; 747 748 if (!is_g2h_fence) 749 seqno |= CT_SEQNO_UNTRACKED; 750 751 return seqno; 752 } 753 754 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, 755 u32 len, u32 g2h_len, u32 num_g2h, 756 struct g2h_fence *g2h_fence) 757 { 758 struct xe_gt *gt __maybe_unused = ct_to_gt(ct); 759 u16 seqno; 760 int ret; 761 762 xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); 763 xe_gt_assert(gt, !g2h_len || !g2h_fence); 764 xe_gt_assert(gt, !num_g2h || !g2h_fence); 765 xe_gt_assert(gt, !g2h_len || num_g2h); 766 xe_gt_assert(gt, g2h_len || !num_g2h); 767 lockdep_assert_held(&ct->lock); 768 769 if (unlikely(ct->ctbs.h2g.info.broken)) { 770 ret = -EPIPE; 771 goto out; 772 } 773 774 if (ct->state == XE_GUC_CT_STATE_DISABLED) { 775 ret = -ENODEV; 776 goto out; 777 } 778 779 if (ct->state == XE_GUC_CT_STATE_STOPPED) { 780 ret = -ECANCELED; 781 goto out; 782 } 783 784 xe_gt_assert(gt, xe_guc_ct_enabled(ct)); 785 786 if (g2h_fence) { 787 g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; 788 num_g2h = 1; 789 790 if (g2h_fence_needs_alloc(g2h_fence)) { 791 g2h_fence->seqno = next_ct_seqno(ct, true); 792 ret = xa_err(xa_store(&ct->fence_lookup, 793 g2h_fence->seqno, g2h_fence, 794 GFP_ATOMIC)); 795 if (ret) 796 goto out; 797 } 798 799 seqno = g2h_fence->seqno; 800 } else { 801 seqno = next_ct_seqno(ct, false); 802 } 803 804 if (g2h_len) 805 spin_lock_irq(&ct->fast_lock); 806 retry: 807 ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); 808 if (unlikely(ret)) 809 goto out_unlock; 810 811 ret = h2g_write(ct, action, len, seqno, !!g2h_fence); 812 if (unlikely(ret)) { 813 if (ret == -EAGAIN) 814 goto retry; 815 goto out_unlock; 816 } 817 818 __g2h_reserve_space(ct, g2h_len, num_g2h); 819 xe_guc_notify(ct_to_guc(ct)); 820 out_unlock: 821 if (g2h_len) 822 spin_unlock_irq(&ct->fast_lock); 823 out: 824 return ret; 825 } 826 827 static void kick_reset(struct xe_guc_ct *ct) 828 { 829 xe_gt_reset_async(ct_to_gt(ct)); 830 } 831 832 static int dequeue_one_g2h(struct xe_guc_ct *ct); 833 834 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, 835 u32 g2h_len, u32 num_g2h, 836 struct g2h_fence *g2h_fence) 837 { 838 struct xe_device *xe = ct_to_xe(ct); 839 struct xe_gt *gt = ct_to_gt(ct); 840 unsigned int sleep_period_ms = 1; 841 int ret; 842 843 xe_gt_assert(gt, !g2h_len || !g2h_fence); 844 lockdep_assert_held(&ct->lock); 845 xe_device_assert_mem_access(ct_to_xe(ct)); 846 847 try_again: 848 ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, 849 g2h_fence); 850 851 /* 852 * We wait to try to restore credits for about 1 second before bailing. 853 * In the case of H2G credits we have no choice but just to wait for the 854 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In 855 * the case of G2H we process any G2H in the channel, hopefully freeing 856 * credits as we consume the G2H messages. 857 */ 858 if (unlikely(ret == -EBUSY && 859 !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { 860 struct guc_ctb *h2g = &ct->ctbs.h2g; 861 862 if (sleep_period_ms == 1024) 863 goto broken; 864 865 trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail, 866 h2g->info.size, 867 h2g->info.space, 868 len + GUC_CTB_HDR_LEN); 869 msleep(sleep_period_ms); 870 sleep_period_ms <<= 1; 871 872 goto try_again; 873 } else if (unlikely(ret == -EBUSY)) { 874 struct xe_device *xe = ct_to_xe(ct); 875 struct guc_ctb *g2h = &ct->ctbs.g2h; 876 877 trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head, 878 desc_read(xe, g2h, tail), 879 g2h->info.size, 880 g2h->info.space, 881 g2h_fence ? 882 GUC_CTB_HXG_MSG_MAX_LEN : 883 g2h_len); 884 885 #define g2h_avail(ct) \ 886 (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) 887 if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || 888 g2h_avail(ct), HZ)) 889 goto broken; 890 #undef g2h_avail 891 892 ret = dequeue_one_g2h(ct); 893 if (ret < 0) { 894 if (ret != -ECANCELED) 895 xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)", 896 ERR_PTR(ret)); 897 goto broken; 898 } 899 900 goto try_again; 901 } 902 903 return ret; 904 905 broken: 906 xe_gt_err(gt, "No forward process on H2G, reset required\n"); 907 CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK); 908 909 return -EDEADLK; 910 } 911 912 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, 913 u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) 914 { 915 int ret; 916 917 xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence); 918 919 mutex_lock(&ct->lock); 920 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); 921 mutex_unlock(&ct->lock); 922 923 return ret; 924 } 925 926 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, 927 u32 g2h_len, u32 num_g2h) 928 { 929 int ret; 930 931 ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); 932 if (ret == -EDEADLK) 933 kick_reset(ct); 934 935 return ret; 936 } 937 938 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, 939 u32 g2h_len, u32 num_g2h) 940 { 941 int ret; 942 943 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); 944 if (ret == -EDEADLK) 945 kick_reset(ct); 946 947 return ret; 948 } 949 950 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) 951 { 952 int ret; 953 954 lockdep_assert_held(&ct->lock); 955 956 ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); 957 if (ret == -EDEADLK) 958 kick_reset(ct); 959 960 return ret; 961 } 962 963 /* 964 * Check if a GT reset is in progress or will occur and if GT reset brought the 965 * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. 966 */ 967 static bool retry_failure(struct xe_guc_ct *ct, int ret) 968 { 969 if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) 970 return false; 971 972 #define ct_alive(ct) \ 973 (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ 974 !ct->ctbs.g2h.info.broken) 975 if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) 976 return false; 977 #undef ct_alive 978 979 return true; 980 } 981 982 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, 983 u32 *response_buffer, bool no_fail) 984 { 985 struct xe_gt *gt = ct_to_gt(ct); 986 struct g2h_fence g2h_fence; 987 int ret = 0; 988 989 /* 990 * We use a fence to implement blocking sends / receiving response data. 991 * The seqno of the fence is sent in the H2G, returned in the G2H, and 992 * an xarray is used as storage media with the seqno being to key. 993 * Fields in the fence hold success, failure, retry status and the 994 * response data. Safe to allocate on the stack as the xarray is the 995 * only reference and it cannot be present after this function exits. 996 */ 997 retry: 998 g2h_fence_init(&g2h_fence, response_buffer); 999 retry_same_fence: 1000 ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); 1001 if (unlikely(ret == -ENOMEM)) { 1002 /* Retry allocation /w GFP_KERNEL */ 1003 ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno, 1004 &g2h_fence, GFP_KERNEL)); 1005 if (ret) 1006 return ret; 1007 1008 goto retry_same_fence; 1009 } else if (unlikely(ret)) { 1010 if (ret == -EDEADLK) 1011 kick_reset(ct); 1012 1013 if (no_fail && retry_failure(ct, ret)) 1014 goto retry_same_fence; 1015 1016 if (!g2h_fence_needs_alloc(&g2h_fence)) 1017 xa_erase(&ct->fence_lookup, g2h_fence.seqno); 1018 1019 return ret; 1020 } 1021 1022 ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); 1023 if (!ret) { 1024 LNL_FLUSH_WORK(&ct->g2h_worker); 1025 if (g2h_fence.done) { 1026 xe_gt_warn(gt, "G2H fence %u, action %04x, done\n", 1027 g2h_fence.seqno, action[0]); 1028 ret = 1; 1029 } 1030 } 1031 1032 /* 1033 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on 1034 * the stack, since we have no clue if it will fire after the timeout before we can erase 1035 * from the xa. Also we have some dependent loads and stores below for which we need the 1036 * correct ordering, and we lack the needed barriers. 1037 */ 1038 mutex_lock(&ct->lock); 1039 if (!ret) { 1040 xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", 1041 g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); 1042 xa_erase(&ct->fence_lookup, g2h_fence.seqno); 1043 mutex_unlock(&ct->lock); 1044 return -ETIME; 1045 } 1046 1047 if (g2h_fence.retry) { 1048 xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n", 1049 action[0], g2h_fence.reason); 1050 mutex_unlock(&ct->lock); 1051 goto retry; 1052 } 1053 if (g2h_fence.fail) { 1054 xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n", 1055 action[0], g2h_fence.error, g2h_fence.hint); 1056 ret = -EIO; 1057 } 1058 1059 if (ret > 0) 1060 ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data; 1061 1062 mutex_unlock(&ct->lock); 1063 1064 return ret; 1065 } 1066 1067 /** 1068 * xe_guc_ct_send_recv - Send and receive HXG to the GuC 1069 * @ct: the &xe_guc_ct 1070 * @action: the dword array with `HXG Request`_ message (can't be NULL) 1071 * @len: length of the `HXG Request`_ message (in dwords, can't be 0) 1072 * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) 1073 * 1074 * Send a `HXG Request`_ message to the GuC over CT communication channel and 1075 * blocks until GuC replies with a `HXG Response`_ message. 1076 * 1077 * For non-blocking communication with GuC use xe_guc_ct_send(). 1078 * 1079 * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. 1080 * 1081 * Return: response length (in dwords) if &response_buffer was not NULL, or 1082 * DATA0 from `HXG Response`_ if &response_buffer was NULL, or 1083 * a negative error code on failure. 1084 */ 1085 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, 1086 u32 *response_buffer) 1087 { 1088 KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); 1089 return guc_ct_send_recv(ct, action, len, response_buffer, false); 1090 } 1091 1092 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, 1093 u32 len, u32 *response_buffer) 1094 { 1095 return guc_ct_send_recv(ct, action, len, response_buffer, true); 1096 } 1097 1098 static u32 *msg_to_hxg(u32 *msg) 1099 { 1100 return msg + GUC_CTB_MSG_MIN_LEN; 1101 } 1102 1103 static u32 msg_len_to_hxg_len(u32 len) 1104 { 1105 return len - GUC_CTB_MSG_MIN_LEN; 1106 } 1107 1108 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) 1109 { 1110 u32 *hxg = msg_to_hxg(msg); 1111 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1112 1113 lockdep_assert_held(&ct->lock); 1114 1115 switch (action) { 1116 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: 1117 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: 1118 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: 1119 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1120 g2h_release_space(ct, len); 1121 } 1122 1123 return 0; 1124 } 1125 1126 static int guc_crash_process_msg(struct xe_guc_ct *ct, u32 action) 1127 { 1128 struct xe_gt *gt = ct_to_gt(ct); 1129 1130 if (action == XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 1131 xe_gt_err(gt, "GuC Crash dump notification\n"); 1132 else if (action == XE_GUC_ACTION_NOTIFY_EXCEPTION) 1133 xe_gt_err(gt, "GuC Exception notification\n"); 1134 else 1135 xe_gt_err(gt, "Unknown GuC crash notification: 0x%04X\n", action); 1136 1137 CT_DEAD(ct, NULL, CRASH); 1138 1139 kick_reset(ct); 1140 1141 return 0; 1142 } 1143 1144 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) 1145 { 1146 struct xe_gt *gt = ct_to_gt(ct); 1147 u32 *hxg = msg_to_hxg(msg); 1148 u32 hxg_len = msg_len_to_hxg_len(len); 1149 u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); 1150 u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); 1151 struct g2h_fence *g2h_fence; 1152 1153 lockdep_assert_held(&ct->lock); 1154 1155 /* 1156 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. 1157 * Those messages should never fail, so if we do get an error back it 1158 * means we're likely doing an illegal operation and the GuC is 1159 * rejecting it. We have no way to inform the code that submitted the 1160 * H2G that the message was rejected, so we need to escalate the 1161 * failure to trigger a reset. 1162 */ 1163 if (fence & CT_SEQNO_UNTRACKED) { 1164 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) 1165 xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", 1166 fence, 1167 FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), 1168 FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); 1169 else 1170 xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", 1171 type, fence); 1172 CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE); 1173 1174 return -EPROTO; 1175 } 1176 1177 g2h_fence = xa_erase(&ct->fence_lookup, fence); 1178 if (unlikely(!g2h_fence)) { 1179 /* Don't tear down channel, as send could've timed out */ 1180 /* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */ 1181 xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); 1182 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); 1183 return 0; 1184 } 1185 1186 xe_gt_assert(gt, fence == g2h_fence->seqno); 1187 1188 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { 1189 g2h_fence->fail = true; 1190 g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); 1191 g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); 1192 } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 1193 g2h_fence->retry = true; 1194 g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); 1195 } else if (g2h_fence->response_buffer) { 1196 g2h_fence->response_len = hxg_len; 1197 memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); 1198 } else { 1199 g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); 1200 } 1201 1202 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); 1203 1204 g2h_fence->done = true; 1205 smp_mb(); 1206 1207 wake_up_all(&ct->g2h_fence_wq); 1208 1209 return 0; 1210 } 1211 1212 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) 1213 { 1214 struct xe_gt *gt = ct_to_gt(ct); 1215 u32 *hxg = msg_to_hxg(msg); 1216 u32 origin, type; 1217 int ret; 1218 1219 lockdep_assert_held(&ct->lock); 1220 1221 origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); 1222 if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { 1223 xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n", 1224 origin); 1225 CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN); 1226 1227 return -EPROTO; 1228 } 1229 1230 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); 1231 switch (type) { 1232 case GUC_HXG_TYPE_EVENT: 1233 ret = parse_g2h_event(ct, msg, len); 1234 break; 1235 case GUC_HXG_TYPE_RESPONSE_SUCCESS: 1236 case GUC_HXG_TYPE_RESPONSE_FAILURE: 1237 case GUC_HXG_TYPE_NO_RESPONSE_RETRY: 1238 ret = parse_g2h_response(ct, msg, len); 1239 break; 1240 default: 1241 xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n", 1242 type); 1243 CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE); 1244 1245 ret = -EOPNOTSUPP; 1246 } 1247 1248 return ret; 1249 } 1250 1251 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) 1252 { 1253 struct xe_guc *guc = ct_to_guc(ct); 1254 struct xe_gt *gt = ct_to_gt(ct); 1255 u32 hxg_len = msg_len_to_hxg_len(len); 1256 u32 *hxg = msg_to_hxg(msg); 1257 u32 action, adj_len; 1258 u32 *payload; 1259 int ret = 0; 1260 1261 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) 1262 return 0; 1263 1264 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1265 payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; 1266 adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; 1267 1268 switch (action) { 1269 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: 1270 ret = xe_guc_sched_done_handler(guc, payload, adj_len); 1271 break; 1272 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: 1273 ret = xe_guc_deregister_done_handler(guc, payload, adj_len); 1274 break; 1275 case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: 1276 ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); 1277 break; 1278 case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: 1279 ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, 1280 adj_len); 1281 break; 1282 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: 1283 /* Selftest only at the moment */ 1284 break; 1285 case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: 1286 ret = xe_guc_error_capture_handler(guc, payload, adj_len); 1287 break; 1288 case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: 1289 /* FIXME: Handle this */ 1290 break; 1291 case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: 1292 ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, 1293 adj_len); 1294 break; 1295 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1296 ret = xe_guc_pagefault_handler(guc, payload, adj_len); 1297 break; 1298 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1299 ret = xe_guc_tlb_invalidation_done_handler(guc, payload, 1300 adj_len); 1301 break; 1302 case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: 1303 ret = xe_guc_access_counter_notify_handler(guc, payload, 1304 adj_len); 1305 break; 1306 case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: 1307 ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len); 1308 break; 1309 case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: 1310 ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len); 1311 break; 1312 case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY: 1313 ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len); 1314 break; 1315 case GUC_ACTION_GUC2PF_ADVERSE_EVENT: 1316 ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len); 1317 break; 1318 case XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED: 1319 case XE_GUC_ACTION_NOTIFY_EXCEPTION: 1320 ret = guc_crash_process_msg(ct, action); 1321 break; 1322 default: 1323 xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action); 1324 } 1325 1326 if (ret) { 1327 xe_gt_err(gt, "G2H action %#04x failed (%pe) len %u msg %*ph\n", 1328 action, ERR_PTR(ret), hxg_len, (int)sizeof(u32) * hxg_len, hxg); 1329 CT_DEAD(ct, NULL, PROCESS_FAILED); 1330 } 1331 1332 return 0; 1333 } 1334 1335 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) 1336 { 1337 struct xe_device *xe = ct_to_xe(ct); 1338 struct xe_gt *gt = ct_to_gt(ct); 1339 struct guc_ctb *g2h = &ct->ctbs.g2h; 1340 u32 tail, head, len, desc_status; 1341 s32 avail; 1342 u32 action; 1343 u32 *hxg; 1344 1345 xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); 1346 lockdep_assert_held(&ct->fast_lock); 1347 1348 if (ct->state == XE_GUC_CT_STATE_DISABLED) 1349 return -ENODEV; 1350 1351 if (ct->state == XE_GUC_CT_STATE_STOPPED) 1352 return -ECANCELED; 1353 1354 if (g2h->info.broken) 1355 return -EPIPE; 1356 1357 xe_gt_assert(gt, xe_guc_ct_enabled(ct)); 1358 1359 desc_status = desc_read(xe, g2h, status); 1360 if (desc_status) { 1361 if (desc_status & GUC_CTB_STATUS_DISABLED) { 1362 /* 1363 * Potentially valid if a CLIENT_RESET request resulted in 1364 * contexts/engines being reset. But should never happen as 1365 * no contexts should be active when CLIENT_RESET is sent. 1366 */ 1367 xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n"); 1368 desc_status &= ~GUC_CTB_STATUS_DISABLED; 1369 } 1370 1371 if (desc_status) { 1372 xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status); 1373 goto corrupted; 1374 } 1375 } 1376 1377 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 1378 u32 desc_tail = desc_read(xe, g2h, tail); 1379 /* 1380 u32 desc_head = desc_read(xe, g2h, head); 1381 1382 * info.head and desc_head are updated back-to-back at the end of 1383 * this function and nowhere else. Hence, they cannot be different 1384 * unless two g2h_read calls are running concurrently. Which is not 1385 * possible because it is guarded by ct->fast_lock. And yet, some 1386 * discrete platforms are regularly hitting this error :(. 1387 * 1388 * desc_head rolling backwards shouldn't cause any noticeable 1389 * problems - just a delay in GuC being allowed to proceed past that 1390 * point in the queue. So for now, just disable the error until it 1391 * can be root caused. 1392 * 1393 if (g2h->info.head != desc_head) { 1394 desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH); 1395 xe_gt_err(gt, "CT read: head was modified %u != %u\n", 1396 desc_head, g2h->info.head); 1397 goto corrupted; 1398 } 1399 */ 1400 1401 if (g2h->info.head > g2h->info.size) { 1402 desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); 1403 xe_gt_err(gt, "CT read: head out of range: %u vs %u\n", 1404 g2h->info.head, g2h->info.size); 1405 goto corrupted; 1406 } 1407 1408 if (desc_tail >= g2h->info.size) { 1409 desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); 1410 xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n", 1411 desc_tail, g2h->info.size); 1412 goto corrupted; 1413 } 1414 } 1415 1416 /* Calculate DW available to read */ 1417 tail = desc_read(xe, g2h, tail); 1418 avail = tail - g2h->info.head; 1419 if (unlikely(avail == 0)) 1420 return 0; 1421 1422 if (avail < 0) 1423 avail += g2h->info.size; 1424 1425 /* Read header */ 1426 xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, 1427 sizeof(u32)); 1428 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; 1429 if (len > avail) { 1430 xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n", 1431 avail, len); 1432 goto corrupted; 1433 } 1434 1435 head = (g2h->info.head + 1) % g2h->info.size; 1436 avail = len - 1; 1437 1438 /* Read G2H message */ 1439 if (avail + head > g2h->info.size) { 1440 u32 avail_til_wrap = g2h->info.size - head; 1441 1442 xe_map_memcpy_from(xe, msg + 1, 1443 &g2h->cmds, sizeof(u32) * head, 1444 avail_til_wrap * sizeof(u32)); 1445 xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, 1446 &g2h->cmds, 0, 1447 (avail - avail_til_wrap) * sizeof(u32)); 1448 } else { 1449 xe_map_memcpy_from(xe, msg + 1, 1450 &g2h->cmds, sizeof(u32) * head, 1451 avail * sizeof(u32)); 1452 } 1453 1454 hxg = msg_to_hxg(msg); 1455 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1456 1457 if (fast_path) { 1458 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) 1459 return 0; 1460 1461 switch (action) { 1462 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1463 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1464 break; /* Process these in fast-path */ 1465 default: 1466 return 0; 1467 } 1468 } 1469 1470 /* Update local / descriptor header */ 1471 g2h->info.head = (head + avail) % g2h->info.size; 1472 desc_write(xe, g2h, head, g2h->info.head); 1473 1474 trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id, 1475 action, len, g2h->info.head, tail); 1476 1477 return len; 1478 1479 corrupted: 1480 CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ); 1481 return -EPROTO; 1482 } 1483 1484 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) 1485 { 1486 struct xe_gt *gt = ct_to_gt(ct); 1487 struct xe_guc *guc = ct_to_guc(ct); 1488 u32 hxg_len = msg_len_to_hxg_len(len); 1489 u32 *hxg = msg_to_hxg(msg); 1490 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1491 u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; 1492 u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; 1493 int ret = 0; 1494 1495 switch (action) { 1496 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1497 ret = xe_guc_pagefault_handler(guc, payload, adj_len); 1498 break; 1499 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1500 __g2h_release_space(ct, len); 1501 ret = xe_guc_tlb_invalidation_done_handler(guc, payload, 1502 adj_len); 1503 break; 1504 default: 1505 xe_gt_warn(gt, "NOT_POSSIBLE"); 1506 } 1507 1508 if (ret) { 1509 xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", 1510 action, ERR_PTR(ret)); 1511 CT_DEAD(ct, NULL, FAST_G2H); 1512 } 1513 } 1514 1515 /** 1516 * xe_guc_ct_fast_path - process critical G2H in the IRQ handler 1517 * @ct: GuC CT object 1518 * 1519 * Anything related to page faults is critical for performance, process these 1520 * critical G2H in the IRQ. This is safe as these handlers either just wake up 1521 * waiters or queue another worker. 1522 */ 1523 void xe_guc_ct_fast_path(struct xe_guc_ct *ct) 1524 { 1525 struct xe_device *xe = ct_to_xe(ct); 1526 bool ongoing; 1527 int len; 1528 1529 ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); 1530 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) 1531 return; 1532 1533 spin_lock(&ct->fast_lock); 1534 do { 1535 len = g2h_read(ct, ct->fast_msg, true); 1536 if (len > 0) 1537 g2h_fast_path(ct, ct->fast_msg, len); 1538 } while (len > 0); 1539 spin_unlock(&ct->fast_lock); 1540 1541 if (ongoing) 1542 xe_pm_runtime_put(xe); 1543 } 1544 1545 /* Returns less than zero on error, 0 on done, 1 on more available */ 1546 static int dequeue_one_g2h(struct xe_guc_ct *ct) 1547 { 1548 int len; 1549 int ret; 1550 1551 lockdep_assert_held(&ct->lock); 1552 1553 spin_lock_irq(&ct->fast_lock); 1554 len = g2h_read(ct, ct->msg, false); 1555 spin_unlock_irq(&ct->fast_lock); 1556 if (len <= 0) 1557 return len; 1558 1559 ret = parse_g2h_msg(ct, ct->msg, len); 1560 if (unlikely(ret < 0)) 1561 return ret; 1562 1563 ret = process_g2h_msg(ct, ct->msg, len); 1564 if (unlikely(ret < 0)) 1565 return ret; 1566 1567 return 1; 1568 } 1569 1570 static void receive_g2h(struct xe_guc_ct *ct) 1571 { 1572 bool ongoing; 1573 int ret; 1574 1575 /* 1576 * Normal users must always hold mem_access.ref around CT calls. However 1577 * during the runtime pm callbacks we rely on CT to talk to the GuC, but 1578 * at this stage we can't rely on mem_access.ref and even the 1579 * callback_task will be different than current. For such cases we just 1580 * need to ensure we always process the responses from any blocking 1581 * ct_send requests or where we otherwise expect some response when 1582 * initiated from those callbacks (which will need to wait for the below 1583 * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if 1584 * the device has suspended to the point that the CT communication has 1585 * been disabled. 1586 * 1587 * If we are inside the runtime pm callback, we can be the only task 1588 * still issuing CT requests (since that requires having the 1589 * mem_access.ref). It seems like it might in theory be possible to 1590 * receive unsolicited events from the GuC just as we are 1591 * suspending-resuming, but those will currently anyway be lost when 1592 * eventually exiting from suspend, hence no need to wake up the device 1593 * here. If we ever need something stronger than get_if_ongoing() then 1594 * we need to be careful with blocking the pm callbacks from getting CT 1595 * responses, if the worker here is blocked on those callbacks 1596 * completing, creating a deadlock. 1597 */ 1598 ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); 1599 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) 1600 return; 1601 1602 do { 1603 mutex_lock(&ct->lock); 1604 ret = dequeue_one_g2h(ct); 1605 mutex_unlock(&ct->lock); 1606 1607 if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { 1608 xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret); 1609 CT_DEAD(ct, NULL, G2H_RECV); 1610 kick_reset(ct); 1611 } 1612 } while (ret == 1); 1613 1614 if (ongoing) 1615 xe_pm_runtime_put(ct_to_xe(ct)); 1616 } 1617 1618 static void g2h_worker_func(struct work_struct *w) 1619 { 1620 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); 1621 1622 receive_g2h(ct); 1623 } 1624 1625 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic, 1626 bool want_ctb) 1627 { 1628 struct xe_guc_ct_snapshot *snapshot; 1629 1630 snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL); 1631 if (!snapshot) 1632 return NULL; 1633 1634 if (ct->bo && want_ctb) { 1635 snapshot->ctb_size = ct->bo->size; 1636 snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL); 1637 } 1638 1639 return snapshot; 1640 } 1641 1642 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, 1643 struct guc_ctb_snapshot *snapshot) 1644 { 1645 xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, 1646 sizeof(struct guc_ct_buffer_desc)); 1647 memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); 1648 } 1649 1650 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, 1651 struct drm_printer *p) 1652 { 1653 drm_printf(p, "\tsize: %d\n", snapshot->info.size); 1654 drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); 1655 drm_printf(p, "\thead: %d\n", snapshot->info.head); 1656 drm_printf(p, "\ttail: %d\n", snapshot->info.tail); 1657 drm_printf(p, "\tspace: %d\n", snapshot->info.space); 1658 drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); 1659 drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); 1660 drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); 1661 drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); 1662 } 1663 1664 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic, 1665 bool want_ctb) 1666 { 1667 struct xe_device *xe = ct_to_xe(ct); 1668 struct xe_guc_ct_snapshot *snapshot; 1669 1670 snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb); 1671 if (!snapshot) { 1672 xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n"); 1673 return NULL; 1674 } 1675 1676 if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) { 1677 snapshot->ct_enabled = true; 1678 snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); 1679 guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g); 1680 guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h); 1681 } 1682 1683 if (ct->bo && snapshot->ctb) 1684 xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size); 1685 1686 return snapshot; 1687 } 1688 1689 /** 1690 * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. 1691 * @ct: GuC CT object. 1692 * 1693 * This can be printed out in a later stage like during dev_coredump 1694 * analysis. This is safe to be called during atomic context. 1695 * 1696 * Returns: a GuC CT snapshot object that must be freed by the caller 1697 * by using `xe_guc_ct_snapshot_free`. 1698 */ 1699 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct) 1700 { 1701 return guc_ct_snapshot_capture(ct, true, true); 1702 } 1703 1704 /** 1705 * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. 1706 * @snapshot: GuC CT snapshot object. 1707 * @p: drm_printer where it will be printed out. 1708 * 1709 * This function prints out a given GuC CT snapshot object. 1710 */ 1711 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, 1712 struct drm_printer *p) 1713 { 1714 if (!snapshot) 1715 return; 1716 1717 if (snapshot->ct_enabled) { 1718 drm_puts(p, "H2G CTB (all sizes in DW):\n"); 1719 guc_ctb_snapshot_print(&snapshot->h2g, p); 1720 1721 drm_puts(p, "G2H CTB (all sizes in DW):\n"); 1722 guc_ctb_snapshot_print(&snapshot->g2h, p); 1723 drm_printf(p, "\tg2h outstanding: %d\n", 1724 snapshot->g2h_outstanding); 1725 1726 if (snapshot->ctb) 1727 xe_print_blob_ascii85(p, "CTB data", snapshot->ctb, 0, snapshot->ctb_size); 1728 } else { 1729 drm_puts(p, "CT disabled\n"); 1730 } 1731 } 1732 1733 /** 1734 * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. 1735 * @snapshot: GuC CT snapshot object. 1736 * 1737 * This function free all the memory that needed to be allocated at capture 1738 * time. 1739 */ 1740 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) 1741 { 1742 if (!snapshot) 1743 return; 1744 1745 kfree(snapshot->ctb); 1746 kfree(snapshot); 1747 } 1748 1749 /** 1750 * xe_guc_ct_print - GuC CT Print. 1751 * @ct: GuC CT. 1752 * @p: drm_printer where it will be printed out. 1753 * @want_ctb: Should the full CTB content be dumped (vs just the headers) 1754 * 1755 * This function will quickly capture a snapshot of the CT state 1756 * and immediately print it out. 1757 */ 1758 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb) 1759 { 1760 struct xe_guc_ct_snapshot *snapshot; 1761 1762 snapshot = guc_ct_snapshot_capture(ct, false, want_ctb); 1763 xe_guc_ct_snapshot_print(snapshot, p); 1764 xe_guc_ct_snapshot_free(snapshot); 1765 } 1766 1767 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG) 1768 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code) 1769 { 1770 struct xe_guc_log_snapshot *snapshot_log; 1771 struct xe_guc_ct_snapshot *snapshot_ct; 1772 struct xe_guc *guc = ct_to_guc(ct); 1773 unsigned long flags; 1774 bool have_capture; 1775 1776 if (ctb) 1777 ctb->info.broken = true; 1778 1779 /* Ignore further errors after the first dump until a reset */ 1780 if (ct->dead.reported) 1781 return; 1782 1783 spin_lock_irqsave(&ct->dead.lock, flags); 1784 1785 /* And only capture one dump at a time */ 1786 have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE); 1787 ct->dead.reason |= (1 << reason_code) | 1788 (1 << CT_DEAD_STATE_CAPTURE); 1789 1790 spin_unlock_irqrestore(&ct->dead.lock, flags); 1791 1792 if (have_capture) 1793 return; 1794 1795 snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true); 1796 snapshot_ct = xe_guc_ct_snapshot_capture((ct)); 1797 1798 spin_lock_irqsave(&ct->dead.lock, flags); 1799 1800 if (ct->dead.snapshot_log || ct->dead.snapshot_ct) { 1801 xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n"); 1802 xe_guc_log_snapshot_free(snapshot_log); 1803 xe_guc_ct_snapshot_free(snapshot_ct); 1804 } else { 1805 ct->dead.snapshot_log = snapshot_log; 1806 ct->dead.snapshot_ct = snapshot_ct; 1807 } 1808 1809 spin_unlock_irqrestore(&ct->dead.lock, flags); 1810 1811 queue_work(system_unbound_wq, &(ct)->dead.worker); 1812 } 1813 1814 static void ct_dead_print(struct xe_dead_ct *dead) 1815 { 1816 struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead); 1817 struct xe_device *xe = ct_to_xe(ct); 1818 struct xe_gt *gt = ct_to_gt(ct); 1819 static int g_count; 1820 struct drm_printer ip = xe_gt_info_printer(gt); 1821 struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count); 1822 1823 if (!dead->reason) { 1824 xe_gt_err(gt, "CTB is dead for no reason!?\n"); 1825 return; 1826 } 1827 1828 drm_printf(&lp, "CTB is dead - reason=0x%X\n", dead->reason); 1829 1830 /* Can't generate a genuine core dump at this point, so just do the good bits */ 1831 drm_puts(&lp, "**** Xe Device Coredump ****\n"); 1832 xe_device_snapshot_print(xe, &lp); 1833 1834 drm_printf(&lp, "**** GT #%d ****\n", gt->info.id); 1835 drm_printf(&lp, "\tTile: %d\n", gt->tile->id); 1836 1837 drm_puts(&lp, "**** GuC Log ****\n"); 1838 xe_guc_log_snapshot_print(dead->snapshot_log, &lp); 1839 1840 drm_puts(&lp, "**** GuC CT ****\n"); 1841 xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp); 1842 1843 drm_puts(&lp, "Done.\n"); 1844 } 1845 1846 static void ct_dead_worker_func(struct work_struct *w) 1847 { 1848 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker); 1849 1850 if (!ct->dead.reported) { 1851 ct->dead.reported = true; 1852 ct_dead_print(&ct->dead); 1853 } 1854 1855 spin_lock_irq(&ct->dead.lock); 1856 1857 xe_guc_log_snapshot_free(ct->dead.snapshot_log); 1858 ct->dead.snapshot_log = NULL; 1859 xe_guc_ct_snapshot_free(ct->dead.snapshot_ct); 1860 ct->dead.snapshot_ct = NULL; 1861 1862 if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) { 1863 /* A reset has occurred so re-arm the error reporting */ 1864 ct->dead.reason = 0; 1865 ct->dead.reported = false; 1866 } 1867 1868 spin_unlock_irq(&ct->dead.lock); 1869 } 1870 #endif 1871