xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 
12 #include <kunit/static_stub.h>
13 
14 #include <drm/drm_managed.h>
15 
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_actions_sriov_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "xe_bo.h"
20 #include "xe_device.h"
21 #include "xe_gt.h"
22 #include "xe_gt_pagefault.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_tlb_invalidation.h"
25 #include "xe_guc.h"
26 #include "xe_guc_relay.h"
27 #include "xe_guc_submit.h"
28 #include "xe_map.h"
29 #include "xe_pm.h"
30 #include "xe_trace.h"
31 
32 /* Used when a CT send wants to block and / or receive data */
33 struct g2h_fence {
34 	u32 *response_buffer;
35 	u32 seqno;
36 	u32 response_data;
37 	u16 response_len;
38 	u16 error;
39 	u16 hint;
40 	u16 reason;
41 	bool retry;
42 	bool fail;
43 	bool done;
44 };
45 
46 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
47 {
48 	g2h_fence->response_buffer = response_buffer;
49 	g2h_fence->response_data = 0;
50 	g2h_fence->response_len = 0;
51 	g2h_fence->fail = false;
52 	g2h_fence->retry = false;
53 	g2h_fence->done = false;
54 	g2h_fence->seqno = ~0x0;
55 }
56 
57 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
58 {
59 	return g2h_fence->seqno == ~0x0;
60 }
61 
62 static struct xe_guc *
63 ct_to_guc(struct xe_guc_ct *ct)
64 {
65 	return container_of(ct, struct xe_guc, ct);
66 }
67 
68 static struct xe_gt *
69 ct_to_gt(struct xe_guc_ct *ct)
70 {
71 	return container_of(ct, struct xe_gt, uc.guc.ct);
72 }
73 
74 static struct xe_device *
75 ct_to_xe(struct xe_guc_ct *ct)
76 {
77 	return gt_to_xe(ct_to_gt(ct));
78 }
79 
80 /**
81  * DOC: GuC CTB Blob
82  *
83  * We allocate single blob to hold both CTB descriptors and buffers:
84  *
85  *      +--------+-----------------------------------------------+------+
86  *      | offset | contents                                      | size |
87  *      +========+===============================================+======+
88  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
89  *      +--------+-----------------------------------------------+  4K  |
90  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
91  *      +--------+-----------------------------------------------+------+
92  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
93  *      |        |                                               |      |
94  *      +--------+-----------------------------------------------+------+
95  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
96  *      | + n*4K |                                               |      |
97  *      +--------+-----------------------------------------------+------+
98  *
99  * Size of each ``CT Buffer`` must be multiple of 4K.
100  * We don't expect too many messages in flight at any time, unless we are
101  * using the GuC submission. In that case each request requires a minimum
102  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
103  * enough space to avoid backpressure on the driver. We increase the size
104  * of the receive buffer (relative to the send) to ensure a G2H response
105  * CTB has a landing spot.
106  */
107 
108 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
109 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
110 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
111 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
112 
113 static size_t guc_ct_size(void)
114 {
115 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
116 		CTB_G2H_BUFFER_SIZE;
117 }
118 
119 static void guc_ct_fini(struct drm_device *drm, void *arg)
120 {
121 	struct xe_guc_ct *ct = arg;
122 
123 	xa_destroy(&ct->fence_lookup);
124 }
125 
126 static void g2h_worker_func(struct work_struct *w);
127 
128 static void primelockdep(struct xe_guc_ct *ct)
129 {
130 	if (!IS_ENABLED(CONFIG_LOCKDEP))
131 		return;
132 
133 	fs_reclaim_acquire(GFP_KERNEL);
134 	might_lock(&ct->lock);
135 	fs_reclaim_release(GFP_KERNEL);
136 }
137 
138 int xe_guc_ct_init(struct xe_guc_ct *ct)
139 {
140 	struct xe_device *xe = ct_to_xe(ct);
141 	struct xe_gt *gt = ct_to_gt(ct);
142 	struct xe_tile *tile = gt_to_tile(gt);
143 	struct xe_bo *bo;
144 	int err;
145 
146 	xe_assert(xe, !(guc_ct_size() % PAGE_SIZE));
147 
148 	drmm_mutex_init(&xe->drm, &ct->lock);
149 	spin_lock_init(&ct->fast_lock);
150 	xa_init(&ct->fence_lookup);
151 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
152 	init_waitqueue_head(&ct->wq);
153 	init_waitqueue_head(&ct->g2h_fence_wq);
154 
155 	primelockdep(ct);
156 
157 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
158 					  XE_BO_CREATE_SYSTEM_BIT |
159 					  XE_BO_CREATE_GGTT_BIT);
160 	if (IS_ERR(bo))
161 		return PTR_ERR(bo);
162 
163 	ct->bo = bo;
164 
165 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
166 	if (err)
167 		return err;
168 
169 	xe_assert(xe, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
170 	ct->state = XE_GUC_CT_STATE_DISABLED;
171 	return 0;
172 }
173 
174 #define desc_read(xe_, guc_ctb__, field_)			\
175 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
176 			struct guc_ct_buffer_desc, field_)
177 
178 #define desc_write(xe_, guc_ctb__, field_, val_)		\
179 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
180 			struct guc_ct_buffer_desc, field_, val_)
181 
182 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
183 				struct iosys_map *map)
184 {
185 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
186 	h2g->info.resv_space = 0;
187 	h2g->info.tail = 0;
188 	h2g->info.head = 0;
189 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
190 				     h2g->info.size) -
191 			  h2g->info.resv_space;
192 	h2g->info.broken = false;
193 
194 	h2g->desc = *map;
195 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
196 
197 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
198 }
199 
200 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
201 				struct iosys_map *map)
202 {
203 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
204 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
205 	g2h->info.head = 0;
206 	g2h->info.tail = 0;
207 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
208 				     g2h->info.size) -
209 			  g2h->info.resv_space;
210 	g2h->info.broken = false;
211 
212 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
213 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
214 
215 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
216 					    CTB_H2G_BUFFER_SIZE);
217 }
218 
219 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
220 {
221 	struct xe_guc *guc = ct_to_guc(ct);
222 	u32 desc_addr, ctb_addr, size;
223 	int err;
224 
225 	desc_addr = xe_bo_ggtt_addr(ct->bo);
226 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
227 	size = ct->ctbs.h2g.info.size * sizeof(u32);
228 
229 	err = xe_guc_self_cfg64(guc,
230 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
231 				desc_addr);
232 	if (err)
233 		return err;
234 
235 	err = xe_guc_self_cfg64(guc,
236 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
237 				ctb_addr);
238 	if (err)
239 		return err;
240 
241 	return xe_guc_self_cfg32(guc,
242 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
243 				 size);
244 }
245 
246 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
247 {
248 	struct xe_guc *guc = ct_to_guc(ct);
249 	u32 desc_addr, ctb_addr, size;
250 	int err;
251 
252 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
253 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
254 		CTB_H2G_BUFFER_SIZE;
255 	size = ct->ctbs.g2h.info.size * sizeof(u32);
256 
257 	err = xe_guc_self_cfg64(guc,
258 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
259 				desc_addr);
260 	if (err)
261 		return err;
262 
263 	err = xe_guc_self_cfg64(guc,
264 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
265 				ctb_addr);
266 	if (err)
267 		return err;
268 
269 	return xe_guc_self_cfg32(guc,
270 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
271 				 size);
272 }
273 
274 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
275 {
276 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
277 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
278 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
279 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
280 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
281 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
282 			   enable ? GUC_CTB_CONTROL_ENABLE :
283 			   GUC_CTB_CONTROL_DISABLE),
284 	};
285 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
286 
287 	return ret > 0 ? -EPROTO : ret;
288 }
289 
290 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
291 				enum xe_guc_ct_state state)
292 {
293 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
294 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
295 
296 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
297 		     state == XE_GUC_CT_STATE_STOPPED);
298 
299 	ct->g2h_outstanding = 0;
300 	ct->state = state;
301 
302 	spin_unlock_irq(&ct->fast_lock);
303 
304 	/*
305 	 * Lockdep doesn't like this under the fast lock and he destroy only
306 	 * needs to be serialized with the send path which ct lock provides.
307 	 */
308 	xa_destroy(&ct->fence_lookup);
309 
310 	mutex_unlock(&ct->lock);
311 }
312 
313 int xe_guc_ct_enable(struct xe_guc_ct *ct)
314 {
315 	struct xe_device *xe = ct_to_xe(ct);
316 	int err;
317 
318 	xe_assert(xe, !xe_guc_ct_enabled(ct));
319 
320 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
321 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
322 
323 	err = guc_ct_ctb_h2g_register(ct);
324 	if (err)
325 		goto err_out;
326 
327 	err = guc_ct_ctb_g2h_register(ct);
328 	if (err)
329 		goto err_out;
330 
331 	err = guc_ct_control_toggle(ct, true);
332 	if (err)
333 		goto err_out;
334 
335 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
336 
337 	smp_mb();
338 	wake_up_all(&ct->wq);
339 	drm_dbg(&xe->drm, "GuC CT communication channel enabled\n");
340 
341 	return 0;
342 
343 err_out:
344 	drm_err(&xe->drm, "Failed to enable CT (%d)\n", err);
345 
346 	return err;
347 }
348 
349 static void stop_g2h_handler(struct xe_guc_ct *ct)
350 {
351 	cancel_work_sync(&ct->g2h_worker);
352 }
353 
354 /**
355  * xe_guc_ct_disable - Set GuC to disabled state
356  * @ct: the &xe_guc_ct
357  *
358  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
359  * in this transition.
360  */
361 void xe_guc_ct_disable(struct xe_guc_ct *ct)
362 {
363 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
364 	stop_g2h_handler(ct);
365 }
366 
367 /**
368  * xe_guc_ct_stop - Set GuC to stopped state
369  * @ct: the &xe_guc_ct
370  *
371  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
372  */
373 void xe_guc_ct_stop(struct xe_guc_ct *ct)
374 {
375 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
376 	stop_g2h_handler(ct);
377 }
378 
379 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
380 {
381 	struct guc_ctb *h2g = &ct->ctbs.h2g;
382 
383 	lockdep_assert_held(&ct->lock);
384 
385 	if (cmd_len > h2g->info.space) {
386 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
387 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
388 					     h2g->info.size) -
389 				  h2g->info.resv_space;
390 		if (cmd_len > h2g->info.space)
391 			return false;
392 	}
393 
394 	return true;
395 }
396 
397 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
398 {
399 	if (!g2h_len)
400 		return true;
401 
402 	lockdep_assert_held(&ct->fast_lock);
403 
404 	return ct->ctbs.g2h.info.space > g2h_len;
405 }
406 
407 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
408 {
409 	lockdep_assert_held(&ct->lock);
410 
411 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
412 		return -EBUSY;
413 
414 	return 0;
415 }
416 
417 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
418 {
419 	lockdep_assert_held(&ct->lock);
420 	ct->ctbs.h2g.info.space -= cmd_len;
421 }
422 
423 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
424 {
425 	xe_assert(ct_to_xe(ct), g2h_len <= ct->ctbs.g2h.info.space);
426 
427 	if (g2h_len) {
428 		lockdep_assert_held(&ct->fast_lock);
429 
430 		ct->ctbs.g2h.info.space -= g2h_len;
431 		ct->g2h_outstanding += num_g2h;
432 	}
433 }
434 
435 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
436 {
437 	lockdep_assert_held(&ct->fast_lock);
438 	xe_assert(ct_to_xe(ct), ct->ctbs.g2h.info.space + g2h_len <=
439 		  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
440 
441 	ct->ctbs.g2h.info.space += g2h_len;
442 	--ct->g2h_outstanding;
443 }
444 
445 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
446 {
447 	spin_lock_irq(&ct->fast_lock);
448 	__g2h_release_space(ct, g2h_len);
449 	spin_unlock_irq(&ct->fast_lock);
450 }
451 
452 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
453 
454 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
455 		     u32 ct_fence_value, bool want_response)
456 {
457 	struct xe_device *xe = ct_to_xe(ct);
458 	struct guc_ctb *h2g = &ct->ctbs.h2g;
459 	u32 cmd[H2G_CT_HEADERS];
460 	u32 tail = h2g->info.tail;
461 	u32 full_len;
462 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
463 							 tail * sizeof(u32));
464 
465 	full_len = len + GUC_CTB_HDR_LEN;
466 
467 	lockdep_assert_held(&ct->lock);
468 	xe_assert(xe, full_len <= GUC_CTB_MSG_MAX_LEN);
469 	xe_assert(xe, tail <= h2g->info.size);
470 
471 	/* Command will wrap, zero fill (NOPs), return and check credits again */
472 	if (tail + full_len > h2g->info.size) {
473 		xe_map_memset(xe, &map, 0, 0,
474 			      (h2g->info.size - tail) * sizeof(u32));
475 		h2g_reserve_space(ct, (h2g->info.size - tail));
476 		h2g->info.tail = 0;
477 		desc_write(xe, h2g, tail, h2g->info.tail);
478 
479 		return -EAGAIN;
480 	}
481 
482 	/*
483 	 * dw0: CT header (including fence)
484 	 * dw1: HXG header (including action code)
485 	 * dw2+: action data
486 	 */
487 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
488 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
489 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
490 	if (want_response) {
491 		cmd[1] =
492 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
493 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
494 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
495 	} else {
496 		cmd[1] =
497 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
498 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
499 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
500 	}
501 
502 	/* H2G header in cmd[1] replaces action[0] so: */
503 	--len;
504 	++action;
505 
506 	/* Write H2G ensuring visable before descriptor update */
507 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
508 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
509 	xe_device_wmb(xe);
510 
511 	/* Update local copies */
512 	h2g->info.tail = (tail + full_len) % h2g->info.size;
513 	h2g_reserve_space(ct, full_len);
514 
515 	/* Update descriptor */
516 	desc_write(xe, h2g, tail, h2g->info.tail);
517 
518 	trace_xe_guc_ctb_h2g(ct_to_gt(ct)->info.id, *(action - 1), full_len,
519 			     desc_read(xe, h2g, head), h2g->info.tail);
520 
521 	return 0;
522 }
523 
524 /*
525  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
526  * driver, the GuC will just copy it to the reply message. Since we need to
527  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
528  * we use one bit of the seqno as an indicator for that and a rolling counter
529  * for the remaining 15 bits.
530  */
531 #define CT_SEQNO_MASK GENMASK(14, 0)
532 #define CT_SEQNO_UNTRACKED BIT(15)
533 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
534 {
535 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
536 
537 	if (!is_g2h_fence)
538 		seqno |= CT_SEQNO_UNTRACKED;
539 
540 	return seqno;
541 }
542 
543 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
544 				u32 len, u32 g2h_len, u32 num_g2h,
545 				struct g2h_fence *g2h_fence)
546 {
547 	struct xe_device *xe = ct_to_xe(ct);
548 	u16 seqno;
549 	int ret;
550 
551 	xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
552 	xe_assert(xe, !g2h_len || !g2h_fence);
553 	xe_assert(xe, !num_g2h || !g2h_fence);
554 	xe_assert(xe, !g2h_len || num_g2h);
555 	xe_assert(xe, g2h_len || !num_g2h);
556 	lockdep_assert_held(&ct->lock);
557 
558 	if (unlikely(ct->ctbs.h2g.info.broken)) {
559 		ret = -EPIPE;
560 		goto out;
561 	}
562 
563 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
564 		ret = -ENODEV;
565 		goto out;
566 	}
567 
568 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
569 		ret = -ECANCELED;
570 		goto out;
571 	}
572 
573 	xe_assert(xe, xe_guc_ct_enabled(ct));
574 
575 	if (g2h_fence) {
576 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
577 		num_g2h = 1;
578 
579 		if (g2h_fence_needs_alloc(g2h_fence)) {
580 			void *ptr;
581 
582 			g2h_fence->seqno = next_ct_seqno(ct, true);
583 			ptr = xa_store(&ct->fence_lookup,
584 				       g2h_fence->seqno,
585 				       g2h_fence, GFP_ATOMIC);
586 			if (IS_ERR(ptr)) {
587 				ret = PTR_ERR(ptr);
588 				goto out;
589 			}
590 		}
591 
592 		seqno = g2h_fence->seqno;
593 	} else {
594 		seqno = next_ct_seqno(ct, false);
595 	}
596 
597 	if (g2h_len)
598 		spin_lock_irq(&ct->fast_lock);
599 retry:
600 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
601 	if (unlikely(ret))
602 		goto out_unlock;
603 
604 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
605 	if (unlikely(ret)) {
606 		if (ret == -EAGAIN)
607 			goto retry;
608 		goto out_unlock;
609 	}
610 
611 	__g2h_reserve_space(ct, g2h_len, num_g2h);
612 	xe_guc_notify(ct_to_guc(ct));
613 out_unlock:
614 	if (g2h_len)
615 		spin_unlock_irq(&ct->fast_lock);
616 out:
617 	return ret;
618 }
619 
620 static void kick_reset(struct xe_guc_ct *ct)
621 {
622 	xe_gt_reset_async(ct_to_gt(ct));
623 }
624 
625 static int dequeue_one_g2h(struct xe_guc_ct *ct);
626 
627 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
628 			      u32 g2h_len, u32 num_g2h,
629 			      struct g2h_fence *g2h_fence)
630 {
631 	struct drm_device *drm = &ct_to_xe(ct)->drm;
632 	struct drm_printer p = drm_info_printer(drm->dev);
633 	unsigned int sleep_period_ms = 1;
634 	int ret;
635 
636 	xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);
637 	lockdep_assert_held(&ct->lock);
638 	xe_device_assert_mem_access(ct_to_xe(ct));
639 
640 try_again:
641 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
642 				   g2h_fence);
643 
644 	/*
645 	 * We wait to try to restore credits for about 1 second before bailing.
646 	 * In the case of H2G credits we have no choice but just to wait for the
647 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
648 	 * the case of G2H we process any G2H in the channel, hopefully freeing
649 	 * credits as we consume the G2H messages.
650 	 */
651 	if (unlikely(ret == -EBUSY &&
652 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
653 		struct guc_ctb *h2g = &ct->ctbs.h2g;
654 
655 		if (sleep_period_ms == 1024)
656 			goto broken;
657 
658 		trace_xe_guc_ct_h2g_flow_control(h2g->info.head, h2g->info.tail,
659 						 h2g->info.size,
660 						 h2g->info.space,
661 						 len + GUC_CTB_HDR_LEN);
662 		msleep(sleep_period_ms);
663 		sleep_period_ms <<= 1;
664 
665 		goto try_again;
666 	} else if (unlikely(ret == -EBUSY)) {
667 		struct xe_device *xe = ct_to_xe(ct);
668 		struct guc_ctb *g2h = &ct->ctbs.g2h;
669 
670 		trace_xe_guc_ct_g2h_flow_control(g2h->info.head,
671 						 desc_read(xe, g2h, tail),
672 						 g2h->info.size,
673 						 g2h->info.space,
674 						 g2h_fence ?
675 						 GUC_CTB_HXG_MSG_MAX_LEN :
676 						 g2h_len);
677 
678 #define g2h_avail(ct)	\
679 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
680 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
681 					g2h_avail(ct), HZ))
682 			goto broken;
683 #undef g2h_avail
684 
685 		if (dequeue_one_g2h(ct) < 0)
686 			goto broken;
687 
688 		goto try_again;
689 	}
690 
691 	return ret;
692 
693 broken:
694 	drm_err(drm, "No forward process on H2G, reset required");
695 	xe_guc_ct_print(ct, &p, true);
696 	ct->ctbs.h2g.info.broken = true;
697 
698 	return -EDEADLK;
699 }
700 
701 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
702 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
703 {
704 	int ret;
705 
706 	xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);
707 
708 	mutex_lock(&ct->lock);
709 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
710 	mutex_unlock(&ct->lock);
711 
712 	return ret;
713 }
714 
715 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
716 		   u32 g2h_len, u32 num_g2h)
717 {
718 	int ret;
719 
720 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
721 	if (ret == -EDEADLK)
722 		kick_reset(ct);
723 
724 	return ret;
725 }
726 
727 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
728 			  u32 g2h_len, u32 num_g2h)
729 {
730 	int ret;
731 
732 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
733 	if (ret == -EDEADLK)
734 		kick_reset(ct);
735 
736 	return ret;
737 }
738 
739 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
740 {
741 	int ret;
742 
743 	lockdep_assert_held(&ct->lock);
744 
745 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
746 	if (ret == -EDEADLK)
747 		kick_reset(ct);
748 
749 	return ret;
750 }
751 
752 /*
753  * Check if a GT reset is in progress or will occur and if GT reset brought the
754  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
755  */
756 static bool retry_failure(struct xe_guc_ct *ct, int ret)
757 {
758 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
759 		return false;
760 
761 #define ct_alive(ct)	\
762 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
763 	 !ct->ctbs.g2h.info.broken)
764 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
765 		return false;
766 #undef ct_alive
767 
768 	return true;
769 }
770 
771 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
772 			    u32 *response_buffer, bool no_fail)
773 {
774 	struct xe_device *xe = ct_to_xe(ct);
775 	struct g2h_fence g2h_fence;
776 	int ret = 0;
777 
778 	/*
779 	 * We use a fence to implement blocking sends / receiving response data.
780 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
781 	 * an xarray is used as storage media with the seqno being to key.
782 	 * Fields in the fence hold success, failure, retry status and the
783 	 * response data. Safe to allocate on the stack as the xarray is the
784 	 * only reference and it cannot be present after this function exits.
785 	 */
786 retry:
787 	g2h_fence_init(&g2h_fence, response_buffer);
788 retry_same_fence:
789 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
790 	if (unlikely(ret == -ENOMEM)) {
791 		void *ptr;
792 
793 		/* Retry allocation /w GFP_KERNEL */
794 		ptr = xa_store(&ct->fence_lookup,
795 			       g2h_fence.seqno,
796 			       &g2h_fence, GFP_KERNEL);
797 		if (IS_ERR(ptr))
798 			return PTR_ERR(ptr);
799 
800 		goto retry_same_fence;
801 	} else if (unlikely(ret)) {
802 		if (ret == -EDEADLK)
803 			kick_reset(ct);
804 
805 		if (no_fail && retry_failure(ct, ret))
806 			goto retry_same_fence;
807 
808 		if (!g2h_fence_needs_alloc(&g2h_fence))
809 			xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
810 
811 		return ret;
812 	}
813 
814 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
815 	if (!ret) {
816 		drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x",
817 			g2h_fence.seqno, action[0]);
818 		xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
819 		return -ETIME;
820 	}
821 
822 	if (g2h_fence.retry) {
823 		drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d",
824 			 action[0], g2h_fence.reason);
825 		goto retry;
826 	}
827 	if (g2h_fence.fail) {
828 		drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d",
829 			action[0], g2h_fence.error, g2h_fence.hint);
830 		ret = -EIO;
831 	}
832 
833 	return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret;
834 }
835 
836 /**
837  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
838  * @ct: the &xe_guc_ct
839  * @action: the dword array with `HXG Request`_ message (can't be NULL)
840  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
841  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
842  *
843  * Send a `HXG Request`_ message to the GuC over CT communication channel and
844  * blocks until GuC replies with a `HXG Response`_ message.
845  *
846  * For non-blocking communication with GuC use xe_guc_ct_send().
847  *
848  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
849  *
850  * Return: response length (in dwords) if &response_buffer was not NULL, or
851  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
852  *         a negative error code on failure.
853  */
854 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
855 			u32 *response_buffer)
856 {
857 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
858 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
859 }
860 
861 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
862 				u32 len, u32 *response_buffer)
863 {
864 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
865 }
866 
867 static u32 *msg_to_hxg(u32 *msg)
868 {
869 	return msg + GUC_CTB_MSG_MIN_LEN;
870 }
871 
872 static u32 msg_len_to_hxg_len(u32 len)
873 {
874 	return len - GUC_CTB_MSG_MIN_LEN;
875 }
876 
877 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
878 {
879 	u32 *hxg = msg_to_hxg(msg);
880 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
881 
882 	lockdep_assert_held(&ct->lock);
883 
884 	switch (action) {
885 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
886 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
887 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
888 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
889 		g2h_release_space(ct, len);
890 	}
891 
892 	return 0;
893 }
894 
895 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
896 {
897 	struct xe_gt *gt =  ct_to_gt(ct);
898 	struct xe_device *xe = gt_to_xe(gt);
899 	u32 *hxg = msg_to_hxg(msg);
900 	u32 hxg_len = msg_len_to_hxg_len(len);
901 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
902 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
903 	struct g2h_fence *g2h_fence;
904 
905 	lockdep_assert_held(&ct->lock);
906 
907 	/*
908 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
909 	 * Those messages should never fail, so if we do get an error back it
910 	 * means we're likely doing an illegal operation and the GuC is
911 	 * rejecting it. We have no way to inform the code that submitted the
912 	 * H2G that the message was rejected, so we need to escalate the
913 	 * failure to trigger a reset.
914 	 */
915 	if (fence & CT_SEQNO_UNTRACKED) {
916 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
917 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
918 				  fence,
919 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
920 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
921 		else
922 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
923 				  type, fence);
924 
925 		return -EPROTO;
926 	}
927 
928 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
929 	if (unlikely(!g2h_fence)) {
930 		/* Don't tear down channel, as send could've timed out */
931 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
932 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
933 		return 0;
934 	}
935 
936 	xe_assert(xe, fence == g2h_fence->seqno);
937 
938 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
939 		g2h_fence->fail = true;
940 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
941 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
942 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
943 		g2h_fence->retry = true;
944 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
945 	} else if (g2h_fence->response_buffer) {
946 		g2h_fence->response_len = hxg_len;
947 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
948 	} else {
949 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
950 	}
951 
952 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
953 
954 	g2h_fence->done = true;
955 	smp_mb();
956 
957 	wake_up_all(&ct->g2h_fence_wq);
958 
959 	return 0;
960 }
961 
962 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
963 {
964 	struct xe_device *xe = ct_to_xe(ct);
965 	u32 *hxg = msg_to_hxg(msg);
966 	u32 origin, type;
967 	int ret;
968 
969 	lockdep_assert_held(&ct->lock);
970 
971 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
972 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
973 		drm_err(&xe->drm,
974 			"G2H channel broken on read, origin=%d, reset required\n",
975 			origin);
976 		ct->ctbs.g2h.info.broken = true;
977 
978 		return -EPROTO;
979 	}
980 
981 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
982 	switch (type) {
983 	case GUC_HXG_TYPE_EVENT:
984 		ret = parse_g2h_event(ct, msg, len);
985 		break;
986 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
987 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
988 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
989 		ret = parse_g2h_response(ct, msg, len);
990 		break;
991 	default:
992 		drm_err(&xe->drm,
993 			"G2H channel broken on read, type=%d, reset required\n",
994 			type);
995 		ct->ctbs.g2h.info.broken = true;
996 
997 		ret = -EOPNOTSUPP;
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1004 {
1005 	struct xe_device *xe = ct_to_xe(ct);
1006 	struct xe_guc *guc = ct_to_guc(ct);
1007 	u32 hxg_len = msg_len_to_hxg_len(len);
1008 	u32 *hxg = msg_to_hxg(msg);
1009 	u32 action, adj_len;
1010 	u32 *payload;
1011 	int ret = 0;
1012 
1013 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1014 		return 0;
1015 
1016 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1017 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1018 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1019 
1020 	switch (action) {
1021 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1022 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1023 		break;
1024 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1025 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1026 		break;
1027 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1028 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1029 		break;
1030 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1031 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1032 							      adj_len);
1033 		break;
1034 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1035 		/* Selftest only at the moment */
1036 		break;
1037 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1038 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1039 		/* FIXME: Handle this */
1040 		break;
1041 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1042 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1043 								 adj_len);
1044 		break;
1045 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1046 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1047 		break;
1048 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1049 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1050 							   adj_len);
1051 		break;
1052 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1053 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1054 							   adj_len);
1055 		break;
1056 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1057 		ret = xe_guc_relay_process_guc2pf(&guc->relay, payload, adj_len);
1058 		break;
1059 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1060 		ret = xe_guc_relay_process_guc2vf(&guc->relay, payload, adj_len);
1061 		break;
1062 	default:
1063 		drm_err(&xe->drm, "unexpected action 0x%04x\n", action);
1064 	}
1065 
1066 	if (ret)
1067 		drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
1068 			action, ret);
1069 
1070 	return 0;
1071 }
1072 
1073 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1074 {
1075 	struct xe_device *xe = ct_to_xe(ct);
1076 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1077 	u32 tail, head, len;
1078 	s32 avail;
1079 	u32 action;
1080 	u32 *hxg;
1081 
1082 	xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1083 	lockdep_assert_held(&ct->fast_lock);
1084 
1085 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1086 		return -ENODEV;
1087 
1088 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1089 		return -ECANCELED;
1090 
1091 	if (g2h->info.broken)
1092 		return -EPIPE;
1093 
1094 	xe_assert(xe, xe_guc_ct_enabled(ct));
1095 
1096 	/* Calculate DW available to read */
1097 	tail = desc_read(xe, g2h, tail);
1098 	avail = tail - g2h->info.head;
1099 	if (unlikely(avail == 0))
1100 		return 0;
1101 
1102 	if (avail < 0)
1103 		avail += g2h->info.size;
1104 
1105 	/* Read header */
1106 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1107 			   sizeof(u32));
1108 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1109 	if (len > avail) {
1110 		drm_err(&xe->drm,
1111 			"G2H channel broken on read, avail=%d, len=%d, reset required\n",
1112 			avail, len);
1113 		g2h->info.broken = true;
1114 
1115 		return -EPROTO;
1116 	}
1117 
1118 	head = (g2h->info.head + 1) % g2h->info.size;
1119 	avail = len - 1;
1120 
1121 	/* Read G2H message */
1122 	if (avail + head > g2h->info.size) {
1123 		u32 avail_til_wrap = g2h->info.size - head;
1124 
1125 		xe_map_memcpy_from(xe, msg + 1,
1126 				   &g2h->cmds, sizeof(u32) * head,
1127 				   avail_til_wrap * sizeof(u32));
1128 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1129 				   &g2h->cmds, 0,
1130 				   (avail - avail_til_wrap) * sizeof(u32));
1131 	} else {
1132 		xe_map_memcpy_from(xe, msg + 1,
1133 				   &g2h->cmds, sizeof(u32) * head,
1134 				   avail * sizeof(u32));
1135 	}
1136 
1137 	hxg = msg_to_hxg(msg);
1138 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1139 
1140 	if (fast_path) {
1141 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1142 			return 0;
1143 
1144 		switch (action) {
1145 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1146 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1147 			break;	/* Process these in fast-path */
1148 		default:
1149 			return 0;
1150 		}
1151 	}
1152 
1153 	/* Update local / descriptor header */
1154 	g2h->info.head = (head + avail) % g2h->info.size;
1155 	desc_write(xe, g2h, head, g2h->info.head);
1156 
1157 	trace_xe_guc_ctb_g2h(ct_to_gt(ct)->info.id, action, len,
1158 			     g2h->info.head, tail);
1159 
1160 	return len;
1161 }
1162 
1163 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1164 {
1165 	struct xe_device *xe = ct_to_xe(ct);
1166 	struct xe_guc *guc = ct_to_guc(ct);
1167 	u32 hxg_len = msg_len_to_hxg_len(len);
1168 	u32 *hxg = msg_to_hxg(msg);
1169 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1170 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1171 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1172 	int ret = 0;
1173 
1174 	switch (action) {
1175 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1176 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1177 		break;
1178 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1179 		__g2h_release_space(ct, len);
1180 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1181 							   adj_len);
1182 		break;
1183 	default:
1184 		drm_warn(&xe->drm, "NOT_POSSIBLE");
1185 	}
1186 
1187 	if (ret)
1188 		drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
1189 			action, ret);
1190 }
1191 
1192 /**
1193  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1194  * @ct: GuC CT object
1195  *
1196  * Anything related to page faults is critical for performance, process these
1197  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1198  * waiters or queue another worker.
1199  */
1200 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1201 {
1202 	struct xe_device *xe = ct_to_xe(ct);
1203 	bool ongoing;
1204 	int len;
1205 
1206 	ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
1207 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1208 		return;
1209 
1210 	spin_lock(&ct->fast_lock);
1211 	do {
1212 		len = g2h_read(ct, ct->fast_msg, true);
1213 		if (len > 0)
1214 			g2h_fast_path(ct, ct->fast_msg, len);
1215 	} while (len > 0);
1216 	spin_unlock(&ct->fast_lock);
1217 
1218 	if (ongoing)
1219 		xe_device_mem_access_put(xe);
1220 }
1221 
1222 /* Returns less than zero on error, 0 on done, 1 on more available */
1223 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1224 {
1225 	int len;
1226 	int ret;
1227 
1228 	lockdep_assert_held(&ct->lock);
1229 
1230 	spin_lock_irq(&ct->fast_lock);
1231 	len = g2h_read(ct, ct->msg, false);
1232 	spin_unlock_irq(&ct->fast_lock);
1233 	if (len <= 0)
1234 		return len;
1235 
1236 	ret = parse_g2h_msg(ct, ct->msg, len);
1237 	if (unlikely(ret < 0))
1238 		return ret;
1239 
1240 	ret = process_g2h_msg(ct, ct->msg, len);
1241 	if (unlikely(ret < 0))
1242 		return ret;
1243 
1244 	return 1;
1245 }
1246 
1247 static void g2h_worker_func(struct work_struct *w)
1248 {
1249 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1250 	bool ongoing;
1251 	int ret;
1252 
1253 	/*
1254 	 * Normal users must always hold mem_access.ref around CT calls. However
1255 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1256 	 * at this stage we can't rely on mem_access.ref and even the
1257 	 * callback_task will be different than current.  For such cases we just
1258 	 * need to ensure we always process the responses from any blocking
1259 	 * ct_send requests or where we otherwise expect some response when
1260 	 * initiated from those callbacks (which will need to wait for the below
1261 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1262 	 * the device has suspended to the point that the CT communication has
1263 	 * been disabled.
1264 	 *
1265 	 * If we are inside the runtime pm callback, we can be the only task
1266 	 * still issuing CT requests (since that requires having the
1267 	 * mem_access.ref).  It seems like it might in theory be possible to
1268 	 * receive unsolicited events from the GuC just as we are
1269 	 * suspending-resuming, but those will currently anyway be lost when
1270 	 * eventually exiting from suspend, hence no need to wake up the device
1271 	 * here. If we ever need something stronger than get_if_ongoing() then
1272 	 * we need to be careful with blocking the pm callbacks from getting CT
1273 	 * responses, if the worker here is blocked on those callbacks
1274 	 * completing, creating a deadlock.
1275 	 */
1276 	ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
1277 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1278 		return;
1279 
1280 	do {
1281 		mutex_lock(&ct->lock);
1282 		ret = dequeue_one_g2h(ct);
1283 		mutex_unlock(&ct->lock);
1284 
1285 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1286 			struct drm_device *drm = &ct_to_xe(ct)->drm;
1287 			struct drm_printer p = drm_info_printer(drm->dev);
1288 
1289 			xe_guc_ct_print(ct, &p, false);
1290 			kick_reset(ct);
1291 		}
1292 	} while (ret == 1);
1293 
1294 	if (ongoing)
1295 		xe_device_mem_access_put(ct_to_xe(ct));
1296 }
1297 
1298 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1299 				     struct guc_ctb_snapshot *snapshot,
1300 				     bool atomic)
1301 {
1302 	u32 head, tail;
1303 
1304 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1305 			   sizeof(struct guc_ct_buffer_desc));
1306 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1307 
1308 	snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
1309 				       atomic ? GFP_ATOMIC : GFP_KERNEL);
1310 
1311 	if (!snapshot->cmds) {
1312 		drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
1313 		return;
1314 	}
1315 
1316 	head = snapshot->desc.head;
1317 	tail = snapshot->desc.tail;
1318 
1319 	if (head != tail) {
1320 		struct iosys_map map =
1321 			IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
1322 
1323 		while (head != tail) {
1324 			snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
1325 			++head;
1326 			if (head == ctb->info.size) {
1327 				head = 0;
1328 				map = ctb->cmds;
1329 			} else {
1330 				iosys_map_incr(&map, sizeof(u32));
1331 			}
1332 		}
1333 	}
1334 }
1335 
1336 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1337 				   struct drm_printer *p)
1338 {
1339 	u32 head, tail;
1340 
1341 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1342 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1343 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1344 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1345 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1346 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1347 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1348 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1349 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1350 
1351 	if (!snapshot->cmds)
1352 		return;
1353 
1354 	head = snapshot->desc.head;
1355 	tail = snapshot->desc.tail;
1356 
1357 	while (head != tail) {
1358 		drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
1359 			   snapshot->cmds[head]);
1360 		++head;
1361 		if (head == snapshot->info.size)
1362 			head = 0;
1363 	}
1364 }
1365 
1366 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
1367 {
1368 	kfree(snapshot->cmds);
1369 }
1370 
1371 /**
1372  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1373  * @ct: GuC CT object.
1374  * @atomic: Boolean to indicate if this is called from atomic context like
1375  * reset or CTB handler or from some regular path like debugfs.
1376  *
1377  * This can be printed out in a later stage like during dev_coredump
1378  * analysis.
1379  *
1380  * Returns: a GuC CT snapshot object that must be freed by the caller
1381  * by using `xe_guc_ct_snapshot_free`.
1382  */
1383 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
1384 						      bool atomic)
1385 {
1386 	struct xe_device *xe = ct_to_xe(ct);
1387 	struct xe_guc_ct_snapshot *snapshot;
1388 
1389 	snapshot = kzalloc(sizeof(*snapshot),
1390 			   atomic ? GFP_ATOMIC : GFP_KERNEL);
1391 
1392 	if (!snapshot) {
1393 		drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
1394 		return NULL;
1395 	}
1396 
1397 	if (xe_guc_ct_enabled(ct)) {
1398 		snapshot->ct_enabled = true;
1399 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1400 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
1401 					 &snapshot->h2g, atomic);
1402 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
1403 					 &snapshot->g2h, atomic);
1404 	}
1405 
1406 	return snapshot;
1407 }
1408 
1409 /**
1410  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1411  * @snapshot: GuC CT snapshot object.
1412  * @p: drm_printer where it will be printed out.
1413  *
1414  * This function prints out a given GuC CT snapshot object.
1415  */
1416 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1417 			      struct drm_printer *p)
1418 {
1419 	if (!snapshot)
1420 		return;
1421 
1422 	if (snapshot->ct_enabled) {
1423 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1424 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1425 
1426 		drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
1427 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1428 
1429 		drm_printf(p, "\tg2h outstanding: %d\n",
1430 			   snapshot->g2h_outstanding);
1431 	} else {
1432 		drm_puts(p, "CT disabled\n");
1433 	}
1434 }
1435 
1436 /**
1437  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1438  * @snapshot: GuC CT snapshot object.
1439  *
1440  * This function free all the memory that needed to be allocated at capture
1441  * time.
1442  */
1443 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1444 {
1445 	if (!snapshot)
1446 		return;
1447 
1448 	guc_ctb_snapshot_free(&snapshot->h2g);
1449 	guc_ctb_snapshot_free(&snapshot->g2h);
1450 	kfree(snapshot);
1451 }
1452 
1453 /**
1454  * xe_guc_ct_print - GuC CT Print.
1455  * @ct: GuC CT.
1456  * @p: drm_printer where it will be printed out.
1457  * @atomic: Boolean to indicate if this is called from atomic context like
1458  * reset or CTB handler or from some regular path like debugfs.
1459  *
1460  * This function quickly capture a snapshot and immediately print it out.
1461  */
1462 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
1463 {
1464 	struct xe_guc_ct_snapshot *snapshot;
1465 
1466 	snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
1467 	xe_guc_ct_snapshot_print(snapshot, p);
1468 	xe_guc_ct_snapshot_free(snapshot);
1469 }
1470