xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 
12 #include <drm/drm_managed.h>
13 
14 #include "abi/guc_actions_abi.h"
15 #include "abi/guc_klvs_abi.h"
16 #include "xe_bo.h"
17 #include "xe_device.h"
18 #include "xe_gt.h"
19 #include "xe_gt_pagefault.h"
20 #include "xe_gt_tlb_invalidation.h"
21 #include "xe_guc.h"
22 #include "xe_guc_submit.h"
23 #include "xe_map.h"
24 #include "xe_pm.h"
25 #include "xe_trace.h"
26 
27 /* Used when a CT send wants to block and / or receive data */
28 struct g2h_fence {
29 	u32 *response_buffer;
30 	u32 seqno;
31 	u16 response_len;
32 	u16 error;
33 	u16 hint;
34 	u16 reason;
35 	bool retry;
36 	bool fail;
37 	bool done;
38 };
39 
40 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
41 {
42 	g2h_fence->response_buffer = response_buffer;
43 	g2h_fence->response_len = 0;
44 	g2h_fence->fail = false;
45 	g2h_fence->retry = false;
46 	g2h_fence->done = false;
47 	g2h_fence->seqno = ~0x0;
48 }
49 
50 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
51 {
52 	return g2h_fence->seqno == ~0x0;
53 }
54 
55 static struct xe_guc *
56 ct_to_guc(struct xe_guc_ct *ct)
57 {
58 	return container_of(ct, struct xe_guc, ct);
59 }
60 
61 static struct xe_gt *
62 ct_to_gt(struct xe_guc_ct *ct)
63 {
64 	return container_of(ct, struct xe_gt, uc.guc.ct);
65 }
66 
67 static struct xe_device *
68 ct_to_xe(struct xe_guc_ct *ct)
69 {
70 	return gt_to_xe(ct_to_gt(ct));
71 }
72 
73 /**
74  * DOC: GuC CTB Blob
75  *
76  * We allocate single blob to hold both CTB descriptors and buffers:
77  *
78  *      +--------+-----------------------------------------------+------+
79  *      | offset | contents                                      | size |
80  *      +========+===============================================+======+
81  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
82  *      +--------+-----------------------------------------------+  4K  |
83  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
84  *      +--------+-----------------------------------------------+------+
85  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
86  *      |        |                                               |      |
87  *      +--------+-----------------------------------------------+------+
88  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
89  *      | + n*4K |                                               |      |
90  *      +--------+-----------------------------------------------+------+
91  *
92  * Size of each ``CT Buffer`` must be multiple of 4K.
93  * We don't expect too many messages in flight at any time, unless we are
94  * using the GuC submission. In that case each request requires a minimum
95  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
96  * enough space to avoid backpressure on the driver. We increase the size
97  * of the receive buffer (relative to the send) to ensure a G2H response
98  * CTB has a landing spot.
99  */
100 
101 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
102 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
103 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
104 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
105 
106 static size_t guc_ct_size(void)
107 {
108 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
109 		CTB_G2H_BUFFER_SIZE;
110 }
111 
112 static void guc_ct_fini(struct drm_device *drm, void *arg)
113 {
114 	struct xe_guc_ct *ct = arg;
115 
116 	xa_destroy(&ct->fence_lookup);
117 }
118 
119 static void g2h_worker_func(struct work_struct *w);
120 
121 static void primelockdep(struct xe_guc_ct *ct)
122 {
123 	if (!IS_ENABLED(CONFIG_LOCKDEP))
124 		return;
125 
126 	fs_reclaim_acquire(GFP_KERNEL);
127 	might_lock(&ct->lock);
128 	fs_reclaim_release(GFP_KERNEL);
129 }
130 
131 int xe_guc_ct_init(struct xe_guc_ct *ct)
132 {
133 	struct xe_device *xe = ct_to_xe(ct);
134 	struct xe_gt *gt = ct_to_gt(ct);
135 	struct xe_tile *tile = gt_to_tile(gt);
136 	struct xe_bo *bo;
137 	int err;
138 
139 	xe_assert(xe, !(guc_ct_size() % PAGE_SIZE));
140 
141 	drmm_mutex_init(&xe->drm, &ct->lock);
142 	spin_lock_init(&ct->fast_lock);
143 	xa_init(&ct->fence_lookup);
144 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
145 	init_waitqueue_head(&ct->wq);
146 	init_waitqueue_head(&ct->g2h_fence_wq);
147 
148 	primelockdep(ct);
149 
150 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
151 					  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
152 					  XE_BO_CREATE_GGTT_BIT);
153 	if (IS_ERR(bo))
154 		return PTR_ERR(bo);
155 
156 	ct->bo = bo;
157 
158 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
159 	if (err)
160 		return err;
161 
162 	return 0;
163 }
164 
165 #define desc_read(xe_, guc_ctb__, field_)			\
166 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
167 			struct guc_ct_buffer_desc, field_)
168 
169 #define desc_write(xe_, guc_ctb__, field_, val_)		\
170 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
171 			struct guc_ct_buffer_desc, field_, val_)
172 
173 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
174 				struct iosys_map *map)
175 {
176 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
177 	h2g->info.resv_space = 0;
178 	h2g->info.tail = 0;
179 	h2g->info.head = 0;
180 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
181 				     h2g->info.size) -
182 			  h2g->info.resv_space;
183 	h2g->info.broken = false;
184 
185 	h2g->desc = *map;
186 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
187 
188 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
189 }
190 
191 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
192 				struct iosys_map *map)
193 {
194 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
195 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
196 	g2h->info.head = 0;
197 	g2h->info.tail = 0;
198 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
199 				     g2h->info.size) -
200 			  g2h->info.resv_space;
201 	g2h->info.broken = false;
202 
203 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
204 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
205 
206 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
207 					    CTB_H2G_BUFFER_SIZE);
208 }
209 
210 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
211 {
212 	struct xe_guc *guc = ct_to_guc(ct);
213 	u32 desc_addr, ctb_addr, size;
214 	int err;
215 
216 	desc_addr = xe_bo_ggtt_addr(ct->bo);
217 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
218 	size = ct->ctbs.h2g.info.size * sizeof(u32);
219 
220 	err = xe_guc_self_cfg64(guc,
221 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
222 				desc_addr);
223 	if (err)
224 		return err;
225 
226 	err = xe_guc_self_cfg64(guc,
227 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
228 				ctb_addr);
229 	if (err)
230 		return err;
231 
232 	return xe_guc_self_cfg32(guc,
233 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
234 				 size);
235 }
236 
237 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
238 {
239 	struct xe_guc *guc = ct_to_guc(ct);
240 	u32 desc_addr, ctb_addr, size;
241 	int err;
242 
243 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
244 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
245 		CTB_H2G_BUFFER_SIZE;
246 	size = ct->ctbs.g2h.info.size * sizeof(u32);
247 
248 	err = xe_guc_self_cfg64(guc,
249 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
250 				desc_addr);
251 	if (err)
252 		return err;
253 
254 	err = xe_guc_self_cfg64(guc,
255 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
256 				ctb_addr);
257 	if (err)
258 		return err;
259 
260 	return xe_guc_self_cfg32(guc,
261 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
262 				 size);
263 }
264 
265 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
266 {
267 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
268 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
269 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
270 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
271 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
272 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
273 			   enable ? GUC_CTB_CONTROL_ENABLE :
274 			   GUC_CTB_CONTROL_DISABLE),
275 	};
276 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
277 
278 	return ret > 0 ? -EPROTO : ret;
279 }
280 
281 int xe_guc_ct_enable(struct xe_guc_ct *ct)
282 {
283 	struct xe_device *xe = ct_to_xe(ct);
284 	int err;
285 
286 	xe_assert(xe, !ct->enabled);
287 
288 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
289 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
290 
291 	err = guc_ct_ctb_h2g_register(ct);
292 	if (err)
293 		goto err_out;
294 
295 	err = guc_ct_ctb_g2h_register(ct);
296 	if (err)
297 		goto err_out;
298 
299 	err = guc_ct_control_toggle(ct, true);
300 	if (err)
301 		goto err_out;
302 
303 	mutex_lock(&ct->lock);
304 	spin_lock_irq(&ct->fast_lock);
305 	ct->g2h_outstanding = 0;
306 	ct->enabled = true;
307 	spin_unlock_irq(&ct->fast_lock);
308 	mutex_unlock(&ct->lock);
309 
310 	smp_mb();
311 	wake_up_all(&ct->wq);
312 	drm_dbg(&xe->drm, "GuC CT communication channel enabled\n");
313 
314 	return 0;
315 
316 err_out:
317 	drm_err(&xe->drm, "Failed to enable CT (%d)\n", err);
318 
319 	return err;
320 }
321 
322 void xe_guc_ct_disable(struct xe_guc_ct *ct)
323 {
324 	mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */
325 	spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */
326 	ct->enabled = false; /* Finally disable CT communication */
327 	spin_unlock_irq(&ct->fast_lock);
328 	mutex_unlock(&ct->lock);
329 
330 	xa_destroy(&ct->fence_lookup);
331 }
332 
333 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
334 {
335 	struct guc_ctb *h2g = &ct->ctbs.h2g;
336 
337 	lockdep_assert_held(&ct->lock);
338 
339 	if (cmd_len > h2g->info.space) {
340 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
341 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
342 					     h2g->info.size) -
343 				  h2g->info.resv_space;
344 		if (cmd_len > h2g->info.space)
345 			return false;
346 	}
347 
348 	return true;
349 }
350 
351 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
352 {
353 	if (!g2h_len)
354 		return true;
355 
356 	lockdep_assert_held(&ct->fast_lock);
357 
358 	return ct->ctbs.g2h.info.space > g2h_len;
359 }
360 
361 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
362 {
363 	lockdep_assert_held(&ct->lock);
364 
365 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
366 		return -EBUSY;
367 
368 	return 0;
369 }
370 
371 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
372 {
373 	lockdep_assert_held(&ct->lock);
374 	ct->ctbs.h2g.info.space -= cmd_len;
375 }
376 
377 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
378 {
379 	xe_assert(ct_to_xe(ct), g2h_len <= ct->ctbs.g2h.info.space);
380 
381 	if (g2h_len) {
382 		lockdep_assert_held(&ct->fast_lock);
383 
384 		ct->ctbs.g2h.info.space -= g2h_len;
385 		ct->g2h_outstanding += num_g2h;
386 	}
387 }
388 
389 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
390 {
391 	lockdep_assert_held(&ct->fast_lock);
392 	xe_assert(ct_to_xe(ct), ct->ctbs.g2h.info.space + g2h_len <=
393 		  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
394 
395 	ct->ctbs.g2h.info.space += g2h_len;
396 	--ct->g2h_outstanding;
397 }
398 
399 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
400 {
401 	spin_lock_irq(&ct->fast_lock);
402 	__g2h_release_space(ct, g2h_len);
403 	spin_unlock_irq(&ct->fast_lock);
404 }
405 
406 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
407 
408 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
409 		     u32 ct_fence_value, bool want_response)
410 {
411 	struct xe_device *xe = ct_to_xe(ct);
412 	struct guc_ctb *h2g = &ct->ctbs.h2g;
413 	u32 cmd[H2G_CT_HEADERS];
414 	u32 tail = h2g->info.tail;
415 	u32 full_len;
416 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
417 							 tail * sizeof(u32));
418 
419 	full_len = len + GUC_CTB_HDR_LEN;
420 
421 	lockdep_assert_held(&ct->lock);
422 	xe_assert(xe, full_len <= GUC_CTB_MSG_MAX_LEN);
423 	xe_assert(xe, tail <= h2g->info.size);
424 
425 	/* Command will wrap, zero fill (NOPs), return and check credits again */
426 	if (tail + full_len > h2g->info.size) {
427 		xe_map_memset(xe, &map, 0, 0,
428 			      (h2g->info.size - tail) * sizeof(u32));
429 		h2g_reserve_space(ct, (h2g->info.size - tail));
430 		h2g->info.tail = 0;
431 		desc_write(xe, h2g, tail, h2g->info.tail);
432 
433 		return -EAGAIN;
434 	}
435 
436 	/*
437 	 * dw0: CT header (including fence)
438 	 * dw1: HXG header (including action code)
439 	 * dw2+: action data
440 	 */
441 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
442 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
443 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
444 	if (want_response) {
445 		cmd[1] =
446 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
447 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
448 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
449 	} else {
450 		cmd[1] =
451 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_EVENT) |
452 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
453 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
454 	}
455 
456 	/* H2G header in cmd[1] replaces action[0] so: */
457 	--len;
458 	++action;
459 
460 	/* Write H2G ensuring visable before descriptor update */
461 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
462 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
463 	xe_device_wmb(xe);
464 
465 	/* Update local copies */
466 	h2g->info.tail = (tail + full_len) % h2g->info.size;
467 	h2g_reserve_space(ct, full_len);
468 
469 	/* Update descriptor */
470 	desc_write(xe, h2g, tail, h2g->info.tail);
471 
472 	trace_xe_guc_ctb_h2g(ct_to_gt(ct)->info.id, *(action - 1), full_len,
473 			     desc_read(xe, h2g, head), h2g->info.tail);
474 
475 	return 0;
476 }
477 
478 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
479 				u32 len, u32 g2h_len, u32 num_g2h,
480 				struct g2h_fence *g2h_fence)
481 {
482 	struct xe_device *xe = ct_to_xe(ct);
483 	int ret;
484 
485 	xe_assert(xe, !g2h_len || !g2h_fence);
486 	xe_assert(xe, !num_g2h || !g2h_fence);
487 	xe_assert(xe, !g2h_len || num_g2h);
488 	xe_assert(xe, g2h_len || !num_g2h);
489 	lockdep_assert_held(&ct->lock);
490 
491 	if (unlikely(ct->ctbs.h2g.info.broken)) {
492 		ret = -EPIPE;
493 		goto out;
494 	}
495 
496 	if (unlikely(!ct->enabled)) {
497 		ret = -ENODEV;
498 		goto out;
499 	}
500 
501 	if (g2h_fence) {
502 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
503 		num_g2h = 1;
504 
505 		if (g2h_fence_needs_alloc(g2h_fence)) {
506 			void *ptr;
507 
508 			g2h_fence->seqno = (ct->fence_seqno++ & 0xffff);
509 			ptr = xa_store(&ct->fence_lookup,
510 				       g2h_fence->seqno,
511 				       g2h_fence, GFP_ATOMIC);
512 			if (IS_ERR(ptr)) {
513 				ret = PTR_ERR(ptr);
514 				goto out;
515 			}
516 		}
517 	}
518 
519 	if (g2h_len)
520 		spin_lock_irq(&ct->fast_lock);
521 retry:
522 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
523 	if (unlikely(ret))
524 		goto out_unlock;
525 
526 	ret = h2g_write(ct, action, len, g2h_fence ? g2h_fence->seqno : 0,
527 			!!g2h_fence);
528 	if (unlikely(ret)) {
529 		if (ret == -EAGAIN)
530 			goto retry;
531 		goto out_unlock;
532 	}
533 
534 	__g2h_reserve_space(ct, g2h_len, num_g2h);
535 	xe_guc_notify(ct_to_guc(ct));
536 out_unlock:
537 	if (g2h_len)
538 		spin_unlock_irq(&ct->fast_lock);
539 out:
540 	return ret;
541 }
542 
543 static void kick_reset(struct xe_guc_ct *ct)
544 {
545 	xe_gt_reset_async(ct_to_gt(ct));
546 }
547 
548 static int dequeue_one_g2h(struct xe_guc_ct *ct);
549 
550 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
551 			      u32 g2h_len, u32 num_g2h,
552 			      struct g2h_fence *g2h_fence)
553 {
554 	struct drm_device *drm = &ct_to_xe(ct)->drm;
555 	struct drm_printer p = drm_info_printer(drm->dev);
556 	unsigned int sleep_period_ms = 1;
557 	int ret;
558 
559 	xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);
560 	lockdep_assert_held(&ct->lock);
561 	xe_device_assert_mem_access(ct_to_xe(ct));
562 
563 try_again:
564 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
565 				   g2h_fence);
566 
567 	/*
568 	 * We wait to try to restore credits for about 1 second before bailing.
569 	 * In the case of H2G credits we have no choice but just to wait for the
570 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
571 	 * the case of G2H we process any G2H in the channel, hopefully freeing
572 	 * credits as we consume the G2H messages.
573 	 */
574 	if (unlikely(ret == -EBUSY &&
575 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
576 		struct guc_ctb *h2g = &ct->ctbs.h2g;
577 
578 		if (sleep_period_ms == 1024)
579 			goto broken;
580 
581 		trace_xe_guc_ct_h2g_flow_control(h2g->info.head, h2g->info.tail,
582 						 h2g->info.size,
583 						 h2g->info.space,
584 						 len + GUC_CTB_HDR_LEN);
585 		msleep(sleep_period_ms);
586 		sleep_period_ms <<= 1;
587 
588 		goto try_again;
589 	} else if (unlikely(ret == -EBUSY)) {
590 		struct xe_device *xe = ct_to_xe(ct);
591 		struct guc_ctb *g2h = &ct->ctbs.g2h;
592 
593 		trace_xe_guc_ct_g2h_flow_control(g2h->info.head,
594 						 desc_read(xe, g2h, tail),
595 						 g2h->info.size,
596 						 g2h->info.space,
597 						 g2h_fence ?
598 						 GUC_CTB_HXG_MSG_MAX_LEN :
599 						 g2h_len);
600 
601 #define g2h_avail(ct)	\
602 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
603 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
604 					g2h_avail(ct), HZ))
605 			goto broken;
606 #undef g2h_avail
607 
608 		if (dequeue_one_g2h(ct) < 0)
609 			goto broken;
610 
611 		goto try_again;
612 	}
613 
614 	return ret;
615 
616 broken:
617 	drm_err(drm, "No forward process on H2G, reset required");
618 	xe_guc_ct_print(ct, &p, true);
619 	ct->ctbs.h2g.info.broken = true;
620 
621 	return -EDEADLK;
622 }
623 
624 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
625 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
626 {
627 	int ret;
628 
629 	xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);
630 
631 	mutex_lock(&ct->lock);
632 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
633 	mutex_unlock(&ct->lock);
634 
635 	return ret;
636 }
637 
638 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
639 		   u32 g2h_len, u32 num_g2h)
640 {
641 	int ret;
642 
643 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
644 	if (ret == -EDEADLK)
645 		kick_reset(ct);
646 
647 	return ret;
648 }
649 
650 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
651 			  u32 g2h_len, u32 num_g2h)
652 {
653 	int ret;
654 
655 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
656 	if (ret == -EDEADLK)
657 		kick_reset(ct);
658 
659 	return ret;
660 }
661 
662 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
663 {
664 	int ret;
665 
666 	lockdep_assert_held(&ct->lock);
667 
668 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
669 	if (ret == -EDEADLK)
670 		kick_reset(ct);
671 
672 	return ret;
673 }
674 
675 /*
676  * Check if a GT reset is in progress or will occur and if GT reset brought the
677  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
678  */
679 static bool retry_failure(struct xe_guc_ct *ct, int ret)
680 {
681 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
682 		return false;
683 
684 #define ct_alive(ct)	\
685 	(ct->enabled && !ct->ctbs.h2g.info.broken && !ct->ctbs.g2h.info.broken)
686 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
687 		return false;
688 #undef ct_alive
689 
690 	return true;
691 }
692 
693 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
694 			    u32 *response_buffer, bool no_fail)
695 {
696 	struct xe_device *xe = ct_to_xe(ct);
697 	struct g2h_fence g2h_fence;
698 	int ret = 0;
699 
700 	/*
701 	 * We use a fence to implement blocking sends / receiving response data.
702 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
703 	 * an xarray is used as storage media with the seqno being to key.
704 	 * Fields in the fence hold success, failure, retry status and the
705 	 * response data. Safe to allocate on the stack as the xarray is the
706 	 * only reference and it cannot be present after this function exits.
707 	 */
708 retry:
709 	g2h_fence_init(&g2h_fence, response_buffer);
710 retry_same_fence:
711 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
712 	if (unlikely(ret == -ENOMEM)) {
713 		void *ptr;
714 
715 		/* Retry allocation /w GFP_KERNEL */
716 		ptr = xa_store(&ct->fence_lookup,
717 			       g2h_fence.seqno,
718 			       &g2h_fence, GFP_KERNEL);
719 		if (IS_ERR(ptr))
720 			return PTR_ERR(ptr);
721 
722 		goto retry_same_fence;
723 	} else if (unlikely(ret)) {
724 		if (ret == -EDEADLK)
725 			kick_reset(ct);
726 
727 		if (no_fail && retry_failure(ct, ret))
728 			goto retry_same_fence;
729 
730 		if (!g2h_fence_needs_alloc(&g2h_fence))
731 			xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
732 
733 		return ret;
734 	}
735 
736 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
737 	if (!ret) {
738 		drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x",
739 			g2h_fence.seqno, action[0]);
740 		xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
741 		return -ETIME;
742 	}
743 
744 	if (g2h_fence.retry) {
745 		drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d",
746 			 action[0], g2h_fence.reason);
747 		goto retry;
748 	}
749 	if (g2h_fence.fail) {
750 		drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d",
751 			action[0], g2h_fence.error, g2h_fence.hint);
752 		ret = -EIO;
753 	}
754 
755 	return ret > 0 ? 0 : ret;
756 }
757 
758 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
759 			u32 *response_buffer)
760 {
761 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
762 }
763 
764 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
765 				u32 len, u32 *response_buffer)
766 {
767 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
768 }
769 
770 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
771 {
772 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]);
773 
774 	lockdep_assert_held(&ct->lock);
775 
776 	switch (action) {
777 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
778 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
779 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
780 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
781 		g2h_release_space(ct, len);
782 	}
783 
784 	return 0;
785 }
786 
787 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
788 {
789 	struct xe_device *xe = ct_to_xe(ct);
790 	u32 response_len = len - GUC_CTB_MSG_MIN_LEN;
791 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
792 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]);
793 	struct g2h_fence *g2h_fence;
794 
795 	lockdep_assert_held(&ct->lock);
796 
797 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
798 	if (unlikely(!g2h_fence)) {
799 		/* Don't tear down channel, as send could've timed out */
800 		drm_warn(&xe->drm, "G2H fence (%u) not found!\n", fence);
801 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
802 		return 0;
803 	}
804 
805 	xe_assert(xe, fence == g2h_fence->seqno);
806 
807 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
808 		g2h_fence->fail = true;
809 		g2h_fence->error =
810 			FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, msg[1]);
811 		g2h_fence->hint =
812 			FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, msg[1]);
813 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
814 		g2h_fence->retry = true;
815 		g2h_fence->reason =
816 			FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, msg[1]);
817 	} else if (g2h_fence->response_buffer) {
818 		g2h_fence->response_len = response_len;
819 		memcpy(g2h_fence->response_buffer, msg + GUC_CTB_MSG_MIN_LEN,
820 		       response_len * sizeof(u32));
821 	}
822 
823 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
824 
825 	g2h_fence->done = true;
826 	smp_mb();
827 
828 	wake_up_all(&ct->g2h_fence_wq);
829 
830 	return 0;
831 }
832 
833 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
834 {
835 	struct xe_device *xe = ct_to_xe(ct);
836 	u32 hxg, origin, type;
837 	int ret;
838 
839 	lockdep_assert_held(&ct->lock);
840 
841 	hxg = msg[1];
842 
843 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg);
844 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
845 		drm_err(&xe->drm,
846 			"G2H channel broken on read, origin=%d, reset required\n",
847 			origin);
848 		ct->ctbs.g2h.info.broken = true;
849 
850 		return -EPROTO;
851 	}
852 
853 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg);
854 	switch (type) {
855 	case GUC_HXG_TYPE_EVENT:
856 		ret = parse_g2h_event(ct, msg, len);
857 		break;
858 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
859 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
860 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
861 		ret = parse_g2h_response(ct, msg, len);
862 		break;
863 	default:
864 		drm_err(&xe->drm,
865 			"G2H channel broken on read, type=%d, reset required\n",
866 			type);
867 		ct->ctbs.g2h.info.broken = true;
868 
869 		ret = -EOPNOTSUPP;
870 	}
871 
872 	return ret;
873 }
874 
875 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
876 {
877 	struct xe_device *xe = ct_to_xe(ct);
878 	struct xe_guc *guc = ct_to_guc(ct);
879 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]);
880 	u32 *payload = msg + GUC_CTB_HXG_MSG_MIN_LEN;
881 	u32 adj_len = len - GUC_CTB_HXG_MSG_MIN_LEN;
882 	int ret = 0;
883 
884 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]) != GUC_HXG_TYPE_EVENT)
885 		return 0;
886 
887 	switch (action) {
888 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
889 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
890 		break;
891 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
892 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
893 		break;
894 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
895 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
896 		break;
897 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
898 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
899 							      adj_len);
900 		break;
901 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
902 		/* Selftest only at the moment */
903 		break;
904 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
905 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
906 		/* FIXME: Handle this */
907 		break;
908 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
909 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
910 								 adj_len);
911 		break;
912 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
913 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
914 		break;
915 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
916 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
917 							   adj_len);
918 		break;
919 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
920 		ret = xe_guc_access_counter_notify_handler(guc, payload,
921 							   adj_len);
922 		break;
923 	default:
924 		drm_err(&xe->drm, "unexpected action 0x%04x\n", action);
925 	}
926 
927 	if (ret)
928 		drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
929 			action, ret);
930 
931 	return 0;
932 }
933 
934 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
935 {
936 	struct xe_device *xe = ct_to_xe(ct);
937 	struct guc_ctb *g2h = &ct->ctbs.g2h;
938 	u32 tail, head, len;
939 	s32 avail;
940 	u32 action;
941 
942 	lockdep_assert_held(&ct->fast_lock);
943 
944 	if (!ct->enabled)
945 		return -ENODEV;
946 
947 	if (g2h->info.broken)
948 		return -EPIPE;
949 
950 	/* Calculate DW available to read */
951 	tail = desc_read(xe, g2h, tail);
952 	avail = tail - g2h->info.head;
953 	if (unlikely(avail == 0))
954 		return 0;
955 
956 	if (avail < 0)
957 		avail += g2h->info.size;
958 
959 	/* Read header */
960 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
961 			   sizeof(u32));
962 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
963 	if (len > avail) {
964 		drm_err(&xe->drm,
965 			"G2H channel broken on read, avail=%d, len=%d, reset required\n",
966 			avail, len);
967 		g2h->info.broken = true;
968 
969 		return -EPROTO;
970 	}
971 
972 	head = (g2h->info.head + 1) % g2h->info.size;
973 	avail = len - 1;
974 
975 	/* Read G2H message */
976 	if (avail + head > g2h->info.size) {
977 		u32 avail_til_wrap = g2h->info.size - head;
978 
979 		xe_map_memcpy_from(xe, msg + 1,
980 				   &g2h->cmds, sizeof(u32) * head,
981 				   avail_til_wrap * sizeof(u32));
982 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
983 				   &g2h->cmds, 0,
984 				   (avail - avail_til_wrap) * sizeof(u32));
985 	} else {
986 		xe_map_memcpy_from(xe, msg + 1,
987 				   &g2h->cmds, sizeof(u32) * head,
988 				   avail * sizeof(u32));
989 	}
990 
991 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]);
992 
993 	if (fast_path) {
994 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]) != GUC_HXG_TYPE_EVENT)
995 			return 0;
996 
997 		switch (action) {
998 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
999 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1000 			break;	/* Process these in fast-path */
1001 		default:
1002 			return 0;
1003 		}
1004 	}
1005 
1006 	/* Update local / descriptor header */
1007 	g2h->info.head = (head + avail) % g2h->info.size;
1008 	desc_write(xe, g2h, head, g2h->info.head);
1009 
1010 	trace_xe_guc_ctb_g2h(ct_to_gt(ct)->info.id, action, len,
1011 			     g2h->info.head, tail);
1012 
1013 	return len;
1014 }
1015 
1016 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1017 {
1018 	struct xe_device *xe = ct_to_xe(ct);
1019 	struct xe_guc *guc = ct_to_guc(ct);
1020 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]);
1021 	u32 *payload = msg + GUC_CTB_HXG_MSG_MIN_LEN;
1022 	u32 adj_len = len - GUC_CTB_HXG_MSG_MIN_LEN;
1023 	int ret = 0;
1024 
1025 	switch (action) {
1026 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1027 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1028 		break;
1029 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1030 		__g2h_release_space(ct, len);
1031 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1032 							   adj_len);
1033 		break;
1034 	default:
1035 		drm_warn(&xe->drm, "NOT_POSSIBLE");
1036 	}
1037 
1038 	if (ret)
1039 		drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
1040 			action, ret);
1041 }
1042 
1043 /**
1044  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1045  * @ct: GuC CT object
1046  *
1047  * Anything related to page faults is critical for performance, process these
1048  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1049  * waiters or queue another worker.
1050  */
1051 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1052 {
1053 	struct xe_device *xe = ct_to_xe(ct);
1054 	bool ongoing;
1055 	int len;
1056 
1057 	ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
1058 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1059 		return;
1060 
1061 	spin_lock(&ct->fast_lock);
1062 	do {
1063 		len = g2h_read(ct, ct->fast_msg, true);
1064 		if (len > 0)
1065 			g2h_fast_path(ct, ct->fast_msg, len);
1066 	} while (len > 0);
1067 	spin_unlock(&ct->fast_lock);
1068 
1069 	if (ongoing)
1070 		xe_device_mem_access_put(xe);
1071 }
1072 
1073 /* Returns less than zero on error, 0 on done, 1 on more available */
1074 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1075 {
1076 	int len;
1077 	int ret;
1078 
1079 	lockdep_assert_held(&ct->lock);
1080 
1081 	spin_lock_irq(&ct->fast_lock);
1082 	len = g2h_read(ct, ct->msg, false);
1083 	spin_unlock_irq(&ct->fast_lock);
1084 	if (len <= 0)
1085 		return len;
1086 
1087 	ret = parse_g2h_msg(ct, ct->msg, len);
1088 	if (unlikely(ret < 0))
1089 		return ret;
1090 
1091 	ret = process_g2h_msg(ct, ct->msg, len);
1092 	if (unlikely(ret < 0))
1093 		return ret;
1094 
1095 	return 1;
1096 }
1097 
1098 static void g2h_worker_func(struct work_struct *w)
1099 {
1100 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1101 	bool ongoing;
1102 	int ret;
1103 
1104 	/*
1105 	 * Normal users must always hold mem_access.ref around CT calls. However
1106 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1107 	 * at this stage we can't rely on mem_access.ref and even the
1108 	 * callback_task will be different than current.  For such cases we just
1109 	 * need to ensure we always process the responses from any blocking
1110 	 * ct_send requests or where we otherwise expect some response when
1111 	 * initiated from those callbacks (which will need to wait for the below
1112 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1113 	 * the device has suspended to the point that the CT communication has
1114 	 * been disabled.
1115 	 *
1116 	 * If we are inside the runtime pm callback, we can be the only task
1117 	 * still issuing CT requests (since that requires having the
1118 	 * mem_access.ref).  It seems like it might in theory be possible to
1119 	 * receive unsolicited events from the GuC just as we are
1120 	 * suspending-resuming, but those will currently anyway be lost when
1121 	 * eventually exiting from suspend, hence no need to wake up the device
1122 	 * here. If we ever need something stronger than get_if_ongoing() then
1123 	 * we need to be careful with blocking the pm callbacks from getting CT
1124 	 * responses, if the worker here is blocked on those callbacks
1125 	 * completing, creating a deadlock.
1126 	 */
1127 	ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
1128 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1129 		return;
1130 
1131 	do {
1132 		mutex_lock(&ct->lock);
1133 		ret = dequeue_one_g2h(ct);
1134 		mutex_unlock(&ct->lock);
1135 
1136 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1137 			struct drm_device *drm = &ct_to_xe(ct)->drm;
1138 			struct drm_printer p = drm_info_printer(drm->dev);
1139 
1140 			xe_guc_ct_print(ct, &p, false);
1141 			kick_reset(ct);
1142 		}
1143 	} while (ret == 1);
1144 
1145 	if (ongoing)
1146 		xe_device_mem_access_put(ct_to_xe(ct));
1147 }
1148 
1149 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1150 				     struct guc_ctb_snapshot *snapshot,
1151 				     bool atomic)
1152 {
1153 	u32 head, tail;
1154 
1155 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1156 			   sizeof(struct guc_ct_buffer_desc));
1157 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1158 
1159 	snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
1160 				       atomic ? GFP_ATOMIC : GFP_KERNEL);
1161 
1162 	if (!snapshot->cmds) {
1163 		drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
1164 		return;
1165 	}
1166 
1167 	head = snapshot->desc.head;
1168 	tail = snapshot->desc.tail;
1169 
1170 	if (head != tail) {
1171 		struct iosys_map map =
1172 			IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
1173 
1174 		while (head != tail) {
1175 			snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
1176 			++head;
1177 			if (head == ctb->info.size) {
1178 				head = 0;
1179 				map = ctb->cmds;
1180 			} else {
1181 				iosys_map_incr(&map, sizeof(u32));
1182 			}
1183 		}
1184 	}
1185 }
1186 
1187 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1188 				   struct drm_printer *p)
1189 {
1190 	u32 head, tail;
1191 
1192 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1193 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1194 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1195 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1196 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1197 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1198 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1199 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1200 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1201 
1202 	if (!snapshot->cmds)
1203 		return;
1204 
1205 	head = snapshot->desc.head;
1206 	tail = snapshot->desc.tail;
1207 
1208 	while (head != tail) {
1209 		drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
1210 			   snapshot->cmds[head]);
1211 		++head;
1212 		if (head == snapshot->info.size)
1213 			head = 0;
1214 	}
1215 }
1216 
1217 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
1218 {
1219 	kfree(snapshot->cmds);
1220 }
1221 
1222 /**
1223  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1224  * @ct: GuC CT object.
1225  * @atomic: Boolean to indicate if this is called from atomic context like
1226  * reset or CTB handler or from some regular path like debugfs.
1227  *
1228  * This can be printed out in a later stage like during dev_coredump
1229  * analysis.
1230  *
1231  * Returns: a GuC CT snapshot object that must be freed by the caller
1232  * by using `xe_guc_ct_snapshot_free`.
1233  */
1234 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
1235 						      bool atomic)
1236 {
1237 	struct xe_device *xe = ct_to_xe(ct);
1238 	struct xe_guc_ct_snapshot *snapshot;
1239 
1240 	snapshot = kzalloc(sizeof(*snapshot),
1241 			   atomic ? GFP_ATOMIC : GFP_KERNEL);
1242 
1243 	if (!snapshot) {
1244 		drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
1245 		return NULL;
1246 	}
1247 
1248 	if (ct->enabled) {
1249 		snapshot->ct_enabled = true;
1250 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1251 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
1252 					 &snapshot->h2g, atomic);
1253 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
1254 					 &snapshot->g2h, atomic);
1255 	}
1256 
1257 	return snapshot;
1258 }
1259 
1260 /**
1261  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1262  * @snapshot: GuC CT snapshot object.
1263  * @p: drm_printer where it will be printed out.
1264  *
1265  * This function prints out a given GuC CT snapshot object.
1266  */
1267 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1268 			      struct drm_printer *p)
1269 {
1270 	if (!snapshot)
1271 		return;
1272 
1273 	if (snapshot->ct_enabled) {
1274 		drm_puts(p, "\nH2G CTB (all sizes in DW):\n");
1275 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1276 
1277 		drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
1278 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1279 
1280 		drm_printf(p, "\tg2h outstanding: %d\n",
1281 			   snapshot->g2h_outstanding);
1282 	} else {
1283 		drm_puts(p, "\nCT disabled\n");
1284 	}
1285 }
1286 
1287 /**
1288  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1289  * @snapshot: GuC CT snapshot object.
1290  *
1291  * This function free all the memory that needed to be allocated at capture
1292  * time.
1293  */
1294 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1295 {
1296 	if (!snapshot)
1297 		return;
1298 
1299 	guc_ctb_snapshot_free(&snapshot->h2g);
1300 	guc_ctb_snapshot_free(&snapshot->g2h);
1301 	kfree(snapshot);
1302 }
1303 
1304 /**
1305  * xe_guc_ct_print - GuC CT Print.
1306  * @ct: GuC CT.
1307  * @p: drm_printer where it will be printed out.
1308  * @atomic: Boolean to indicate if this is called from atomic context like
1309  * reset or CTB handler or from some regular path like debugfs.
1310  *
1311  * This function quickly capture a snapshot and immediately print it out.
1312  */
1313 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
1314 {
1315 	struct xe_guc_ct_snapshot *snapshot;
1316 
1317 	snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
1318 	xe_guc_ct_snapshot_print(snapshot, p);
1319 	xe_guc_ct_snapshot_free(snapshot);
1320 }
1321