xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision e77a8005748547fb1f10645097f13ccdd804d7e5)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 #include <linux/fault-inject.h>
12 
13 #include <kunit/static_stub.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_sriov_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "xe_bo.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_pagefault.h"
25 #include "xe_gt_printk.h"
26 #include "xe_gt_sriov_pf_control.h"
27 #include "xe_gt_sriov_pf_monitor.h"
28 #include "xe_gt_tlb_invalidation.h"
29 #include "xe_guc.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_relay.h"
32 #include "xe_guc_submit.h"
33 #include "xe_map.h"
34 #include "xe_pm.h"
35 #include "xe_trace_guc.h"
36 
37 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
38 enum {
39 	/* Internal states, not error conditions */
40 	CT_DEAD_STATE_REARM,			/* 0x0001 */
41 	CT_DEAD_STATE_CAPTURE,			/* 0x0002 */
42 
43 	/* Error conditions */
44 	CT_DEAD_SETUP,				/* 0x0004 */
45 	CT_DEAD_H2G_WRITE,			/* 0x0008 */
46 	CT_DEAD_H2G_HAS_ROOM,			/* 0x0010 */
47 	CT_DEAD_G2H_READ,			/* 0x0020 */
48 	CT_DEAD_G2H_RECV,			/* 0x0040 */
49 	CT_DEAD_G2H_RELEASE,			/* 0x0080 */
50 	CT_DEAD_DEADLOCK,			/* 0x0100 */
51 	CT_DEAD_PROCESS_FAILED,			/* 0x0200 */
52 	CT_DEAD_FAST_G2H,			/* 0x0400 */
53 	CT_DEAD_PARSE_G2H_RESPONSE,		/* 0x0800 */
54 	CT_DEAD_PARSE_G2H_UNKNOWN,		/* 0x1000 */
55 	CT_DEAD_PARSE_G2H_ORIGIN,		/* 0x2000 */
56 	CT_DEAD_PARSE_G2H_TYPE,			/* 0x4000 */
57 };
58 
59 static void ct_dead_worker_func(struct work_struct *w);
60 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code);
61 
62 #define CT_DEAD(ct, ctb, reason_code)		ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code)
63 #else
64 #define CT_DEAD(ct, ctb, reason)			\
65 	do {						\
66 		struct guc_ctb *_ctb = (ctb);		\
67 		if (_ctb)				\
68 			_ctb->info.broken = true;	\
69 	} while (0)
70 #endif
71 
72 /* Used when a CT send wants to block and / or receive data */
73 struct g2h_fence {
74 	u32 *response_buffer;
75 	u32 seqno;
76 	u32 response_data;
77 	u16 response_len;
78 	u16 error;
79 	u16 hint;
80 	u16 reason;
81 	bool retry;
82 	bool fail;
83 	bool done;
84 };
85 
86 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
87 {
88 	g2h_fence->response_buffer = response_buffer;
89 	g2h_fence->response_data = 0;
90 	g2h_fence->response_len = 0;
91 	g2h_fence->fail = false;
92 	g2h_fence->retry = false;
93 	g2h_fence->done = false;
94 	g2h_fence->seqno = ~0x0;
95 }
96 
97 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
98 {
99 	return g2h_fence->seqno == ~0x0;
100 }
101 
102 static struct xe_guc *
103 ct_to_guc(struct xe_guc_ct *ct)
104 {
105 	return container_of(ct, struct xe_guc, ct);
106 }
107 
108 static struct xe_gt *
109 ct_to_gt(struct xe_guc_ct *ct)
110 {
111 	return container_of(ct, struct xe_gt, uc.guc.ct);
112 }
113 
114 static struct xe_device *
115 ct_to_xe(struct xe_guc_ct *ct)
116 {
117 	return gt_to_xe(ct_to_gt(ct));
118 }
119 
120 /**
121  * DOC: GuC CTB Blob
122  *
123  * We allocate single blob to hold both CTB descriptors and buffers:
124  *
125  *      +--------+-----------------------------------------------+------+
126  *      | offset | contents                                      | size |
127  *      +========+===============================================+======+
128  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
129  *      +--------+-----------------------------------------------+  4K  |
130  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
131  *      +--------+-----------------------------------------------+------+
132  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
133  *      |        |                                               |      |
134  *      +--------+-----------------------------------------------+------+
135  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
136  *      | + n*4K |                                               |      |
137  *      +--------+-----------------------------------------------+------+
138  *
139  * Size of each ``CT Buffer`` must be multiple of 4K.
140  * We don't expect too many messages in flight at any time, unless we are
141  * using the GuC submission. In that case each request requires a minimum
142  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
143  * enough space to avoid backpressure on the driver. We increase the size
144  * of the receive buffer (relative to the send) to ensure a G2H response
145  * CTB has a landing spot.
146  *
147  * In addition to submissions, the G2H buffer needs to be able to hold
148  * enough space for recoverable page fault notifications. The number of
149  * page faults is interrupt driven and can be as much as the number of
150  * compute resources available. However, most of the actual work for these
151  * is in a separate page fault worker thread. Therefore we only need to
152  * make sure the queue has enough space to handle all of the submissions
153  * and responses and an extra buffer for incoming page faults.
154  */
155 
156 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
157 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
158 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
159 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
160 
161 /**
162  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
163  * CT command queue
164  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
165  *
166  * Observation is that a 4KiB buffer full of commands takes a little over a
167  * second to process. Use that to calculate maximum time to process a full CT
168  * command queue.
169  *
170  * Return: Maximum time to process a full CT queue in jiffies.
171  */
172 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
173 {
174 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
175 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
176 }
177 
178 static size_t guc_ct_size(void)
179 {
180 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
181 		CTB_G2H_BUFFER_SIZE;
182 }
183 
184 static void guc_ct_fini(struct drm_device *drm, void *arg)
185 {
186 	struct xe_guc_ct *ct = arg;
187 
188 	destroy_workqueue(ct->g2h_wq);
189 	xa_destroy(&ct->fence_lookup);
190 }
191 
192 static void receive_g2h(struct xe_guc_ct *ct);
193 static void g2h_worker_func(struct work_struct *w);
194 static void safe_mode_worker_func(struct work_struct *w);
195 
196 static void primelockdep(struct xe_guc_ct *ct)
197 {
198 	if (!IS_ENABLED(CONFIG_LOCKDEP))
199 		return;
200 
201 	fs_reclaim_acquire(GFP_KERNEL);
202 	might_lock(&ct->lock);
203 	fs_reclaim_release(GFP_KERNEL);
204 }
205 
206 int xe_guc_ct_init(struct xe_guc_ct *ct)
207 {
208 	struct xe_device *xe = ct_to_xe(ct);
209 	struct xe_gt *gt = ct_to_gt(ct);
210 	struct xe_tile *tile = gt_to_tile(gt);
211 	struct xe_bo *bo;
212 	int err;
213 
214 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
215 
216 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM);
217 	if (!ct->g2h_wq)
218 		return -ENOMEM;
219 
220 	spin_lock_init(&ct->fast_lock);
221 	xa_init(&ct->fence_lookup);
222 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
223 	INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
224 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
225 	spin_lock_init(&ct->dead.lock);
226 	INIT_WORK(&ct->dead.worker, ct_dead_worker_func);
227 #endif
228 	init_waitqueue_head(&ct->wq);
229 	init_waitqueue_head(&ct->g2h_fence_wq);
230 
231 	err = drmm_mutex_init(&xe->drm, &ct->lock);
232 	if (err)
233 		return err;
234 
235 	primelockdep(ct);
236 
237 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
238 					  XE_BO_FLAG_SYSTEM |
239 					  XE_BO_FLAG_GGTT |
240 					  XE_BO_FLAG_GGTT_INVALIDATE);
241 	if (IS_ERR(bo))
242 		return PTR_ERR(bo);
243 
244 	ct->bo = bo;
245 
246 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
247 	if (err)
248 		return err;
249 
250 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
251 	ct->state = XE_GUC_CT_STATE_DISABLED;
252 	return 0;
253 }
254 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */
255 
256 #define desc_read(xe_, guc_ctb__, field_)			\
257 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
258 			struct guc_ct_buffer_desc, field_)
259 
260 #define desc_write(xe_, guc_ctb__, field_, val_)		\
261 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
262 			struct guc_ct_buffer_desc, field_, val_)
263 
264 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
265 				struct iosys_map *map)
266 {
267 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
268 	h2g->info.resv_space = 0;
269 	h2g->info.tail = 0;
270 	h2g->info.head = 0;
271 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
272 				     h2g->info.size) -
273 			  h2g->info.resv_space;
274 	h2g->info.broken = false;
275 
276 	h2g->desc = *map;
277 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
278 
279 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
280 }
281 
282 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
283 				struct iosys_map *map)
284 {
285 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
286 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
287 	g2h->info.head = 0;
288 	g2h->info.tail = 0;
289 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
290 				     g2h->info.size) -
291 			  g2h->info.resv_space;
292 	g2h->info.broken = false;
293 
294 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
295 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
296 
297 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
298 					    CTB_H2G_BUFFER_SIZE);
299 }
300 
301 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
302 {
303 	struct xe_guc *guc = ct_to_guc(ct);
304 	u32 desc_addr, ctb_addr, size;
305 	int err;
306 
307 	desc_addr = xe_bo_ggtt_addr(ct->bo);
308 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
309 	size = ct->ctbs.h2g.info.size * sizeof(u32);
310 
311 	err = xe_guc_self_cfg64(guc,
312 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
313 				desc_addr);
314 	if (err)
315 		return err;
316 
317 	err = xe_guc_self_cfg64(guc,
318 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
319 				ctb_addr);
320 	if (err)
321 		return err;
322 
323 	return xe_guc_self_cfg32(guc,
324 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
325 				 size);
326 }
327 
328 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
329 {
330 	struct xe_guc *guc = ct_to_guc(ct);
331 	u32 desc_addr, ctb_addr, size;
332 	int err;
333 
334 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
335 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
336 		CTB_H2G_BUFFER_SIZE;
337 	size = ct->ctbs.g2h.info.size * sizeof(u32);
338 
339 	err = xe_guc_self_cfg64(guc,
340 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
341 				desc_addr);
342 	if (err)
343 		return err;
344 
345 	err = xe_guc_self_cfg64(guc,
346 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
347 				ctb_addr);
348 	if (err)
349 		return err;
350 
351 	return xe_guc_self_cfg32(guc,
352 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
353 				 size);
354 }
355 
356 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
357 {
358 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
359 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
360 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
361 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
362 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
363 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
364 			   enable ? GUC_CTB_CONTROL_ENABLE :
365 			   GUC_CTB_CONTROL_DISABLE),
366 	};
367 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
368 
369 	return ret > 0 ? -EPROTO : ret;
370 }
371 
372 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
373 				enum xe_guc_ct_state state)
374 {
375 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
376 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
377 
378 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
379 		     state == XE_GUC_CT_STATE_STOPPED);
380 
381 	if (ct->g2h_outstanding)
382 		xe_pm_runtime_put(ct_to_xe(ct));
383 	ct->g2h_outstanding = 0;
384 	ct->state = state;
385 
386 	spin_unlock_irq(&ct->fast_lock);
387 
388 	/*
389 	 * Lockdep doesn't like this under the fast lock and he destroy only
390 	 * needs to be serialized with the send path which ct lock provides.
391 	 */
392 	xa_destroy(&ct->fence_lookup);
393 
394 	mutex_unlock(&ct->lock);
395 }
396 
397 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
398 {
399 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
400 }
401 
402 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
403 {
404 	if (!ct_needs_safe_mode(ct))
405 		return false;
406 
407 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
408 	return true;
409 }
410 
411 static void safe_mode_worker_func(struct work_struct *w)
412 {
413 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
414 
415 	receive_g2h(ct);
416 
417 	if (!ct_restart_safe_mode_worker(ct))
418 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
419 }
420 
421 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
422 {
423 	if (ct_restart_safe_mode_worker(ct))
424 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
425 }
426 
427 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
428 {
429 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
430 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
431 }
432 
433 int xe_guc_ct_enable(struct xe_guc_ct *ct)
434 {
435 	struct xe_device *xe = ct_to_xe(ct);
436 	struct xe_gt *gt = ct_to_gt(ct);
437 	int err;
438 
439 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
440 
441 	xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size);
442 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
443 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
444 
445 	err = guc_ct_ctb_h2g_register(ct);
446 	if (err)
447 		goto err_out;
448 
449 	err = guc_ct_ctb_g2h_register(ct);
450 	if (err)
451 		goto err_out;
452 
453 	err = guc_ct_control_toggle(ct, true);
454 	if (err)
455 		goto err_out;
456 
457 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
458 
459 	smp_mb();
460 	wake_up_all(&ct->wq);
461 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
462 
463 	if (ct_needs_safe_mode(ct))
464 		ct_enter_safe_mode(ct);
465 
466 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
467 	/*
468 	 * The CT has now been reset so the dumper can be re-armed
469 	 * after any existing dead state has been dumped.
470 	 */
471 	spin_lock_irq(&ct->dead.lock);
472 	if (ct->dead.reason)
473 		ct->dead.reason |= (1 << CT_DEAD_STATE_REARM);
474 	spin_unlock_irq(&ct->dead.lock);
475 #endif
476 
477 	return 0;
478 
479 err_out:
480 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
481 	CT_DEAD(ct, NULL, SETUP);
482 
483 	return err;
484 }
485 
486 static void stop_g2h_handler(struct xe_guc_ct *ct)
487 {
488 	cancel_work_sync(&ct->g2h_worker);
489 }
490 
491 /**
492  * xe_guc_ct_disable - Set GuC to disabled state
493  * @ct: the &xe_guc_ct
494  *
495  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
496  * in this transition.
497  */
498 void xe_guc_ct_disable(struct xe_guc_ct *ct)
499 {
500 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
501 	ct_exit_safe_mode(ct);
502 	stop_g2h_handler(ct);
503 }
504 
505 /**
506  * xe_guc_ct_stop - Set GuC to stopped state
507  * @ct: the &xe_guc_ct
508  *
509  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
510  */
511 void xe_guc_ct_stop(struct xe_guc_ct *ct)
512 {
513 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
514 	stop_g2h_handler(ct);
515 }
516 
517 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
518 {
519 	struct guc_ctb *h2g = &ct->ctbs.h2g;
520 
521 	lockdep_assert_held(&ct->lock);
522 
523 	if (cmd_len > h2g->info.space) {
524 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
525 
526 		if (h2g->info.head > h2g->info.size) {
527 			struct xe_device *xe = ct_to_xe(ct);
528 			u32 desc_status = desc_read(xe, h2g, status);
529 
530 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
531 
532 			xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n",
533 				  h2g->info.head, h2g->info.size);
534 			CT_DEAD(ct, h2g, H2G_HAS_ROOM);
535 			return false;
536 		}
537 
538 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
539 					     h2g->info.size) -
540 				  h2g->info.resv_space;
541 		if (cmd_len > h2g->info.space)
542 			return false;
543 	}
544 
545 	return true;
546 }
547 
548 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
549 {
550 	if (!g2h_len)
551 		return true;
552 
553 	lockdep_assert_held(&ct->fast_lock);
554 
555 	return ct->ctbs.g2h.info.space > g2h_len;
556 }
557 
558 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
559 {
560 	lockdep_assert_held(&ct->lock);
561 
562 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
563 		return -EBUSY;
564 
565 	return 0;
566 }
567 
568 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
569 {
570 	lockdep_assert_held(&ct->lock);
571 	ct->ctbs.h2g.info.space -= cmd_len;
572 }
573 
574 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
575 {
576 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
577 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
578 		     (g2h_len && num_g2h));
579 
580 	if (g2h_len) {
581 		lockdep_assert_held(&ct->fast_lock);
582 
583 		if (!ct->g2h_outstanding)
584 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
585 
586 		ct->ctbs.g2h.info.space -= g2h_len;
587 		ct->g2h_outstanding += num_g2h;
588 	}
589 }
590 
591 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
592 {
593 	bool bad = false;
594 
595 	lockdep_assert_held(&ct->fast_lock);
596 
597 	bad = ct->ctbs.g2h.info.space + g2h_len >
598 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space;
599 	bad |= !ct->g2h_outstanding;
600 
601 	if (bad) {
602 		xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n",
603 			  ct->ctbs.g2h.info.space, g2h_len,
604 			  ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space,
605 			  ct->ctbs.g2h.info.space + g2h_len,
606 			  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space,
607 			  ct->g2h_outstanding);
608 		CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE);
609 		return;
610 	}
611 
612 	ct->ctbs.g2h.info.space += g2h_len;
613 	if (!--ct->g2h_outstanding)
614 		xe_pm_runtime_put(ct_to_xe(ct));
615 }
616 
617 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
618 {
619 	spin_lock_irq(&ct->fast_lock);
620 	__g2h_release_space(ct, g2h_len);
621 	spin_unlock_irq(&ct->fast_lock);
622 }
623 
624 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
625 
626 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
627 		     u32 ct_fence_value, bool want_response)
628 {
629 	struct xe_device *xe = ct_to_xe(ct);
630 	struct xe_gt *gt = ct_to_gt(ct);
631 	struct guc_ctb *h2g = &ct->ctbs.h2g;
632 	u32 cmd[H2G_CT_HEADERS];
633 	u32 tail = h2g->info.tail;
634 	u32 full_len;
635 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
636 							 tail * sizeof(u32));
637 	u32 desc_status;
638 
639 	full_len = len + GUC_CTB_HDR_LEN;
640 
641 	lockdep_assert_held(&ct->lock);
642 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
643 
644 	desc_status = desc_read(xe, h2g, status);
645 	if (desc_status) {
646 		xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status);
647 		goto corrupted;
648 	}
649 
650 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
651 		u32 desc_tail = desc_read(xe, h2g, tail);
652 		u32 desc_head = desc_read(xe, h2g, head);
653 
654 		if (tail != desc_tail) {
655 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH);
656 			xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail);
657 			goto corrupted;
658 		}
659 
660 		if (tail > h2g->info.size) {
661 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
662 			xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n",
663 				  tail, h2g->info.size);
664 			goto corrupted;
665 		}
666 
667 		if (desc_head >= h2g->info.size) {
668 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
669 			xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n",
670 				  desc_head, h2g->info.size);
671 			goto corrupted;
672 		}
673 	}
674 
675 	/* Command will wrap, zero fill (NOPs), return and check credits again */
676 	if (tail + full_len > h2g->info.size) {
677 		xe_map_memset(xe, &map, 0, 0,
678 			      (h2g->info.size - tail) * sizeof(u32));
679 		h2g_reserve_space(ct, (h2g->info.size - tail));
680 		h2g->info.tail = 0;
681 		desc_write(xe, h2g, tail, h2g->info.tail);
682 
683 		return -EAGAIN;
684 	}
685 
686 	/*
687 	 * dw0: CT header (including fence)
688 	 * dw1: HXG header (including action code)
689 	 * dw2+: action data
690 	 */
691 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
692 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
693 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
694 	if (want_response) {
695 		cmd[1] =
696 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
697 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
698 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
699 	} else {
700 		cmd[1] =
701 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
702 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
703 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
704 	}
705 
706 	/* H2G header in cmd[1] replaces action[0] so: */
707 	--len;
708 	++action;
709 
710 	/* Write H2G ensuring visable before descriptor update */
711 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
712 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
713 	xe_device_wmb(xe);
714 
715 	/* Update local copies */
716 	h2g->info.tail = (tail + full_len) % h2g->info.size;
717 	h2g_reserve_space(ct, full_len);
718 
719 	/* Update descriptor */
720 	desc_write(xe, h2g, tail, h2g->info.tail);
721 
722 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
723 			     desc_read(xe, h2g, head), h2g->info.tail);
724 
725 	return 0;
726 
727 corrupted:
728 	CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE);
729 	return -EPIPE;
730 }
731 
732 /*
733  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
734  * driver, the GuC will just copy it to the reply message. Since we need to
735  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
736  * we use one bit of the seqno as an indicator for that and a rolling counter
737  * for the remaining 15 bits.
738  */
739 #define CT_SEQNO_MASK GENMASK(14, 0)
740 #define CT_SEQNO_UNTRACKED BIT(15)
741 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
742 {
743 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
744 
745 	if (!is_g2h_fence)
746 		seqno |= CT_SEQNO_UNTRACKED;
747 
748 	return seqno;
749 }
750 
751 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
752 				u32 len, u32 g2h_len, u32 num_g2h,
753 				struct g2h_fence *g2h_fence)
754 {
755 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
756 	u16 seqno;
757 	int ret;
758 
759 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
760 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
761 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
762 	xe_gt_assert(gt, !g2h_len || num_g2h);
763 	xe_gt_assert(gt, g2h_len || !num_g2h);
764 	lockdep_assert_held(&ct->lock);
765 
766 	if (unlikely(ct->ctbs.h2g.info.broken)) {
767 		ret = -EPIPE;
768 		goto out;
769 	}
770 
771 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
772 		ret = -ENODEV;
773 		goto out;
774 	}
775 
776 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
777 		ret = -ECANCELED;
778 		goto out;
779 	}
780 
781 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
782 
783 	if (g2h_fence) {
784 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
785 		num_g2h = 1;
786 
787 		if (g2h_fence_needs_alloc(g2h_fence)) {
788 			g2h_fence->seqno = next_ct_seqno(ct, true);
789 			ret = xa_err(xa_store(&ct->fence_lookup,
790 					      g2h_fence->seqno, g2h_fence,
791 					      GFP_ATOMIC));
792 			if (ret)
793 				goto out;
794 		}
795 
796 		seqno = g2h_fence->seqno;
797 	} else {
798 		seqno = next_ct_seqno(ct, false);
799 	}
800 
801 	if (g2h_len)
802 		spin_lock_irq(&ct->fast_lock);
803 retry:
804 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
805 	if (unlikely(ret))
806 		goto out_unlock;
807 
808 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
809 	if (unlikely(ret)) {
810 		if (ret == -EAGAIN)
811 			goto retry;
812 		goto out_unlock;
813 	}
814 
815 	__g2h_reserve_space(ct, g2h_len, num_g2h);
816 	xe_guc_notify(ct_to_guc(ct));
817 out_unlock:
818 	if (g2h_len)
819 		spin_unlock_irq(&ct->fast_lock);
820 out:
821 	return ret;
822 }
823 
824 static void kick_reset(struct xe_guc_ct *ct)
825 {
826 	xe_gt_reset_async(ct_to_gt(ct));
827 }
828 
829 static int dequeue_one_g2h(struct xe_guc_ct *ct);
830 
831 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
832 			      u32 g2h_len, u32 num_g2h,
833 			      struct g2h_fence *g2h_fence)
834 {
835 	struct xe_device *xe = ct_to_xe(ct);
836 	struct xe_gt *gt = ct_to_gt(ct);
837 	unsigned int sleep_period_ms = 1;
838 	int ret;
839 
840 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
841 	lockdep_assert_held(&ct->lock);
842 	xe_device_assert_mem_access(ct_to_xe(ct));
843 
844 try_again:
845 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
846 				   g2h_fence);
847 
848 	/*
849 	 * We wait to try to restore credits for about 1 second before bailing.
850 	 * In the case of H2G credits we have no choice but just to wait for the
851 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
852 	 * the case of G2H we process any G2H in the channel, hopefully freeing
853 	 * credits as we consume the G2H messages.
854 	 */
855 	if (unlikely(ret == -EBUSY &&
856 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
857 		struct guc_ctb *h2g = &ct->ctbs.h2g;
858 
859 		if (sleep_period_ms == 1024)
860 			goto broken;
861 
862 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
863 						 h2g->info.size,
864 						 h2g->info.space,
865 						 len + GUC_CTB_HDR_LEN);
866 		msleep(sleep_period_ms);
867 		sleep_period_ms <<= 1;
868 
869 		goto try_again;
870 	} else if (unlikely(ret == -EBUSY)) {
871 		struct xe_device *xe = ct_to_xe(ct);
872 		struct guc_ctb *g2h = &ct->ctbs.g2h;
873 
874 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
875 						 desc_read(xe, g2h, tail),
876 						 g2h->info.size,
877 						 g2h->info.space,
878 						 g2h_fence ?
879 						 GUC_CTB_HXG_MSG_MAX_LEN :
880 						 g2h_len);
881 
882 #define g2h_avail(ct)	\
883 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
884 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
885 					g2h_avail(ct), HZ))
886 			goto broken;
887 #undef g2h_avail
888 
889 		ret = dequeue_one_g2h(ct);
890 		if (ret < 0) {
891 			if (ret != -ECANCELED)
892 				xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)",
893 					  ERR_PTR(ret));
894 			goto broken;
895 		}
896 
897 		goto try_again;
898 	}
899 
900 	return ret;
901 
902 broken:
903 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
904 	CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK);
905 
906 	return -EDEADLK;
907 }
908 
909 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
910 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
911 {
912 	int ret;
913 
914 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
915 
916 	mutex_lock(&ct->lock);
917 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
918 	mutex_unlock(&ct->lock);
919 
920 	return ret;
921 }
922 
923 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
924 		   u32 g2h_len, u32 num_g2h)
925 {
926 	int ret;
927 
928 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
929 	if (ret == -EDEADLK)
930 		kick_reset(ct);
931 
932 	return ret;
933 }
934 
935 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
936 			  u32 g2h_len, u32 num_g2h)
937 {
938 	int ret;
939 
940 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
941 	if (ret == -EDEADLK)
942 		kick_reset(ct);
943 
944 	return ret;
945 }
946 
947 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
948 {
949 	int ret;
950 
951 	lockdep_assert_held(&ct->lock);
952 
953 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
954 	if (ret == -EDEADLK)
955 		kick_reset(ct);
956 
957 	return ret;
958 }
959 
960 /*
961  * Check if a GT reset is in progress or will occur and if GT reset brought the
962  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
963  */
964 static bool retry_failure(struct xe_guc_ct *ct, int ret)
965 {
966 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
967 		return false;
968 
969 #define ct_alive(ct)	\
970 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
971 	 !ct->ctbs.g2h.info.broken)
972 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
973 		return false;
974 #undef ct_alive
975 
976 	return true;
977 }
978 
979 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
980 			    u32 *response_buffer, bool no_fail)
981 {
982 	struct xe_gt *gt = ct_to_gt(ct);
983 	struct g2h_fence g2h_fence;
984 	int ret = 0;
985 
986 	/*
987 	 * We use a fence to implement blocking sends / receiving response data.
988 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
989 	 * an xarray is used as storage media with the seqno being to key.
990 	 * Fields in the fence hold success, failure, retry status and the
991 	 * response data. Safe to allocate on the stack as the xarray is the
992 	 * only reference and it cannot be present after this function exits.
993 	 */
994 retry:
995 	g2h_fence_init(&g2h_fence, response_buffer);
996 retry_same_fence:
997 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
998 	if (unlikely(ret == -ENOMEM)) {
999 		/* Retry allocation /w GFP_KERNEL */
1000 		ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
1001 				      &g2h_fence, GFP_KERNEL));
1002 		if (ret)
1003 			return ret;
1004 
1005 		goto retry_same_fence;
1006 	} else if (unlikely(ret)) {
1007 		if (ret == -EDEADLK)
1008 			kick_reset(ct);
1009 
1010 		if (no_fail && retry_failure(ct, ret))
1011 			goto retry_same_fence;
1012 
1013 		if (!g2h_fence_needs_alloc(&g2h_fence))
1014 			xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1015 
1016 		return ret;
1017 	}
1018 
1019 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
1020 
1021 	/*
1022 	 * Occasionally it is seen that the G2H worker starts running after a delay of more than
1023 	 * a second even after being queued and activated by the Linux workqueue subsystem. This
1024 	 * leads to G2H timeout error. The root cause of issue lies with scheduling latency of
1025 	 * Lunarlake Hybrid CPU. Issue dissappears if we disable Lunarlake atom cores from BIOS
1026 	 * and this is beyond xe kmd.
1027 	 *
1028 	 * TODO: Drop this change once workqueue scheduling delay issue is fixed on LNL Hybrid CPU.
1029 	 */
1030 	if (!ret) {
1031 		flush_work(&ct->g2h_worker);
1032 		if (g2h_fence.done) {
1033 			xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
1034 				   g2h_fence.seqno, action[0]);
1035 			ret = 1;
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
1041 	 * the stack, since we have no clue if it will fire after the timeout before we can erase
1042 	 * from the xa. Also we have some dependent loads and stores below for which we need the
1043 	 * correct ordering, and we lack the needed barriers.
1044 	 */
1045 	mutex_lock(&ct->lock);
1046 	if (!ret) {
1047 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
1048 			  g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
1049 		xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1050 		mutex_unlock(&ct->lock);
1051 		return -ETIME;
1052 	}
1053 
1054 	if (g2h_fence.retry) {
1055 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
1056 			  action[0], g2h_fence.reason);
1057 		mutex_unlock(&ct->lock);
1058 		goto retry;
1059 	}
1060 	if (g2h_fence.fail) {
1061 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
1062 			  action[0], g2h_fence.error, g2h_fence.hint);
1063 		ret = -EIO;
1064 	}
1065 
1066 	if (ret > 0)
1067 		ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
1068 
1069 	mutex_unlock(&ct->lock);
1070 
1071 	return ret;
1072 }
1073 
1074 /**
1075  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
1076  * @ct: the &xe_guc_ct
1077  * @action: the dword array with `HXG Request`_ message (can't be NULL)
1078  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
1079  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
1080  *
1081  * Send a `HXG Request`_ message to the GuC over CT communication channel and
1082  * blocks until GuC replies with a `HXG Response`_ message.
1083  *
1084  * For non-blocking communication with GuC use xe_guc_ct_send().
1085  *
1086  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
1087  *
1088  * Return: response length (in dwords) if &response_buffer was not NULL, or
1089  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
1090  *         a negative error code on failure.
1091  */
1092 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1093 			u32 *response_buffer)
1094 {
1095 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
1096 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
1097 }
1098 
1099 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
1100 				u32 len, u32 *response_buffer)
1101 {
1102 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
1103 }
1104 
1105 static u32 *msg_to_hxg(u32 *msg)
1106 {
1107 	return msg + GUC_CTB_MSG_MIN_LEN;
1108 }
1109 
1110 static u32 msg_len_to_hxg_len(u32 len)
1111 {
1112 	return len - GUC_CTB_MSG_MIN_LEN;
1113 }
1114 
1115 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
1116 {
1117 	u32 *hxg = msg_to_hxg(msg);
1118 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1119 
1120 	lockdep_assert_held(&ct->lock);
1121 
1122 	switch (action) {
1123 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1124 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1125 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1126 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1127 		g2h_release_space(ct, len);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
1134 {
1135 	struct xe_gt *gt =  ct_to_gt(ct);
1136 	u32 *hxg = msg_to_hxg(msg);
1137 	u32 hxg_len = msg_len_to_hxg_len(len);
1138 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1139 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1140 	struct g2h_fence *g2h_fence;
1141 
1142 	lockdep_assert_held(&ct->lock);
1143 
1144 	/*
1145 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1146 	 * Those messages should never fail, so if we do get an error back it
1147 	 * means we're likely doing an illegal operation and the GuC is
1148 	 * rejecting it. We have no way to inform the code that submitted the
1149 	 * H2G that the message was rejected, so we need to escalate the
1150 	 * failure to trigger a reset.
1151 	 */
1152 	if (fence & CT_SEQNO_UNTRACKED) {
1153 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1154 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1155 				  fence,
1156 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1157 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1158 		else
1159 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1160 				  type, fence);
1161 		CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE);
1162 
1163 		return -EPROTO;
1164 	}
1165 
1166 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1167 	if (unlikely(!g2h_fence)) {
1168 		/* Don't tear down channel, as send could've timed out */
1169 		/* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */
1170 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1171 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1172 		return 0;
1173 	}
1174 
1175 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1176 
1177 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1178 		g2h_fence->fail = true;
1179 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1180 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1181 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1182 		g2h_fence->retry = true;
1183 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1184 	} else if (g2h_fence->response_buffer) {
1185 		g2h_fence->response_len = hxg_len;
1186 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1187 	} else {
1188 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1189 	}
1190 
1191 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1192 
1193 	g2h_fence->done = true;
1194 	smp_mb();
1195 
1196 	wake_up_all(&ct->g2h_fence_wq);
1197 
1198 	return 0;
1199 }
1200 
1201 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1202 {
1203 	struct xe_gt *gt = ct_to_gt(ct);
1204 	u32 *hxg = msg_to_hxg(msg);
1205 	u32 origin, type;
1206 	int ret;
1207 
1208 	lockdep_assert_held(&ct->lock);
1209 
1210 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1211 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1212 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1213 			  origin);
1214 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN);
1215 
1216 		return -EPROTO;
1217 	}
1218 
1219 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1220 	switch (type) {
1221 	case GUC_HXG_TYPE_EVENT:
1222 		ret = parse_g2h_event(ct, msg, len);
1223 		break;
1224 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1225 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1226 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1227 		ret = parse_g2h_response(ct, msg, len);
1228 		break;
1229 	default:
1230 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1231 			  type);
1232 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE);
1233 
1234 		ret = -EOPNOTSUPP;
1235 	}
1236 
1237 	return ret;
1238 }
1239 
1240 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1241 {
1242 	struct xe_guc *guc = ct_to_guc(ct);
1243 	struct xe_gt *gt = ct_to_gt(ct);
1244 	u32 hxg_len = msg_len_to_hxg_len(len);
1245 	u32 *hxg = msg_to_hxg(msg);
1246 	u32 action, adj_len;
1247 	u32 *payload;
1248 	int ret = 0;
1249 
1250 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1251 		return 0;
1252 
1253 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1254 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1255 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1256 
1257 	switch (action) {
1258 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1259 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1260 		break;
1261 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1262 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1263 		break;
1264 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1265 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1266 		break;
1267 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1268 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1269 							      adj_len);
1270 		break;
1271 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1272 		/* Selftest only at the moment */
1273 		break;
1274 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1275 		ret = xe_guc_error_capture_handler(guc, payload, adj_len);
1276 		break;
1277 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1278 		/* FIXME: Handle this */
1279 		break;
1280 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1281 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1282 								 adj_len);
1283 		break;
1284 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1285 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1286 		break;
1287 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1288 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1289 							   adj_len);
1290 		break;
1291 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1292 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1293 							   adj_len);
1294 		break;
1295 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1296 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1297 		break;
1298 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1299 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1300 		break;
1301 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1302 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1303 		break;
1304 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1305 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1306 		break;
1307 	default:
1308 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1309 	}
1310 
1311 	if (ret) {
1312 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1313 			  action, ERR_PTR(ret));
1314 		CT_DEAD(ct, NULL, PROCESS_FAILED);
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1321 {
1322 	struct xe_device *xe = ct_to_xe(ct);
1323 	struct xe_gt *gt = ct_to_gt(ct);
1324 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1325 	u32 tail, head, len, desc_status;
1326 	s32 avail;
1327 	u32 action;
1328 	u32 *hxg;
1329 
1330 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1331 	lockdep_assert_held(&ct->fast_lock);
1332 
1333 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1334 		return -ENODEV;
1335 
1336 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1337 		return -ECANCELED;
1338 
1339 	if (g2h->info.broken)
1340 		return -EPIPE;
1341 
1342 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1343 
1344 	desc_status = desc_read(xe, g2h, status);
1345 	if (desc_status) {
1346 		if (desc_status & GUC_CTB_STATUS_DISABLED) {
1347 			/*
1348 			 * Potentially valid if a CLIENT_RESET request resulted in
1349 			 * contexts/engines being reset. But should never happen as
1350 			 * no contexts should be active when CLIENT_RESET is sent.
1351 			 */
1352 			xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n");
1353 			desc_status &= ~GUC_CTB_STATUS_DISABLED;
1354 		}
1355 
1356 		if (desc_status) {
1357 			xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status);
1358 			goto corrupted;
1359 		}
1360 	}
1361 
1362 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
1363 		u32 desc_tail = desc_read(xe, g2h, tail);
1364 		/*
1365 		u32 desc_head = desc_read(xe, g2h, head);
1366 
1367 		 * info.head and desc_head are updated back-to-back at the end of
1368 		 * this function and nowhere else. Hence, they cannot be different
1369 		 * unless two g2h_read calls are running concurrently. Which is not
1370 		 * possible because it is guarded by ct->fast_lock. And yet, some
1371 		 * discrete platforms are reguarly hitting this error :(.
1372 		 *
1373 		 * desc_head rolling backwards shouldn't cause any noticeable
1374 		 * problems - just a delay in GuC being allowed to proceed past that
1375 		 * point in the queue. So for now, just disable the error until it
1376 		 * can be root caused.
1377 		 *
1378 		if (g2h->info.head != desc_head) {
1379 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH);
1380 			xe_gt_err(gt, "CT read: head was modified %u != %u\n",
1381 				  desc_head, g2h->info.head);
1382 			goto corrupted;
1383 		}
1384 		 */
1385 
1386 		if (g2h->info.head > g2h->info.size) {
1387 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1388 			xe_gt_err(gt, "CT read: head out of range: %u vs %u\n",
1389 				  g2h->info.head, g2h->info.size);
1390 			goto corrupted;
1391 		}
1392 
1393 		if (desc_tail >= g2h->info.size) {
1394 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1395 			xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n",
1396 				  desc_tail, g2h->info.size);
1397 			goto corrupted;
1398 		}
1399 	}
1400 
1401 	/* Calculate DW available to read */
1402 	tail = desc_read(xe, g2h, tail);
1403 	avail = tail - g2h->info.head;
1404 	if (unlikely(avail == 0))
1405 		return 0;
1406 
1407 	if (avail < 0)
1408 		avail += g2h->info.size;
1409 
1410 	/* Read header */
1411 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1412 			   sizeof(u32));
1413 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1414 	if (len > avail) {
1415 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1416 			  avail, len);
1417 		goto corrupted;
1418 	}
1419 
1420 	head = (g2h->info.head + 1) % g2h->info.size;
1421 	avail = len - 1;
1422 
1423 	/* Read G2H message */
1424 	if (avail + head > g2h->info.size) {
1425 		u32 avail_til_wrap = g2h->info.size - head;
1426 
1427 		xe_map_memcpy_from(xe, msg + 1,
1428 				   &g2h->cmds, sizeof(u32) * head,
1429 				   avail_til_wrap * sizeof(u32));
1430 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1431 				   &g2h->cmds, 0,
1432 				   (avail - avail_til_wrap) * sizeof(u32));
1433 	} else {
1434 		xe_map_memcpy_from(xe, msg + 1,
1435 				   &g2h->cmds, sizeof(u32) * head,
1436 				   avail * sizeof(u32));
1437 	}
1438 
1439 	hxg = msg_to_hxg(msg);
1440 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1441 
1442 	if (fast_path) {
1443 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1444 			return 0;
1445 
1446 		switch (action) {
1447 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1448 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1449 			break;	/* Process these in fast-path */
1450 		default:
1451 			return 0;
1452 		}
1453 	}
1454 
1455 	/* Update local / descriptor header */
1456 	g2h->info.head = (head + avail) % g2h->info.size;
1457 	desc_write(xe, g2h, head, g2h->info.head);
1458 
1459 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1460 			     action, len, g2h->info.head, tail);
1461 
1462 	return len;
1463 
1464 corrupted:
1465 	CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ);
1466 	return -EPROTO;
1467 }
1468 
1469 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1470 {
1471 	struct xe_gt *gt = ct_to_gt(ct);
1472 	struct xe_guc *guc = ct_to_guc(ct);
1473 	u32 hxg_len = msg_len_to_hxg_len(len);
1474 	u32 *hxg = msg_to_hxg(msg);
1475 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1476 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1477 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1478 	int ret = 0;
1479 
1480 	switch (action) {
1481 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1482 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1483 		break;
1484 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1485 		__g2h_release_space(ct, len);
1486 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1487 							   adj_len);
1488 		break;
1489 	default:
1490 		xe_gt_warn(gt, "NOT_POSSIBLE");
1491 	}
1492 
1493 	if (ret) {
1494 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1495 			  action, ERR_PTR(ret));
1496 		CT_DEAD(ct, NULL, FAST_G2H);
1497 	}
1498 }
1499 
1500 /**
1501  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1502  * @ct: GuC CT object
1503  *
1504  * Anything related to page faults is critical for performance, process these
1505  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1506  * waiters or queue another worker.
1507  */
1508 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1509 {
1510 	struct xe_device *xe = ct_to_xe(ct);
1511 	bool ongoing;
1512 	int len;
1513 
1514 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1515 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1516 		return;
1517 
1518 	spin_lock(&ct->fast_lock);
1519 	do {
1520 		len = g2h_read(ct, ct->fast_msg, true);
1521 		if (len > 0)
1522 			g2h_fast_path(ct, ct->fast_msg, len);
1523 	} while (len > 0);
1524 	spin_unlock(&ct->fast_lock);
1525 
1526 	if (ongoing)
1527 		xe_pm_runtime_put(xe);
1528 }
1529 
1530 /* Returns less than zero on error, 0 on done, 1 on more available */
1531 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1532 {
1533 	int len;
1534 	int ret;
1535 
1536 	lockdep_assert_held(&ct->lock);
1537 
1538 	spin_lock_irq(&ct->fast_lock);
1539 	len = g2h_read(ct, ct->msg, false);
1540 	spin_unlock_irq(&ct->fast_lock);
1541 	if (len <= 0)
1542 		return len;
1543 
1544 	ret = parse_g2h_msg(ct, ct->msg, len);
1545 	if (unlikely(ret < 0))
1546 		return ret;
1547 
1548 	ret = process_g2h_msg(ct, ct->msg, len);
1549 	if (unlikely(ret < 0))
1550 		return ret;
1551 
1552 	return 1;
1553 }
1554 
1555 static void receive_g2h(struct xe_guc_ct *ct)
1556 {
1557 	bool ongoing;
1558 	int ret;
1559 
1560 	/*
1561 	 * Normal users must always hold mem_access.ref around CT calls. However
1562 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1563 	 * at this stage we can't rely on mem_access.ref and even the
1564 	 * callback_task will be different than current.  For such cases we just
1565 	 * need to ensure we always process the responses from any blocking
1566 	 * ct_send requests or where we otherwise expect some response when
1567 	 * initiated from those callbacks (which will need to wait for the below
1568 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1569 	 * the device has suspended to the point that the CT communication has
1570 	 * been disabled.
1571 	 *
1572 	 * If we are inside the runtime pm callback, we can be the only task
1573 	 * still issuing CT requests (since that requires having the
1574 	 * mem_access.ref).  It seems like it might in theory be possible to
1575 	 * receive unsolicited events from the GuC just as we are
1576 	 * suspending-resuming, but those will currently anyway be lost when
1577 	 * eventually exiting from suspend, hence no need to wake up the device
1578 	 * here. If we ever need something stronger than get_if_ongoing() then
1579 	 * we need to be careful with blocking the pm callbacks from getting CT
1580 	 * responses, if the worker here is blocked on those callbacks
1581 	 * completing, creating a deadlock.
1582 	 */
1583 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1584 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1585 		return;
1586 
1587 	do {
1588 		mutex_lock(&ct->lock);
1589 		ret = dequeue_one_g2h(ct);
1590 		mutex_unlock(&ct->lock);
1591 
1592 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1593 			xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret);
1594 			CT_DEAD(ct, NULL, G2H_RECV);
1595 			kick_reset(ct);
1596 		}
1597 	} while (ret == 1);
1598 
1599 	if (ongoing)
1600 		xe_pm_runtime_put(ct_to_xe(ct));
1601 }
1602 
1603 static void g2h_worker_func(struct work_struct *w)
1604 {
1605 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1606 
1607 	receive_g2h(ct);
1608 }
1609 
1610 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic,
1611 							bool want_ctb)
1612 {
1613 	struct xe_guc_ct_snapshot *snapshot;
1614 
1615 	snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
1616 	if (!snapshot)
1617 		return NULL;
1618 
1619 	if (ct->bo && want_ctb) {
1620 		snapshot->ctb_size = ct->bo->size;
1621 		snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL);
1622 	}
1623 
1624 	return snapshot;
1625 }
1626 
1627 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1628 				     struct guc_ctb_snapshot *snapshot)
1629 {
1630 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1631 			   sizeof(struct guc_ct_buffer_desc));
1632 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1633 }
1634 
1635 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1636 				   struct drm_printer *p)
1637 {
1638 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1639 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1640 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1641 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1642 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1643 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1644 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1645 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1646 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1647 }
1648 
1649 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic,
1650 							  bool want_ctb)
1651 {
1652 	struct xe_device *xe = ct_to_xe(ct);
1653 	struct xe_guc_ct_snapshot *snapshot;
1654 
1655 	snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb);
1656 	if (!snapshot) {
1657 		xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n");
1658 		return NULL;
1659 	}
1660 
1661 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1662 		snapshot->ct_enabled = true;
1663 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1664 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g);
1665 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h);
1666 	}
1667 
1668 	if (ct->bo && snapshot->ctb)
1669 		xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size);
1670 
1671 	return snapshot;
1672 }
1673 
1674 /**
1675  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1676  * @ct: GuC CT object.
1677  *
1678  * This can be printed out in a later stage like during dev_coredump
1679  * analysis. This is safe to be called during atomic context.
1680  *
1681  * Returns: a GuC CT snapshot object that must be freed by the caller
1682  * by using `xe_guc_ct_snapshot_free`.
1683  */
1684 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct)
1685 {
1686 	return guc_ct_snapshot_capture(ct, true, true);
1687 }
1688 
1689 /**
1690  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1691  * @snapshot: GuC CT snapshot object.
1692  * @p: drm_printer where it will be printed out.
1693  *
1694  * This function prints out a given GuC CT snapshot object.
1695  */
1696 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1697 			      struct drm_printer *p)
1698 {
1699 	if (!snapshot)
1700 		return;
1701 
1702 	if (snapshot->ct_enabled) {
1703 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1704 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1705 
1706 		drm_puts(p, "G2H CTB (all sizes in DW):\n");
1707 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1708 		drm_printf(p, "\tg2h outstanding: %d\n",
1709 			   snapshot->g2h_outstanding);
1710 
1711 		if (snapshot->ctb)
1712 			xe_print_blob_ascii85(p, "CTB data", snapshot->ctb, 0, snapshot->ctb_size);
1713 	} else {
1714 		drm_puts(p, "CT disabled\n");
1715 	}
1716 }
1717 
1718 /**
1719  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1720  * @snapshot: GuC CT snapshot object.
1721  *
1722  * This function free all the memory that needed to be allocated at capture
1723  * time.
1724  */
1725 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1726 {
1727 	if (!snapshot)
1728 		return;
1729 
1730 	kfree(snapshot->ctb);
1731 	kfree(snapshot);
1732 }
1733 
1734 /**
1735  * xe_guc_ct_print - GuC CT Print.
1736  * @ct: GuC CT.
1737  * @p: drm_printer where it will be printed out.
1738  * @want_ctb: Should the full CTB content be dumped (vs just the headers)
1739  *
1740  * This function will quickly capture a snapshot of the CT state
1741  * and immediately print it out.
1742  */
1743 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb)
1744 {
1745 	struct xe_guc_ct_snapshot *snapshot;
1746 
1747 	snapshot = guc_ct_snapshot_capture(ct, false, want_ctb);
1748 	xe_guc_ct_snapshot_print(snapshot, p);
1749 	xe_guc_ct_snapshot_free(snapshot);
1750 }
1751 
1752 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
1753 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code)
1754 {
1755 	struct xe_guc_log_snapshot *snapshot_log;
1756 	struct xe_guc_ct_snapshot *snapshot_ct;
1757 	struct xe_guc *guc = ct_to_guc(ct);
1758 	unsigned long flags;
1759 	bool have_capture;
1760 
1761 	if (ctb)
1762 		ctb->info.broken = true;
1763 
1764 	/* Ignore further errors after the first dump until a reset */
1765 	if (ct->dead.reported)
1766 		return;
1767 
1768 	spin_lock_irqsave(&ct->dead.lock, flags);
1769 
1770 	/* And only capture one dump at a time */
1771 	have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE);
1772 	ct->dead.reason |= (1 << reason_code) |
1773 			   (1 << CT_DEAD_STATE_CAPTURE);
1774 
1775 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1776 
1777 	if (have_capture)
1778 		return;
1779 
1780 	snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true);
1781 	snapshot_ct = xe_guc_ct_snapshot_capture((ct));
1782 
1783 	spin_lock_irqsave(&ct->dead.lock, flags);
1784 
1785 	if (ct->dead.snapshot_log || ct->dead.snapshot_ct) {
1786 		xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n");
1787 		xe_guc_log_snapshot_free(snapshot_log);
1788 		xe_guc_ct_snapshot_free(snapshot_ct);
1789 	} else {
1790 		ct->dead.snapshot_log = snapshot_log;
1791 		ct->dead.snapshot_ct = snapshot_ct;
1792 	}
1793 
1794 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1795 
1796 	queue_work(system_unbound_wq, &(ct)->dead.worker);
1797 }
1798 
1799 static void ct_dead_print(struct xe_dead_ct *dead)
1800 {
1801 	struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead);
1802 	struct xe_device *xe = ct_to_xe(ct);
1803 	struct xe_gt *gt = ct_to_gt(ct);
1804 	static int g_count;
1805 	struct drm_printer ip = xe_gt_info_printer(gt);
1806 	struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
1807 
1808 	if (!dead->reason) {
1809 		xe_gt_err(gt, "CTB is dead for no reason!?\n");
1810 		return;
1811 	}
1812 
1813 	drm_printf(&lp, "CTB is dead - reason=0x%X\n", dead->reason);
1814 
1815 	/* Can't generate a genuine core dump at this point, so just do the good bits */
1816 	drm_puts(&lp, "**** Xe Device Coredump ****\n");
1817 	xe_device_snapshot_print(xe, &lp);
1818 
1819 	drm_printf(&lp, "**** GT #%d ****\n", gt->info.id);
1820 	drm_printf(&lp, "\tTile: %d\n", gt->tile->id);
1821 
1822 	drm_puts(&lp, "**** GuC Log ****\n");
1823 	xe_guc_log_snapshot_print(dead->snapshot_log, &lp);
1824 
1825 	drm_puts(&lp, "**** GuC CT ****\n");
1826 	xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp);
1827 
1828 	drm_puts(&lp, "Done.\n");
1829 }
1830 
1831 static void ct_dead_worker_func(struct work_struct *w)
1832 {
1833 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker);
1834 
1835 	if (!ct->dead.reported) {
1836 		ct->dead.reported = true;
1837 		ct_dead_print(&ct->dead);
1838 	}
1839 
1840 	spin_lock_irq(&ct->dead.lock);
1841 
1842 	xe_guc_log_snapshot_free(ct->dead.snapshot_log);
1843 	ct->dead.snapshot_log = NULL;
1844 	xe_guc_ct_snapshot_free(ct->dead.snapshot_ct);
1845 	ct->dead.snapshot_ct = NULL;
1846 
1847 	if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) {
1848 		/* A reset has occurred so re-arm the error reporting */
1849 		ct->dead.reason = 0;
1850 		ct->dead.reported = false;
1851 	}
1852 
1853 	spin_unlock_irq(&ct->dead.lock);
1854 }
1855 #endif
1856