xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision bfb4a6c721517a11b277e8841f8a7a64b1b14b72)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 #include <linux/fault-inject.h>
12 
13 #include <kunit/static_stub.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_sriov_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "xe_bo.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_pagefault.h"
25 #include "xe_gt_printk.h"
26 #include "xe_gt_sriov_pf_control.h"
27 #include "xe_gt_sriov_pf_monitor.h"
28 #include "xe_gt_tlb_invalidation.h"
29 #include "xe_guc.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_relay.h"
32 #include "xe_guc_submit.h"
33 #include "xe_map.h"
34 #include "xe_pm.h"
35 #include "xe_trace_guc.h"
36 
37 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
38 enum {
39 	/* Internal states, not error conditions */
40 	CT_DEAD_STATE_REARM,			/* 0x0001 */
41 	CT_DEAD_STATE_CAPTURE,			/* 0x0002 */
42 
43 	/* Error conditions */
44 	CT_DEAD_SETUP,				/* 0x0004 */
45 	CT_DEAD_H2G_WRITE,			/* 0x0008 */
46 	CT_DEAD_H2G_HAS_ROOM,			/* 0x0010 */
47 	CT_DEAD_G2H_READ,			/* 0x0020 */
48 	CT_DEAD_G2H_RECV,			/* 0x0040 */
49 	CT_DEAD_G2H_RELEASE,			/* 0x0080 */
50 	CT_DEAD_DEADLOCK,			/* 0x0100 */
51 	CT_DEAD_PROCESS_FAILED,			/* 0x0200 */
52 	CT_DEAD_FAST_G2H,			/* 0x0400 */
53 	CT_DEAD_PARSE_G2H_RESPONSE,		/* 0x0800 */
54 	CT_DEAD_PARSE_G2H_UNKNOWN,		/* 0x1000 */
55 	CT_DEAD_PARSE_G2H_ORIGIN,		/* 0x2000 */
56 	CT_DEAD_PARSE_G2H_TYPE,			/* 0x4000 */
57 	CT_DEAD_CRASH,				/* 0x8000 */
58 };
59 
60 static void ct_dead_worker_func(struct work_struct *w);
61 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code);
62 
63 #define CT_DEAD(ct, ctb, reason_code)		ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code)
64 #else
65 #define CT_DEAD(ct, ctb, reason)			\
66 	do {						\
67 		struct guc_ctb *_ctb = (ctb);		\
68 		if (_ctb)				\
69 			_ctb->info.broken = true;	\
70 	} while (0)
71 #endif
72 
73 /* Used when a CT send wants to block and / or receive data */
74 struct g2h_fence {
75 	u32 *response_buffer;
76 	u32 seqno;
77 	u32 response_data;
78 	u16 response_len;
79 	u16 error;
80 	u16 hint;
81 	u16 reason;
82 	bool retry;
83 	bool fail;
84 	bool done;
85 };
86 
87 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
88 {
89 	g2h_fence->response_buffer = response_buffer;
90 	g2h_fence->response_data = 0;
91 	g2h_fence->response_len = 0;
92 	g2h_fence->fail = false;
93 	g2h_fence->retry = false;
94 	g2h_fence->done = false;
95 	g2h_fence->seqno = ~0x0;
96 }
97 
98 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
99 {
100 	return g2h_fence->seqno == ~0x0;
101 }
102 
103 static struct xe_guc *
104 ct_to_guc(struct xe_guc_ct *ct)
105 {
106 	return container_of(ct, struct xe_guc, ct);
107 }
108 
109 static struct xe_gt *
110 ct_to_gt(struct xe_guc_ct *ct)
111 {
112 	return container_of(ct, struct xe_gt, uc.guc.ct);
113 }
114 
115 static struct xe_device *
116 ct_to_xe(struct xe_guc_ct *ct)
117 {
118 	return gt_to_xe(ct_to_gt(ct));
119 }
120 
121 /**
122  * DOC: GuC CTB Blob
123  *
124  * We allocate single blob to hold both CTB descriptors and buffers:
125  *
126  *      +--------+-----------------------------------------------+------+
127  *      | offset | contents                                      | size |
128  *      +========+===============================================+======+
129  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
130  *      +--------+-----------------------------------------------+  4K  |
131  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
132  *      +--------+-----------------------------------------------+------+
133  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
134  *      |        |                                               |      |
135  *      +--------+-----------------------------------------------+------+
136  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
137  *      | + n*4K |                                               |      |
138  *      +--------+-----------------------------------------------+------+
139  *
140  * Size of each ``CT Buffer`` must be multiple of 4K.
141  * We don't expect too many messages in flight at any time, unless we are
142  * using the GuC submission. In that case each request requires a minimum
143  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
144  * enough space to avoid backpressure on the driver. We increase the size
145  * of the receive buffer (relative to the send) to ensure a G2H response
146  * CTB has a landing spot.
147  *
148  * In addition to submissions, the G2H buffer needs to be able to hold
149  * enough space for recoverable page fault notifications. The number of
150  * page faults is interrupt driven and can be as much as the number of
151  * compute resources available. However, most of the actual work for these
152  * is in a separate page fault worker thread. Therefore we only need to
153  * make sure the queue has enough space to handle all of the submissions
154  * and responses and an extra buffer for incoming page faults.
155  */
156 
157 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
158 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
159 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
160 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
161 
162 /**
163  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
164  * CT command queue
165  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
166  *
167  * Observation is that a 4KiB buffer full of commands takes a little over a
168  * second to process. Use that to calculate maximum time to process a full CT
169  * command queue.
170  *
171  * Return: Maximum time to process a full CT queue in jiffies.
172  */
173 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
174 {
175 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
176 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
177 }
178 
179 static size_t guc_ct_size(void)
180 {
181 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
182 		CTB_G2H_BUFFER_SIZE;
183 }
184 
185 static void guc_ct_fini(struct drm_device *drm, void *arg)
186 {
187 	struct xe_guc_ct *ct = arg;
188 
189 	destroy_workqueue(ct->g2h_wq);
190 	xa_destroy(&ct->fence_lookup);
191 }
192 
193 static void receive_g2h(struct xe_guc_ct *ct);
194 static void g2h_worker_func(struct work_struct *w);
195 static void safe_mode_worker_func(struct work_struct *w);
196 
197 static void primelockdep(struct xe_guc_ct *ct)
198 {
199 	if (!IS_ENABLED(CONFIG_LOCKDEP))
200 		return;
201 
202 	fs_reclaim_acquire(GFP_KERNEL);
203 	might_lock(&ct->lock);
204 	fs_reclaim_release(GFP_KERNEL);
205 }
206 
207 int xe_guc_ct_init(struct xe_guc_ct *ct)
208 {
209 	struct xe_device *xe = ct_to_xe(ct);
210 	struct xe_gt *gt = ct_to_gt(ct);
211 	struct xe_tile *tile = gt_to_tile(gt);
212 	struct xe_bo *bo;
213 	int err;
214 
215 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
216 
217 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM);
218 	if (!ct->g2h_wq)
219 		return -ENOMEM;
220 
221 	spin_lock_init(&ct->fast_lock);
222 	xa_init(&ct->fence_lookup);
223 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
224 	INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
225 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
226 	spin_lock_init(&ct->dead.lock);
227 	INIT_WORK(&ct->dead.worker, ct_dead_worker_func);
228 #endif
229 	init_waitqueue_head(&ct->wq);
230 	init_waitqueue_head(&ct->g2h_fence_wq);
231 
232 	err = drmm_mutex_init(&xe->drm, &ct->lock);
233 	if (err)
234 		return err;
235 
236 	primelockdep(ct);
237 
238 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
239 					  XE_BO_FLAG_SYSTEM |
240 					  XE_BO_FLAG_GGTT |
241 					  XE_BO_FLAG_GGTT_INVALIDATE |
242 					  XE_BO_FLAG_PINNED_NORESTORE);
243 	if (IS_ERR(bo))
244 		return PTR_ERR(bo);
245 
246 	ct->bo = bo;
247 
248 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
249 	if (err)
250 		return err;
251 
252 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
253 	ct->state = XE_GUC_CT_STATE_DISABLED;
254 	return 0;
255 }
256 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */
257 
258 #define desc_read(xe_, guc_ctb__, field_)			\
259 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
260 			struct guc_ct_buffer_desc, field_)
261 
262 #define desc_write(xe_, guc_ctb__, field_, val_)		\
263 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
264 			struct guc_ct_buffer_desc, field_, val_)
265 
266 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
267 				struct iosys_map *map)
268 {
269 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
270 	h2g->info.resv_space = 0;
271 	h2g->info.tail = 0;
272 	h2g->info.head = 0;
273 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
274 				     h2g->info.size) -
275 			  h2g->info.resv_space;
276 	h2g->info.broken = false;
277 
278 	h2g->desc = *map;
279 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
280 
281 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
282 }
283 
284 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
285 				struct iosys_map *map)
286 {
287 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
288 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
289 	g2h->info.head = 0;
290 	g2h->info.tail = 0;
291 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
292 				     g2h->info.size) -
293 			  g2h->info.resv_space;
294 	g2h->info.broken = false;
295 
296 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
297 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
298 
299 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
300 					    CTB_H2G_BUFFER_SIZE);
301 }
302 
303 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
304 {
305 	struct xe_guc *guc = ct_to_guc(ct);
306 	u32 desc_addr, ctb_addr, size;
307 	int err;
308 
309 	desc_addr = xe_bo_ggtt_addr(ct->bo);
310 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
311 	size = ct->ctbs.h2g.info.size * sizeof(u32);
312 
313 	err = xe_guc_self_cfg64(guc,
314 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
315 				desc_addr);
316 	if (err)
317 		return err;
318 
319 	err = xe_guc_self_cfg64(guc,
320 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
321 				ctb_addr);
322 	if (err)
323 		return err;
324 
325 	return xe_guc_self_cfg32(guc,
326 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
327 				 size);
328 }
329 
330 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
331 {
332 	struct xe_guc *guc = ct_to_guc(ct);
333 	u32 desc_addr, ctb_addr, size;
334 	int err;
335 
336 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
337 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
338 		CTB_H2G_BUFFER_SIZE;
339 	size = ct->ctbs.g2h.info.size * sizeof(u32);
340 
341 	err = xe_guc_self_cfg64(guc,
342 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
343 				desc_addr);
344 	if (err)
345 		return err;
346 
347 	err = xe_guc_self_cfg64(guc,
348 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
349 				ctb_addr);
350 	if (err)
351 		return err;
352 
353 	return xe_guc_self_cfg32(guc,
354 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
355 				 size);
356 }
357 
358 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
359 {
360 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
361 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
362 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
363 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
364 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
365 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
366 			   enable ? GUC_CTB_CONTROL_ENABLE :
367 			   GUC_CTB_CONTROL_DISABLE),
368 	};
369 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
370 
371 	return ret > 0 ? -EPROTO : ret;
372 }
373 
374 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
375 				enum xe_guc_ct_state state)
376 {
377 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
378 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
379 
380 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
381 		     state == XE_GUC_CT_STATE_STOPPED);
382 
383 	if (ct->g2h_outstanding)
384 		xe_pm_runtime_put(ct_to_xe(ct));
385 	ct->g2h_outstanding = 0;
386 	ct->state = state;
387 
388 	spin_unlock_irq(&ct->fast_lock);
389 
390 	/*
391 	 * Lockdep doesn't like this under the fast lock and he destroy only
392 	 * needs to be serialized with the send path which ct lock provides.
393 	 */
394 	xa_destroy(&ct->fence_lookup);
395 
396 	mutex_unlock(&ct->lock);
397 }
398 
399 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
400 {
401 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
402 }
403 
404 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
405 {
406 	if (!ct_needs_safe_mode(ct))
407 		return false;
408 
409 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
410 	return true;
411 }
412 
413 static void safe_mode_worker_func(struct work_struct *w)
414 {
415 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
416 
417 	receive_g2h(ct);
418 
419 	if (!ct_restart_safe_mode_worker(ct))
420 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
421 }
422 
423 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
424 {
425 	if (ct_restart_safe_mode_worker(ct))
426 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
427 }
428 
429 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
430 {
431 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
432 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
433 }
434 
435 int xe_guc_ct_enable(struct xe_guc_ct *ct)
436 {
437 	struct xe_device *xe = ct_to_xe(ct);
438 	struct xe_gt *gt = ct_to_gt(ct);
439 	int err;
440 
441 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
442 
443 	xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size);
444 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
445 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
446 
447 	err = guc_ct_ctb_h2g_register(ct);
448 	if (err)
449 		goto err_out;
450 
451 	err = guc_ct_ctb_g2h_register(ct);
452 	if (err)
453 		goto err_out;
454 
455 	err = guc_ct_control_toggle(ct, true);
456 	if (err)
457 		goto err_out;
458 
459 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
460 
461 	smp_mb();
462 	wake_up_all(&ct->wq);
463 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
464 
465 	if (ct_needs_safe_mode(ct))
466 		ct_enter_safe_mode(ct);
467 
468 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
469 	/*
470 	 * The CT has now been reset so the dumper can be re-armed
471 	 * after any existing dead state has been dumped.
472 	 */
473 	spin_lock_irq(&ct->dead.lock);
474 	if (ct->dead.reason) {
475 		ct->dead.reason |= (1 << CT_DEAD_STATE_REARM);
476 		queue_work(system_unbound_wq, &ct->dead.worker);
477 	}
478 	spin_unlock_irq(&ct->dead.lock);
479 #endif
480 
481 	return 0;
482 
483 err_out:
484 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
485 	CT_DEAD(ct, NULL, SETUP);
486 
487 	return err;
488 }
489 
490 static void stop_g2h_handler(struct xe_guc_ct *ct)
491 {
492 	cancel_work_sync(&ct->g2h_worker);
493 }
494 
495 /**
496  * xe_guc_ct_disable - Set GuC to disabled state
497  * @ct: the &xe_guc_ct
498  *
499  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
500  * in this transition.
501  */
502 void xe_guc_ct_disable(struct xe_guc_ct *ct)
503 {
504 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
505 	ct_exit_safe_mode(ct);
506 	stop_g2h_handler(ct);
507 }
508 
509 /**
510  * xe_guc_ct_stop - Set GuC to stopped state
511  * @ct: the &xe_guc_ct
512  *
513  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
514  */
515 void xe_guc_ct_stop(struct xe_guc_ct *ct)
516 {
517 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
518 	stop_g2h_handler(ct);
519 }
520 
521 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
522 {
523 	struct guc_ctb *h2g = &ct->ctbs.h2g;
524 
525 	lockdep_assert_held(&ct->lock);
526 
527 	if (cmd_len > h2g->info.space) {
528 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
529 
530 		if (h2g->info.head > h2g->info.size) {
531 			struct xe_device *xe = ct_to_xe(ct);
532 			u32 desc_status = desc_read(xe, h2g, status);
533 
534 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
535 
536 			xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n",
537 				  h2g->info.head, h2g->info.size);
538 			CT_DEAD(ct, h2g, H2G_HAS_ROOM);
539 			return false;
540 		}
541 
542 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
543 					     h2g->info.size) -
544 				  h2g->info.resv_space;
545 		if (cmd_len > h2g->info.space)
546 			return false;
547 	}
548 
549 	return true;
550 }
551 
552 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
553 {
554 	if (!g2h_len)
555 		return true;
556 
557 	lockdep_assert_held(&ct->fast_lock);
558 
559 	return ct->ctbs.g2h.info.space > g2h_len;
560 }
561 
562 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
563 {
564 	lockdep_assert_held(&ct->lock);
565 
566 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
567 		return -EBUSY;
568 
569 	return 0;
570 }
571 
572 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
573 {
574 	lockdep_assert_held(&ct->lock);
575 	ct->ctbs.h2g.info.space -= cmd_len;
576 }
577 
578 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
579 {
580 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
581 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
582 		     (g2h_len && num_g2h));
583 
584 	if (g2h_len) {
585 		lockdep_assert_held(&ct->fast_lock);
586 
587 		if (!ct->g2h_outstanding)
588 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
589 
590 		ct->ctbs.g2h.info.space -= g2h_len;
591 		ct->g2h_outstanding += num_g2h;
592 	}
593 }
594 
595 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
596 {
597 	bool bad = false;
598 
599 	lockdep_assert_held(&ct->fast_lock);
600 
601 	bad = ct->ctbs.g2h.info.space + g2h_len >
602 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space;
603 	bad |= !ct->g2h_outstanding;
604 
605 	if (bad) {
606 		xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n",
607 			  ct->ctbs.g2h.info.space, g2h_len,
608 			  ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space,
609 			  ct->ctbs.g2h.info.space + g2h_len,
610 			  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space,
611 			  ct->g2h_outstanding);
612 		CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE);
613 		return;
614 	}
615 
616 	ct->ctbs.g2h.info.space += g2h_len;
617 	if (!--ct->g2h_outstanding)
618 		xe_pm_runtime_put(ct_to_xe(ct));
619 }
620 
621 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
622 {
623 	spin_lock_irq(&ct->fast_lock);
624 	__g2h_release_space(ct, g2h_len);
625 	spin_unlock_irq(&ct->fast_lock);
626 }
627 
628 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
629 
630 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
631 		     u32 ct_fence_value, bool want_response)
632 {
633 	struct xe_device *xe = ct_to_xe(ct);
634 	struct xe_gt *gt = ct_to_gt(ct);
635 	struct guc_ctb *h2g = &ct->ctbs.h2g;
636 	u32 cmd[H2G_CT_HEADERS];
637 	u32 tail = h2g->info.tail;
638 	u32 full_len;
639 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
640 							 tail * sizeof(u32));
641 	u32 desc_status;
642 
643 	full_len = len + GUC_CTB_HDR_LEN;
644 
645 	lockdep_assert_held(&ct->lock);
646 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
647 
648 	desc_status = desc_read(xe, h2g, status);
649 	if (desc_status) {
650 		xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status);
651 		goto corrupted;
652 	}
653 
654 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
655 		u32 desc_tail = desc_read(xe, h2g, tail);
656 		u32 desc_head = desc_read(xe, h2g, head);
657 
658 		if (tail != desc_tail) {
659 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH);
660 			xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail);
661 			goto corrupted;
662 		}
663 
664 		if (tail > h2g->info.size) {
665 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
666 			xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n",
667 				  tail, h2g->info.size);
668 			goto corrupted;
669 		}
670 
671 		if (desc_head >= h2g->info.size) {
672 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
673 			xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n",
674 				  desc_head, h2g->info.size);
675 			goto corrupted;
676 		}
677 	}
678 
679 	/* Command will wrap, zero fill (NOPs), return and check credits again */
680 	if (tail + full_len > h2g->info.size) {
681 		xe_map_memset(xe, &map, 0, 0,
682 			      (h2g->info.size - tail) * sizeof(u32));
683 		h2g_reserve_space(ct, (h2g->info.size - tail));
684 		h2g->info.tail = 0;
685 		desc_write(xe, h2g, tail, h2g->info.tail);
686 
687 		return -EAGAIN;
688 	}
689 
690 	/*
691 	 * dw0: CT header (including fence)
692 	 * dw1: HXG header (including action code)
693 	 * dw2+: action data
694 	 */
695 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
696 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
697 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
698 	if (want_response) {
699 		cmd[1] =
700 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
701 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
702 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
703 	} else {
704 		cmd[1] =
705 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
706 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
707 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
708 	}
709 
710 	/* H2G header in cmd[1] replaces action[0] so: */
711 	--len;
712 	++action;
713 
714 	/* Write H2G ensuring visible before descriptor update */
715 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
716 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
717 	xe_device_wmb(xe);
718 
719 	/* Update local copies */
720 	h2g->info.tail = (tail + full_len) % h2g->info.size;
721 	h2g_reserve_space(ct, full_len);
722 
723 	/* Update descriptor */
724 	desc_write(xe, h2g, tail, h2g->info.tail);
725 
726 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
727 			     desc_read(xe, h2g, head), h2g->info.tail);
728 
729 	return 0;
730 
731 corrupted:
732 	CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE);
733 	return -EPIPE;
734 }
735 
736 /*
737  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
738  * driver, the GuC will just copy it to the reply message. Since we need to
739  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
740  * we use one bit of the seqno as an indicator for that and a rolling counter
741  * for the remaining 15 bits.
742  */
743 #define CT_SEQNO_MASK GENMASK(14, 0)
744 #define CT_SEQNO_UNTRACKED BIT(15)
745 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
746 {
747 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
748 
749 	if (!is_g2h_fence)
750 		seqno |= CT_SEQNO_UNTRACKED;
751 
752 	return seqno;
753 }
754 
755 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
756 				u32 len, u32 g2h_len, u32 num_g2h,
757 				struct g2h_fence *g2h_fence)
758 {
759 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
760 	u16 seqno;
761 	int ret;
762 
763 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
764 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
765 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
766 	xe_gt_assert(gt, !g2h_len || num_g2h);
767 	xe_gt_assert(gt, g2h_len || !num_g2h);
768 	lockdep_assert_held(&ct->lock);
769 
770 	if (unlikely(ct->ctbs.h2g.info.broken)) {
771 		ret = -EPIPE;
772 		goto out;
773 	}
774 
775 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
776 		ret = -ENODEV;
777 		goto out;
778 	}
779 
780 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
781 		ret = -ECANCELED;
782 		goto out;
783 	}
784 
785 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
786 
787 	if (g2h_fence) {
788 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
789 		num_g2h = 1;
790 
791 		if (g2h_fence_needs_alloc(g2h_fence)) {
792 			g2h_fence->seqno = next_ct_seqno(ct, true);
793 			ret = xa_err(xa_store(&ct->fence_lookup,
794 					      g2h_fence->seqno, g2h_fence,
795 					      GFP_ATOMIC));
796 			if (ret)
797 				goto out;
798 		}
799 
800 		seqno = g2h_fence->seqno;
801 	} else {
802 		seqno = next_ct_seqno(ct, false);
803 	}
804 
805 	if (g2h_len)
806 		spin_lock_irq(&ct->fast_lock);
807 retry:
808 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
809 	if (unlikely(ret))
810 		goto out_unlock;
811 
812 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
813 	if (unlikely(ret)) {
814 		if (ret == -EAGAIN)
815 			goto retry;
816 		goto out_unlock;
817 	}
818 
819 	__g2h_reserve_space(ct, g2h_len, num_g2h);
820 	xe_guc_notify(ct_to_guc(ct));
821 out_unlock:
822 	if (g2h_len)
823 		spin_unlock_irq(&ct->fast_lock);
824 out:
825 	return ret;
826 }
827 
828 static void kick_reset(struct xe_guc_ct *ct)
829 {
830 	xe_gt_reset_async(ct_to_gt(ct));
831 }
832 
833 static int dequeue_one_g2h(struct xe_guc_ct *ct);
834 
835 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
836 			      u32 g2h_len, u32 num_g2h,
837 			      struct g2h_fence *g2h_fence)
838 {
839 	struct xe_device *xe = ct_to_xe(ct);
840 	struct xe_gt *gt = ct_to_gt(ct);
841 	unsigned int sleep_period_ms = 1;
842 	int ret;
843 
844 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
845 	lockdep_assert_held(&ct->lock);
846 	xe_device_assert_mem_access(ct_to_xe(ct));
847 
848 try_again:
849 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
850 				   g2h_fence);
851 
852 	/*
853 	 * We wait to try to restore credits for about 1 second before bailing.
854 	 * In the case of H2G credits we have no choice but just to wait for the
855 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
856 	 * the case of G2H we process any G2H in the channel, hopefully freeing
857 	 * credits as we consume the G2H messages.
858 	 */
859 	if (unlikely(ret == -EBUSY &&
860 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
861 		struct guc_ctb *h2g = &ct->ctbs.h2g;
862 
863 		if (sleep_period_ms == 1024)
864 			goto broken;
865 
866 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
867 						 h2g->info.size,
868 						 h2g->info.space,
869 						 len + GUC_CTB_HDR_LEN);
870 		msleep(sleep_period_ms);
871 		sleep_period_ms <<= 1;
872 
873 		goto try_again;
874 	} else if (unlikely(ret == -EBUSY)) {
875 		struct xe_device *xe = ct_to_xe(ct);
876 		struct guc_ctb *g2h = &ct->ctbs.g2h;
877 
878 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
879 						 desc_read(xe, g2h, tail),
880 						 g2h->info.size,
881 						 g2h->info.space,
882 						 g2h_fence ?
883 						 GUC_CTB_HXG_MSG_MAX_LEN :
884 						 g2h_len);
885 
886 #define g2h_avail(ct)	\
887 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
888 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
889 					g2h_avail(ct), HZ))
890 			goto broken;
891 #undef g2h_avail
892 
893 		ret = dequeue_one_g2h(ct);
894 		if (ret < 0) {
895 			if (ret != -ECANCELED)
896 				xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)",
897 					  ERR_PTR(ret));
898 			goto broken;
899 		}
900 
901 		goto try_again;
902 	}
903 
904 	return ret;
905 
906 broken:
907 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
908 	CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK);
909 
910 	return -EDEADLK;
911 }
912 
913 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
914 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
915 {
916 	int ret;
917 
918 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
919 
920 	mutex_lock(&ct->lock);
921 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
922 	mutex_unlock(&ct->lock);
923 
924 	return ret;
925 }
926 
927 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
928 		   u32 g2h_len, u32 num_g2h)
929 {
930 	int ret;
931 
932 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
933 	if (ret == -EDEADLK)
934 		kick_reset(ct);
935 
936 	return ret;
937 }
938 
939 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
940 			  u32 g2h_len, u32 num_g2h)
941 {
942 	int ret;
943 
944 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
945 	if (ret == -EDEADLK)
946 		kick_reset(ct);
947 
948 	return ret;
949 }
950 
951 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
952 {
953 	int ret;
954 
955 	lockdep_assert_held(&ct->lock);
956 
957 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
958 	if (ret == -EDEADLK)
959 		kick_reset(ct);
960 
961 	return ret;
962 }
963 
964 /*
965  * Check if a GT reset is in progress or will occur and if GT reset brought the
966  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
967  */
968 static bool retry_failure(struct xe_guc_ct *ct, int ret)
969 {
970 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
971 		return false;
972 
973 #define ct_alive(ct)	\
974 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
975 	 !ct->ctbs.g2h.info.broken)
976 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
977 		return false;
978 #undef ct_alive
979 
980 	return true;
981 }
982 
983 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
984 			    u32 *response_buffer, bool no_fail)
985 {
986 	struct xe_gt *gt = ct_to_gt(ct);
987 	struct g2h_fence g2h_fence;
988 	int ret = 0;
989 
990 	/*
991 	 * We use a fence to implement blocking sends / receiving response data.
992 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
993 	 * an xarray is used as storage media with the seqno being to key.
994 	 * Fields in the fence hold success, failure, retry status and the
995 	 * response data. Safe to allocate on the stack as the xarray is the
996 	 * only reference and it cannot be present after this function exits.
997 	 */
998 retry:
999 	g2h_fence_init(&g2h_fence, response_buffer);
1000 retry_same_fence:
1001 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
1002 	if (unlikely(ret == -ENOMEM)) {
1003 		/* Retry allocation /w GFP_KERNEL */
1004 		ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
1005 				      &g2h_fence, GFP_KERNEL));
1006 		if (ret)
1007 			return ret;
1008 
1009 		goto retry_same_fence;
1010 	} else if (unlikely(ret)) {
1011 		if (ret == -EDEADLK)
1012 			kick_reset(ct);
1013 
1014 		if (no_fail && retry_failure(ct, ret))
1015 			goto retry_same_fence;
1016 
1017 		if (!g2h_fence_needs_alloc(&g2h_fence))
1018 			xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1019 
1020 		return ret;
1021 	}
1022 
1023 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
1024 	if (!ret) {
1025 		LNL_FLUSH_WORK(&ct->g2h_worker);
1026 		if (g2h_fence.done) {
1027 			xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
1028 				   g2h_fence.seqno, action[0]);
1029 			ret = 1;
1030 		}
1031 	}
1032 
1033 	/*
1034 	 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
1035 	 * the stack, since we have no clue if it will fire after the timeout before we can erase
1036 	 * from the xa. Also we have some dependent loads and stores below for which we need the
1037 	 * correct ordering, and we lack the needed barriers.
1038 	 */
1039 	mutex_lock(&ct->lock);
1040 	if (!ret) {
1041 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
1042 			  g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
1043 		xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1044 		mutex_unlock(&ct->lock);
1045 		return -ETIME;
1046 	}
1047 
1048 	if (g2h_fence.retry) {
1049 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
1050 			  action[0], g2h_fence.reason);
1051 		mutex_unlock(&ct->lock);
1052 		goto retry;
1053 	}
1054 	if (g2h_fence.fail) {
1055 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
1056 			  action[0], g2h_fence.error, g2h_fence.hint);
1057 		ret = -EIO;
1058 	}
1059 
1060 	if (ret > 0)
1061 		ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
1062 
1063 	mutex_unlock(&ct->lock);
1064 
1065 	return ret;
1066 }
1067 
1068 /**
1069  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
1070  * @ct: the &xe_guc_ct
1071  * @action: the dword array with `HXG Request`_ message (can't be NULL)
1072  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
1073  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
1074  *
1075  * Send a `HXG Request`_ message to the GuC over CT communication channel and
1076  * blocks until GuC replies with a `HXG Response`_ message.
1077  *
1078  * For non-blocking communication with GuC use xe_guc_ct_send().
1079  *
1080  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
1081  *
1082  * Return: response length (in dwords) if &response_buffer was not NULL, or
1083  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
1084  *         a negative error code on failure.
1085  */
1086 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1087 			u32 *response_buffer)
1088 {
1089 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
1090 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
1091 }
1092 ALLOW_ERROR_INJECTION(xe_guc_ct_send_recv, ERRNO);
1093 
1094 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
1095 				u32 len, u32 *response_buffer)
1096 {
1097 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
1098 }
1099 
1100 static u32 *msg_to_hxg(u32 *msg)
1101 {
1102 	return msg + GUC_CTB_MSG_MIN_LEN;
1103 }
1104 
1105 static u32 msg_len_to_hxg_len(u32 len)
1106 {
1107 	return len - GUC_CTB_MSG_MIN_LEN;
1108 }
1109 
1110 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
1111 {
1112 	u32 *hxg = msg_to_hxg(msg);
1113 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1114 
1115 	lockdep_assert_held(&ct->lock);
1116 
1117 	switch (action) {
1118 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1119 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1120 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1121 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1122 		g2h_release_space(ct, len);
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static int guc_crash_process_msg(struct xe_guc_ct *ct, u32 action)
1129 {
1130 	struct xe_gt *gt = ct_to_gt(ct);
1131 
1132 	if (action == XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
1133 		xe_gt_err(gt, "GuC Crash dump notification\n");
1134 	else if (action == XE_GUC_ACTION_NOTIFY_EXCEPTION)
1135 		xe_gt_err(gt, "GuC Exception notification\n");
1136 	else
1137 		xe_gt_err(gt, "Unknown GuC crash notification: 0x%04X\n", action);
1138 
1139 	CT_DEAD(ct, NULL, CRASH);
1140 
1141 	kick_reset(ct);
1142 
1143 	return 0;
1144 }
1145 
1146 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
1147 {
1148 	struct xe_gt *gt =  ct_to_gt(ct);
1149 	u32 *hxg = msg_to_hxg(msg);
1150 	u32 hxg_len = msg_len_to_hxg_len(len);
1151 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1152 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1153 	struct g2h_fence *g2h_fence;
1154 
1155 	lockdep_assert_held(&ct->lock);
1156 
1157 	/*
1158 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1159 	 * Those messages should never fail, so if we do get an error back it
1160 	 * means we're likely doing an illegal operation and the GuC is
1161 	 * rejecting it. We have no way to inform the code that submitted the
1162 	 * H2G that the message was rejected, so we need to escalate the
1163 	 * failure to trigger a reset.
1164 	 */
1165 	if (fence & CT_SEQNO_UNTRACKED) {
1166 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1167 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1168 				  fence,
1169 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1170 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1171 		else
1172 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1173 				  type, fence);
1174 		CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE);
1175 
1176 		return -EPROTO;
1177 	}
1178 
1179 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1180 	if (unlikely(!g2h_fence)) {
1181 		/* Don't tear down channel, as send could've timed out */
1182 		/* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */
1183 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1184 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1185 		return 0;
1186 	}
1187 
1188 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1189 
1190 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1191 		g2h_fence->fail = true;
1192 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1193 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1194 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1195 		g2h_fence->retry = true;
1196 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1197 	} else if (g2h_fence->response_buffer) {
1198 		g2h_fence->response_len = hxg_len;
1199 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1200 	} else {
1201 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1202 	}
1203 
1204 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1205 
1206 	g2h_fence->done = true;
1207 	smp_mb();
1208 
1209 	wake_up_all(&ct->g2h_fence_wq);
1210 
1211 	return 0;
1212 }
1213 
1214 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1215 {
1216 	struct xe_gt *gt = ct_to_gt(ct);
1217 	u32 *hxg = msg_to_hxg(msg);
1218 	u32 origin, type;
1219 	int ret;
1220 
1221 	lockdep_assert_held(&ct->lock);
1222 
1223 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1224 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1225 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1226 			  origin);
1227 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN);
1228 
1229 		return -EPROTO;
1230 	}
1231 
1232 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1233 	switch (type) {
1234 	case GUC_HXG_TYPE_EVENT:
1235 		ret = parse_g2h_event(ct, msg, len);
1236 		break;
1237 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1238 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1239 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1240 		ret = parse_g2h_response(ct, msg, len);
1241 		break;
1242 	default:
1243 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1244 			  type);
1245 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE);
1246 
1247 		ret = -EOPNOTSUPP;
1248 	}
1249 
1250 	return ret;
1251 }
1252 
1253 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1254 {
1255 	struct xe_guc *guc = ct_to_guc(ct);
1256 	struct xe_gt *gt = ct_to_gt(ct);
1257 	u32 hxg_len = msg_len_to_hxg_len(len);
1258 	u32 *hxg = msg_to_hxg(msg);
1259 	u32 action, adj_len;
1260 	u32 *payload;
1261 	int ret = 0;
1262 
1263 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1264 		return 0;
1265 
1266 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1267 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1268 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1269 
1270 	switch (action) {
1271 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1272 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1273 		break;
1274 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1275 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1276 		break;
1277 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1278 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1279 		break;
1280 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1281 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1282 							      adj_len);
1283 		break;
1284 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1285 		/* Selftest only at the moment */
1286 		break;
1287 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1288 		ret = xe_guc_error_capture_handler(guc, payload, adj_len);
1289 		break;
1290 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1291 		/* FIXME: Handle this */
1292 		break;
1293 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1294 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1295 								 adj_len);
1296 		break;
1297 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1298 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1299 		break;
1300 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1301 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1302 							   adj_len);
1303 		break;
1304 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1305 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1306 							   adj_len);
1307 		break;
1308 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1309 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1310 		break;
1311 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1312 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1313 		break;
1314 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1315 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1316 		break;
1317 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1318 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1319 		break;
1320 	case XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1321 	case XE_GUC_ACTION_NOTIFY_EXCEPTION:
1322 		ret = guc_crash_process_msg(ct, action);
1323 		break;
1324 	default:
1325 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1326 	}
1327 
1328 	if (ret) {
1329 		xe_gt_err(gt, "G2H action %#04x failed (%pe) len %u msg %*ph\n",
1330 			  action, ERR_PTR(ret), hxg_len, (int)sizeof(u32) * hxg_len, hxg);
1331 		CT_DEAD(ct, NULL, PROCESS_FAILED);
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1338 {
1339 	struct xe_device *xe = ct_to_xe(ct);
1340 	struct xe_gt *gt = ct_to_gt(ct);
1341 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1342 	u32 tail, head, len, desc_status;
1343 	s32 avail;
1344 	u32 action;
1345 	u32 *hxg;
1346 
1347 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1348 	lockdep_assert_held(&ct->fast_lock);
1349 
1350 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1351 		return -ENODEV;
1352 
1353 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1354 		return -ECANCELED;
1355 
1356 	if (g2h->info.broken)
1357 		return -EPIPE;
1358 
1359 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1360 
1361 	desc_status = desc_read(xe, g2h, status);
1362 	if (desc_status) {
1363 		if (desc_status & GUC_CTB_STATUS_DISABLED) {
1364 			/*
1365 			 * Potentially valid if a CLIENT_RESET request resulted in
1366 			 * contexts/engines being reset. But should never happen as
1367 			 * no contexts should be active when CLIENT_RESET is sent.
1368 			 */
1369 			xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n");
1370 			desc_status &= ~GUC_CTB_STATUS_DISABLED;
1371 		}
1372 
1373 		if (desc_status) {
1374 			xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status);
1375 			goto corrupted;
1376 		}
1377 	}
1378 
1379 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
1380 		u32 desc_tail = desc_read(xe, g2h, tail);
1381 		/*
1382 		u32 desc_head = desc_read(xe, g2h, head);
1383 
1384 		 * info.head and desc_head are updated back-to-back at the end of
1385 		 * this function and nowhere else. Hence, they cannot be different
1386 		 * unless two g2h_read calls are running concurrently. Which is not
1387 		 * possible because it is guarded by ct->fast_lock. And yet, some
1388 		 * discrete platforms are regularly hitting this error :(.
1389 		 *
1390 		 * desc_head rolling backwards shouldn't cause any noticeable
1391 		 * problems - just a delay in GuC being allowed to proceed past that
1392 		 * point in the queue. So for now, just disable the error until it
1393 		 * can be root caused.
1394 		 *
1395 		if (g2h->info.head != desc_head) {
1396 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH);
1397 			xe_gt_err(gt, "CT read: head was modified %u != %u\n",
1398 				  desc_head, g2h->info.head);
1399 			goto corrupted;
1400 		}
1401 		 */
1402 
1403 		if (g2h->info.head > g2h->info.size) {
1404 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1405 			xe_gt_err(gt, "CT read: head out of range: %u vs %u\n",
1406 				  g2h->info.head, g2h->info.size);
1407 			goto corrupted;
1408 		}
1409 
1410 		if (desc_tail >= g2h->info.size) {
1411 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1412 			xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n",
1413 				  desc_tail, g2h->info.size);
1414 			goto corrupted;
1415 		}
1416 	}
1417 
1418 	/* Calculate DW available to read */
1419 	tail = desc_read(xe, g2h, tail);
1420 	avail = tail - g2h->info.head;
1421 	if (unlikely(avail == 0))
1422 		return 0;
1423 
1424 	if (avail < 0)
1425 		avail += g2h->info.size;
1426 
1427 	/* Read header */
1428 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1429 			   sizeof(u32));
1430 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1431 	if (len > avail) {
1432 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1433 			  avail, len);
1434 		goto corrupted;
1435 	}
1436 
1437 	head = (g2h->info.head + 1) % g2h->info.size;
1438 	avail = len - 1;
1439 
1440 	/* Read G2H message */
1441 	if (avail + head > g2h->info.size) {
1442 		u32 avail_til_wrap = g2h->info.size - head;
1443 
1444 		xe_map_memcpy_from(xe, msg + 1,
1445 				   &g2h->cmds, sizeof(u32) * head,
1446 				   avail_til_wrap * sizeof(u32));
1447 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1448 				   &g2h->cmds, 0,
1449 				   (avail - avail_til_wrap) * sizeof(u32));
1450 	} else {
1451 		xe_map_memcpy_from(xe, msg + 1,
1452 				   &g2h->cmds, sizeof(u32) * head,
1453 				   avail * sizeof(u32));
1454 	}
1455 
1456 	hxg = msg_to_hxg(msg);
1457 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1458 
1459 	if (fast_path) {
1460 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1461 			return 0;
1462 
1463 		switch (action) {
1464 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1465 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1466 			break;	/* Process these in fast-path */
1467 		default:
1468 			return 0;
1469 		}
1470 	}
1471 
1472 	/* Update local / descriptor header */
1473 	g2h->info.head = (head + avail) % g2h->info.size;
1474 	desc_write(xe, g2h, head, g2h->info.head);
1475 
1476 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1477 			     action, len, g2h->info.head, tail);
1478 
1479 	return len;
1480 
1481 corrupted:
1482 	CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ);
1483 	return -EPROTO;
1484 }
1485 
1486 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1487 {
1488 	struct xe_gt *gt = ct_to_gt(ct);
1489 	struct xe_guc *guc = ct_to_guc(ct);
1490 	u32 hxg_len = msg_len_to_hxg_len(len);
1491 	u32 *hxg = msg_to_hxg(msg);
1492 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1493 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1494 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1495 	int ret = 0;
1496 
1497 	switch (action) {
1498 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1499 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1500 		break;
1501 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1502 		__g2h_release_space(ct, len);
1503 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1504 							   adj_len);
1505 		break;
1506 	default:
1507 		xe_gt_warn(gt, "NOT_POSSIBLE");
1508 	}
1509 
1510 	if (ret) {
1511 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1512 			  action, ERR_PTR(ret));
1513 		CT_DEAD(ct, NULL, FAST_G2H);
1514 	}
1515 }
1516 
1517 /**
1518  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1519  * @ct: GuC CT object
1520  *
1521  * Anything related to page faults is critical for performance, process these
1522  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1523  * waiters or queue another worker.
1524  */
1525 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1526 {
1527 	struct xe_device *xe = ct_to_xe(ct);
1528 	bool ongoing;
1529 	int len;
1530 
1531 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1532 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1533 		return;
1534 
1535 	spin_lock(&ct->fast_lock);
1536 	do {
1537 		len = g2h_read(ct, ct->fast_msg, true);
1538 		if (len > 0)
1539 			g2h_fast_path(ct, ct->fast_msg, len);
1540 	} while (len > 0);
1541 	spin_unlock(&ct->fast_lock);
1542 
1543 	if (ongoing)
1544 		xe_pm_runtime_put(xe);
1545 }
1546 
1547 /* Returns less than zero on error, 0 on done, 1 on more available */
1548 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1549 {
1550 	int len;
1551 	int ret;
1552 
1553 	lockdep_assert_held(&ct->lock);
1554 
1555 	spin_lock_irq(&ct->fast_lock);
1556 	len = g2h_read(ct, ct->msg, false);
1557 	spin_unlock_irq(&ct->fast_lock);
1558 	if (len <= 0)
1559 		return len;
1560 
1561 	ret = parse_g2h_msg(ct, ct->msg, len);
1562 	if (unlikely(ret < 0))
1563 		return ret;
1564 
1565 	ret = process_g2h_msg(ct, ct->msg, len);
1566 	if (unlikely(ret < 0))
1567 		return ret;
1568 
1569 	return 1;
1570 }
1571 
1572 static void receive_g2h(struct xe_guc_ct *ct)
1573 {
1574 	bool ongoing;
1575 	int ret;
1576 
1577 	/*
1578 	 * Normal users must always hold mem_access.ref around CT calls. However
1579 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1580 	 * at this stage we can't rely on mem_access.ref and even the
1581 	 * callback_task will be different than current.  For such cases we just
1582 	 * need to ensure we always process the responses from any blocking
1583 	 * ct_send requests or where we otherwise expect some response when
1584 	 * initiated from those callbacks (which will need to wait for the below
1585 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1586 	 * the device has suspended to the point that the CT communication has
1587 	 * been disabled.
1588 	 *
1589 	 * If we are inside the runtime pm callback, we can be the only task
1590 	 * still issuing CT requests (since that requires having the
1591 	 * mem_access.ref).  It seems like it might in theory be possible to
1592 	 * receive unsolicited events from the GuC just as we are
1593 	 * suspending-resuming, but those will currently anyway be lost when
1594 	 * eventually exiting from suspend, hence no need to wake up the device
1595 	 * here. If we ever need something stronger than get_if_ongoing() then
1596 	 * we need to be careful with blocking the pm callbacks from getting CT
1597 	 * responses, if the worker here is blocked on those callbacks
1598 	 * completing, creating a deadlock.
1599 	 */
1600 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1601 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1602 		return;
1603 
1604 	do {
1605 		mutex_lock(&ct->lock);
1606 		ret = dequeue_one_g2h(ct);
1607 		mutex_unlock(&ct->lock);
1608 
1609 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1610 			xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret);
1611 			CT_DEAD(ct, NULL, G2H_RECV);
1612 			kick_reset(ct);
1613 		}
1614 	} while (ret == 1);
1615 
1616 	if (ongoing)
1617 		xe_pm_runtime_put(ct_to_xe(ct));
1618 }
1619 
1620 static void g2h_worker_func(struct work_struct *w)
1621 {
1622 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1623 
1624 	receive_g2h(ct);
1625 }
1626 
1627 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic,
1628 							bool want_ctb)
1629 {
1630 	struct xe_guc_ct_snapshot *snapshot;
1631 
1632 	snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
1633 	if (!snapshot)
1634 		return NULL;
1635 
1636 	if (ct->bo && want_ctb) {
1637 		snapshot->ctb_size = ct->bo->size;
1638 		snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL);
1639 	}
1640 
1641 	return snapshot;
1642 }
1643 
1644 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1645 				     struct guc_ctb_snapshot *snapshot)
1646 {
1647 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1648 			   sizeof(struct guc_ct_buffer_desc));
1649 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1650 }
1651 
1652 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1653 				   struct drm_printer *p)
1654 {
1655 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1656 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1657 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1658 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1659 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1660 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1661 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1662 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1663 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1664 }
1665 
1666 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic,
1667 							  bool want_ctb)
1668 {
1669 	struct xe_device *xe = ct_to_xe(ct);
1670 	struct xe_guc_ct_snapshot *snapshot;
1671 
1672 	snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb);
1673 	if (!snapshot) {
1674 		xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n");
1675 		return NULL;
1676 	}
1677 
1678 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1679 		snapshot->ct_enabled = true;
1680 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1681 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g);
1682 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h);
1683 	}
1684 
1685 	if (ct->bo && snapshot->ctb)
1686 		xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size);
1687 
1688 	return snapshot;
1689 }
1690 
1691 /**
1692  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1693  * @ct: GuC CT object.
1694  *
1695  * This can be printed out in a later stage like during dev_coredump
1696  * analysis. This is safe to be called during atomic context.
1697  *
1698  * Returns: a GuC CT snapshot object that must be freed by the caller
1699  * by using `xe_guc_ct_snapshot_free`.
1700  */
1701 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct)
1702 {
1703 	return guc_ct_snapshot_capture(ct, true, true);
1704 }
1705 
1706 /**
1707  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1708  * @snapshot: GuC CT snapshot object.
1709  * @p: drm_printer where it will be printed out.
1710  *
1711  * This function prints out a given GuC CT snapshot object.
1712  */
1713 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1714 			      struct drm_printer *p)
1715 {
1716 	if (!snapshot)
1717 		return;
1718 
1719 	if (snapshot->ct_enabled) {
1720 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1721 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1722 
1723 		drm_puts(p, "G2H CTB (all sizes in DW):\n");
1724 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1725 		drm_printf(p, "\tg2h outstanding: %d\n",
1726 			   snapshot->g2h_outstanding);
1727 
1728 		if (snapshot->ctb) {
1729 			drm_printf(p, "[CTB].length: 0x%zx\n", snapshot->ctb_size);
1730 			xe_print_blob_ascii85(p, "[CTB].data", '\n',
1731 					      snapshot->ctb, 0, snapshot->ctb_size);
1732 		}
1733 	} else {
1734 		drm_puts(p, "CT disabled\n");
1735 	}
1736 }
1737 
1738 /**
1739  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1740  * @snapshot: GuC CT snapshot object.
1741  *
1742  * This function free all the memory that needed to be allocated at capture
1743  * time.
1744  */
1745 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1746 {
1747 	if (!snapshot)
1748 		return;
1749 
1750 	kfree(snapshot->ctb);
1751 	kfree(snapshot);
1752 }
1753 
1754 /**
1755  * xe_guc_ct_print - GuC CT Print.
1756  * @ct: GuC CT.
1757  * @p: drm_printer where it will be printed out.
1758  * @want_ctb: Should the full CTB content be dumped (vs just the headers)
1759  *
1760  * This function will quickly capture a snapshot of the CT state
1761  * and immediately print it out.
1762  */
1763 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb)
1764 {
1765 	struct xe_guc_ct_snapshot *snapshot;
1766 
1767 	snapshot = guc_ct_snapshot_capture(ct, false, want_ctb);
1768 	xe_guc_ct_snapshot_print(snapshot, p);
1769 	xe_guc_ct_snapshot_free(snapshot);
1770 }
1771 
1772 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
1773 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code)
1774 {
1775 	struct xe_guc_log_snapshot *snapshot_log;
1776 	struct xe_guc_ct_snapshot *snapshot_ct;
1777 	struct xe_guc *guc = ct_to_guc(ct);
1778 	unsigned long flags;
1779 	bool have_capture;
1780 
1781 	if (ctb)
1782 		ctb->info.broken = true;
1783 
1784 	/* Ignore further errors after the first dump until a reset */
1785 	if (ct->dead.reported)
1786 		return;
1787 
1788 	spin_lock_irqsave(&ct->dead.lock, flags);
1789 
1790 	/* And only capture one dump at a time */
1791 	have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE);
1792 	ct->dead.reason |= (1 << reason_code) |
1793 			   (1 << CT_DEAD_STATE_CAPTURE);
1794 
1795 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1796 
1797 	if (have_capture)
1798 		return;
1799 
1800 	snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true);
1801 	snapshot_ct = xe_guc_ct_snapshot_capture((ct));
1802 
1803 	spin_lock_irqsave(&ct->dead.lock, flags);
1804 
1805 	if (ct->dead.snapshot_log || ct->dead.snapshot_ct) {
1806 		xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n");
1807 		xe_guc_log_snapshot_free(snapshot_log);
1808 		xe_guc_ct_snapshot_free(snapshot_ct);
1809 	} else {
1810 		ct->dead.snapshot_log = snapshot_log;
1811 		ct->dead.snapshot_ct = snapshot_ct;
1812 	}
1813 
1814 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1815 
1816 	queue_work(system_unbound_wq, &(ct)->dead.worker);
1817 }
1818 
1819 static void ct_dead_print(struct xe_dead_ct *dead)
1820 {
1821 	struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead);
1822 	struct xe_device *xe = ct_to_xe(ct);
1823 	struct xe_gt *gt = ct_to_gt(ct);
1824 	static int g_count;
1825 	struct drm_printer ip = xe_gt_info_printer(gt);
1826 	struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
1827 
1828 	if (!dead->reason) {
1829 		xe_gt_err(gt, "CTB is dead for no reason!?\n");
1830 		return;
1831 	}
1832 
1833 
1834 	/* Can't generate a genuine core dump at this point, so just do the good bits */
1835 	drm_puts(&lp, "**** Xe Device Coredump ****\n");
1836 	drm_printf(&lp, "Reason: CTB is dead - 0x%X\n", dead->reason);
1837 	xe_device_snapshot_print(xe, &lp);
1838 
1839 	drm_printf(&lp, "**** GT #%d ****\n", gt->info.id);
1840 	drm_printf(&lp, "\tTile: %d\n", gt->tile->id);
1841 
1842 	drm_puts(&lp, "**** GuC Log ****\n");
1843 	xe_guc_log_snapshot_print(dead->snapshot_log, &lp);
1844 
1845 	drm_puts(&lp, "**** GuC CT ****\n");
1846 	xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp);
1847 
1848 	drm_puts(&lp, "Done.\n");
1849 }
1850 
1851 static void ct_dead_worker_func(struct work_struct *w)
1852 {
1853 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker);
1854 
1855 	if (!ct->dead.reported) {
1856 		ct->dead.reported = true;
1857 		ct_dead_print(&ct->dead);
1858 	}
1859 
1860 	spin_lock_irq(&ct->dead.lock);
1861 
1862 	xe_guc_log_snapshot_free(ct->dead.snapshot_log);
1863 	ct->dead.snapshot_log = NULL;
1864 	xe_guc_ct_snapshot_free(ct->dead.snapshot_ct);
1865 	ct->dead.snapshot_ct = NULL;
1866 
1867 	if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) {
1868 		/* A reset has occurred so re-arm the error reporting */
1869 		ct->dead.reason = 0;
1870 		ct->dead.reported = false;
1871 	}
1872 
1873 	spin_unlock_irq(&ct->dead.lock);
1874 }
1875 #endif
1876