1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_ct.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/circ_buf.h> 10 #include <linux/delay.h> 11 12 #include <kunit/static_stub.h> 13 14 #include <drm/drm_managed.h> 15 16 #include "abi/guc_actions_abi.h" 17 #include "abi/guc_actions_sriov_abi.h" 18 #include "abi/guc_klvs_abi.h" 19 #include "xe_bo.h" 20 #include "xe_device.h" 21 #include "xe_gt.h" 22 #include "xe_gt_pagefault.h" 23 #include "xe_gt_printk.h" 24 #include "xe_gt_tlb_invalidation.h" 25 #include "xe_guc.h" 26 #include "xe_guc_relay.h" 27 #include "xe_guc_submit.h" 28 #include "xe_map.h" 29 #include "xe_pm.h" 30 #include "xe_trace.h" 31 32 /* Used when a CT send wants to block and / or receive data */ 33 struct g2h_fence { 34 u32 *response_buffer; 35 u32 seqno; 36 u32 response_data; 37 u16 response_len; 38 u16 error; 39 u16 hint; 40 u16 reason; 41 bool retry; 42 bool fail; 43 bool done; 44 }; 45 46 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) 47 { 48 g2h_fence->response_buffer = response_buffer; 49 g2h_fence->response_data = 0; 50 g2h_fence->response_len = 0; 51 g2h_fence->fail = false; 52 g2h_fence->retry = false; 53 g2h_fence->done = false; 54 g2h_fence->seqno = ~0x0; 55 } 56 57 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) 58 { 59 return g2h_fence->seqno == ~0x0; 60 } 61 62 static struct xe_guc * 63 ct_to_guc(struct xe_guc_ct *ct) 64 { 65 return container_of(ct, struct xe_guc, ct); 66 } 67 68 static struct xe_gt * 69 ct_to_gt(struct xe_guc_ct *ct) 70 { 71 return container_of(ct, struct xe_gt, uc.guc.ct); 72 } 73 74 static struct xe_device * 75 ct_to_xe(struct xe_guc_ct *ct) 76 { 77 return gt_to_xe(ct_to_gt(ct)); 78 } 79 80 /** 81 * DOC: GuC CTB Blob 82 * 83 * We allocate single blob to hold both CTB descriptors and buffers: 84 * 85 * +--------+-----------------------------------------------+------+ 86 * | offset | contents | size | 87 * +========+===============================================+======+ 88 * | 0x0000 | H2G CTB Descriptor (send) | | 89 * +--------+-----------------------------------------------+ 4K | 90 * | 0x0800 | G2H CTB Descriptor (g2h) | | 91 * +--------+-----------------------------------------------+------+ 92 * | 0x1000 | H2G CT Buffer (send) | n*4K | 93 * | | | | 94 * +--------+-----------------------------------------------+------+ 95 * | 0x1000 | G2H CT Buffer (g2h) | m*4K | 96 * | + n*4K | | | 97 * +--------+-----------------------------------------------+------+ 98 * 99 * Size of each ``CT Buffer`` must be multiple of 4K. 100 * We don't expect too many messages in flight at any time, unless we are 101 * using the GuC submission. In that case each request requires a minimum 102 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this 103 * enough space to avoid backpressure on the driver. We increase the size 104 * of the receive buffer (relative to the send) to ensure a G2H response 105 * CTB has a landing spot. 106 */ 107 108 #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) 109 #define CTB_H2G_BUFFER_SIZE (SZ_4K) 110 #define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE) 111 #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4) 112 113 static size_t guc_ct_size(void) 114 { 115 return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + 116 CTB_G2H_BUFFER_SIZE; 117 } 118 119 static void guc_ct_fini(struct drm_device *drm, void *arg) 120 { 121 struct xe_guc_ct *ct = arg; 122 123 destroy_workqueue(ct->g2h_wq); 124 xa_destroy(&ct->fence_lookup); 125 } 126 127 static void g2h_worker_func(struct work_struct *w); 128 129 static void primelockdep(struct xe_guc_ct *ct) 130 { 131 if (!IS_ENABLED(CONFIG_LOCKDEP)) 132 return; 133 134 fs_reclaim_acquire(GFP_KERNEL); 135 might_lock(&ct->lock); 136 fs_reclaim_release(GFP_KERNEL); 137 } 138 139 int xe_guc_ct_init(struct xe_guc_ct *ct) 140 { 141 struct xe_device *xe = ct_to_xe(ct); 142 struct xe_gt *gt = ct_to_gt(ct); 143 struct xe_tile *tile = gt_to_tile(gt); 144 struct xe_bo *bo; 145 int err; 146 147 xe_assert(xe, !(guc_ct_size() % PAGE_SIZE)); 148 149 ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0); 150 if (!ct->g2h_wq) 151 return -ENOMEM; 152 153 spin_lock_init(&ct->fast_lock); 154 xa_init(&ct->fence_lookup); 155 INIT_WORK(&ct->g2h_worker, g2h_worker_func); 156 init_waitqueue_head(&ct->wq); 157 init_waitqueue_head(&ct->g2h_fence_wq); 158 159 err = drmm_mutex_init(&xe->drm, &ct->lock); 160 if (err) 161 return err; 162 163 primelockdep(ct); 164 165 bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), 166 XE_BO_CREATE_SYSTEM_BIT | 167 XE_BO_CREATE_GGTT_BIT); 168 if (IS_ERR(bo)) 169 return PTR_ERR(bo); 170 171 ct->bo = bo; 172 173 err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); 174 if (err) 175 return err; 176 177 xe_assert(xe, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); 178 ct->state = XE_GUC_CT_STATE_DISABLED; 179 return 0; 180 } 181 182 #define desc_read(xe_, guc_ctb__, field_) \ 183 xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ 184 struct guc_ct_buffer_desc, field_) 185 186 #define desc_write(xe_, guc_ctb__, field_, val_) \ 187 xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ 188 struct guc_ct_buffer_desc, field_, val_) 189 190 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, 191 struct iosys_map *map) 192 { 193 h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); 194 h2g->info.resv_space = 0; 195 h2g->info.tail = 0; 196 h2g->info.head = 0; 197 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, 198 h2g->info.size) - 199 h2g->info.resv_space; 200 h2g->info.broken = false; 201 202 h2g->desc = *map; 203 xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); 204 205 h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); 206 } 207 208 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, 209 struct iosys_map *map) 210 { 211 g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); 212 g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); 213 g2h->info.head = 0; 214 g2h->info.tail = 0; 215 g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, 216 g2h->info.size) - 217 g2h->info.resv_space; 218 g2h->info.broken = false; 219 220 g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); 221 xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); 222 223 g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + 224 CTB_H2G_BUFFER_SIZE); 225 } 226 227 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) 228 { 229 struct xe_guc *guc = ct_to_guc(ct); 230 u32 desc_addr, ctb_addr, size; 231 int err; 232 233 desc_addr = xe_bo_ggtt_addr(ct->bo); 234 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; 235 size = ct->ctbs.h2g.info.size * sizeof(u32); 236 237 err = xe_guc_self_cfg64(guc, 238 GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, 239 desc_addr); 240 if (err) 241 return err; 242 243 err = xe_guc_self_cfg64(guc, 244 GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, 245 ctb_addr); 246 if (err) 247 return err; 248 249 return xe_guc_self_cfg32(guc, 250 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, 251 size); 252 } 253 254 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) 255 { 256 struct xe_guc *guc = ct_to_guc(ct); 257 u32 desc_addr, ctb_addr, size; 258 int err; 259 260 desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; 261 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + 262 CTB_H2G_BUFFER_SIZE; 263 size = ct->ctbs.g2h.info.size * sizeof(u32); 264 265 err = xe_guc_self_cfg64(guc, 266 GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, 267 desc_addr); 268 if (err) 269 return err; 270 271 err = xe_guc_self_cfg64(guc, 272 GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, 273 ctb_addr); 274 if (err) 275 return err; 276 277 return xe_guc_self_cfg32(guc, 278 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, 279 size); 280 } 281 282 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) 283 { 284 u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { 285 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 286 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 287 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, 288 GUC_ACTION_HOST2GUC_CONTROL_CTB), 289 FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, 290 enable ? GUC_CTB_CONTROL_ENABLE : 291 GUC_CTB_CONTROL_DISABLE), 292 }; 293 int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); 294 295 return ret > 0 ? -EPROTO : ret; 296 } 297 298 static void xe_guc_ct_set_state(struct xe_guc_ct *ct, 299 enum xe_guc_ct_state state) 300 { 301 mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ 302 spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ 303 304 xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || 305 state == XE_GUC_CT_STATE_STOPPED); 306 307 ct->g2h_outstanding = 0; 308 ct->state = state; 309 310 spin_unlock_irq(&ct->fast_lock); 311 312 /* 313 * Lockdep doesn't like this under the fast lock and he destroy only 314 * needs to be serialized with the send path which ct lock provides. 315 */ 316 xa_destroy(&ct->fence_lookup); 317 318 mutex_unlock(&ct->lock); 319 } 320 321 int xe_guc_ct_enable(struct xe_guc_ct *ct) 322 { 323 struct xe_device *xe = ct_to_xe(ct); 324 int err; 325 326 xe_assert(xe, !xe_guc_ct_enabled(ct)); 327 328 guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); 329 guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); 330 331 err = guc_ct_ctb_h2g_register(ct); 332 if (err) 333 goto err_out; 334 335 err = guc_ct_ctb_g2h_register(ct); 336 if (err) 337 goto err_out; 338 339 err = guc_ct_control_toggle(ct, true); 340 if (err) 341 goto err_out; 342 343 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); 344 345 smp_mb(); 346 wake_up_all(&ct->wq); 347 drm_dbg(&xe->drm, "GuC CT communication channel enabled\n"); 348 349 return 0; 350 351 err_out: 352 drm_err(&xe->drm, "Failed to enable CT (%d)\n", err); 353 354 return err; 355 } 356 357 static void stop_g2h_handler(struct xe_guc_ct *ct) 358 { 359 cancel_work_sync(&ct->g2h_worker); 360 } 361 362 /** 363 * xe_guc_ct_disable - Set GuC to disabled state 364 * @ct: the &xe_guc_ct 365 * 366 * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected 367 * in this transition. 368 */ 369 void xe_guc_ct_disable(struct xe_guc_ct *ct) 370 { 371 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); 372 stop_g2h_handler(ct); 373 } 374 375 /** 376 * xe_guc_ct_stop - Set GuC to stopped state 377 * @ct: the &xe_guc_ct 378 * 379 * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h 380 */ 381 void xe_guc_ct_stop(struct xe_guc_ct *ct) 382 { 383 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); 384 stop_g2h_handler(ct); 385 } 386 387 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) 388 { 389 struct guc_ctb *h2g = &ct->ctbs.h2g; 390 391 lockdep_assert_held(&ct->lock); 392 393 if (cmd_len > h2g->info.space) { 394 h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); 395 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, 396 h2g->info.size) - 397 h2g->info.resv_space; 398 if (cmd_len > h2g->info.space) 399 return false; 400 } 401 402 return true; 403 } 404 405 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) 406 { 407 if (!g2h_len) 408 return true; 409 410 lockdep_assert_held(&ct->fast_lock); 411 412 return ct->ctbs.g2h.info.space > g2h_len; 413 } 414 415 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) 416 { 417 lockdep_assert_held(&ct->lock); 418 419 if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) 420 return -EBUSY; 421 422 return 0; 423 } 424 425 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) 426 { 427 lockdep_assert_held(&ct->lock); 428 ct->ctbs.h2g.info.space -= cmd_len; 429 } 430 431 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) 432 { 433 xe_assert(ct_to_xe(ct), g2h_len <= ct->ctbs.g2h.info.space); 434 435 if (g2h_len) { 436 lockdep_assert_held(&ct->fast_lock); 437 438 ct->ctbs.g2h.info.space -= g2h_len; 439 ct->g2h_outstanding += num_g2h; 440 } 441 } 442 443 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) 444 { 445 lockdep_assert_held(&ct->fast_lock); 446 xe_assert(ct_to_xe(ct), ct->ctbs.g2h.info.space + g2h_len <= 447 ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space); 448 449 ct->ctbs.g2h.info.space += g2h_len; 450 --ct->g2h_outstanding; 451 } 452 453 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) 454 { 455 spin_lock_irq(&ct->fast_lock); 456 __g2h_release_space(ct, g2h_len); 457 spin_unlock_irq(&ct->fast_lock); 458 } 459 460 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ 461 462 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, 463 u32 ct_fence_value, bool want_response) 464 { 465 struct xe_device *xe = ct_to_xe(ct); 466 struct guc_ctb *h2g = &ct->ctbs.h2g; 467 u32 cmd[H2G_CT_HEADERS]; 468 u32 tail = h2g->info.tail; 469 u32 full_len; 470 struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, 471 tail * sizeof(u32)); 472 473 full_len = len + GUC_CTB_HDR_LEN; 474 475 lockdep_assert_held(&ct->lock); 476 xe_assert(xe, full_len <= GUC_CTB_MSG_MAX_LEN); 477 xe_assert(xe, tail <= h2g->info.size); 478 479 /* Command will wrap, zero fill (NOPs), return and check credits again */ 480 if (tail + full_len > h2g->info.size) { 481 xe_map_memset(xe, &map, 0, 0, 482 (h2g->info.size - tail) * sizeof(u32)); 483 h2g_reserve_space(ct, (h2g->info.size - tail)); 484 h2g->info.tail = 0; 485 desc_write(xe, h2g, tail, h2g->info.tail); 486 487 return -EAGAIN; 488 } 489 490 /* 491 * dw0: CT header (including fence) 492 * dw1: HXG header (including action code) 493 * dw2+: action data 494 */ 495 cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | 496 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | 497 FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); 498 if (want_response) { 499 cmd[1] = 500 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 501 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | 502 GUC_HXG_EVENT_MSG_0_DATA0, action[0]); 503 } else { 504 cmd[1] = 505 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | 506 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | 507 GUC_HXG_EVENT_MSG_0_DATA0, action[0]); 508 } 509 510 /* H2G header in cmd[1] replaces action[0] so: */ 511 --len; 512 ++action; 513 514 /* Write H2G ensuring visable before descriptor update */ 515 xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); 516 xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); 517 xe_device_wmb(xe); 518 519 /* Update local copies */ 520 h2g->info.tail = (tail + full_len) % h2g->info.size; 521 h2g_reserve_space(ct, full_len); 522 523 /* Update descriptor */ 524 desc_write(xe, h2g, tail, h2g->info.tail); 525 526 trace_xe_guc_ctb_h2g(ct_to_gt(ct)->info.id, *(action - 1), full_len, 527 desc_read(xe, h2g, head), h2g->info.tail); 528 529 return 0; 530 } 531 532 /* 533 * The CT protocol accepts a 16 bits fence. This field is fully owned by the 534 * driver, the GuC will just copy it to the reply message. Since we need to 535 * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, 536 * we use one bit of the seqno as an indicator for that and a rolling counter 537 * for the remaining 15 bits. 538 */ 539 #define CT_SEQNO_MASK GENMASK(14, 0) 540 #define CT_SEQNO_UNTRACKED BIT(15) 541 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) 542 { 543 u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; 544 545 if (!is_g2h_fence) 546 seqno |= CT_SEQNO_UNTRACKED; 547 548 return seqno; 549 } 550 551 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, 552 u32 len, u32 g2h_len, u32 num_g2h, 553 struct g2h_fence *g2h_fence) 554 { 555 struct xe_device *xe = ct_to_xe(ct); 556 u16 seqno; 557 int ret; 558 559 xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); 560 xe_assert(xe, !g2h_len || !g2h_fence); 561 xe_assert(xe, !num_g2h || !g2h_fence); 562 xe_assert(xe, !g2h_len || num_g2h); 563 xe_assert(xe, g2h_len || !num_g2h); 564 lockdep_assert_held(&ct->lock); 565 566 if (unlikely(ct->ctbs.h2g.info.broken)) { 567 ret = -EPIPE; 568 goto out; 569 } 570 571 if (ct->state == XE_GUC_CT_STATE_DISABLED) { 572 ret = -ENODEV; 573 goto out; 574 } 575 576 if (ct->state == XE_GUC_CT_STATE_STOPPED) { 577 ret = -ECANCELED; 578 goto out; 579 } 580 581 xe_assert(xe, xe_guc_ct_enabled(ct)); 582 583 if (g2h_fence) { 584 g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; 585 num_g2h = 1; 586 587 if (g2h_fence_needs_alloc(g2h_fence)) { 588 void *ptr; 589 590 g2h_fence->seqno = next_ct_seqno(ct, true); 591 ptr = xa_store(&ct->fence_lookup, 592 g2h_fence->seqno, 593 g2h_fence, GFP_ATOMIC); 594 if (IS_ERR(ptr)) { 595 ret = PTR_ERR(ptr); 596 goto out; 597 } 598 } 599 600 seqno = g2h_fence->seqno; 601 } else { 602 seqno = next_ct_seqno(ct, false); 603 } 604 605 if (g2h_len) 606 spin_lock_irq(&ct->fast_lock); 607 retry: 608 ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); 609 if (unlikely(ret)) 610 goto out_unlock; 611 612 ret = h2g_write(ct, action, len, seqno, !!g2h_fence); 613 if (unlikely(ret)) { 614 if (ret == -EAGAIN) 615 goto retry; 616 goto out_unlock; 617 } 618 619 __g2h_reserve_space(ct, g2h_len, num_g2h); 620 xe_guc_notify(ct_to_guc(ct)); 621 out_unlock: 622 if (g2h_len) 623 spin_unlock_irq(&ct->fast_lock); 624 out: 625 return ret; 626 } 627 628 static void kick_reset(struct xe_guc_ct *ct) 629 { 630 xe_gt_reset_async(ct_to_gt(ct)); 631 } 632 633 static int dequeue_one_g2h(struct xe_guc_ct *ct); 634 635 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, 636 u32 g2h_len, u32 num_g2h, 637 struct g2h_fence *g2h_fence) 638 { 639 struct drm_device *drm = &ct_to_xe(ct)->drm; 640 struct drm_printer p = drm_info_printer(drm->dev); 641 unsigned int sleep_period_ms = 1; 642 int ret; 643 644 xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence); 645 lockdep_assert_held(&ct->lock); 646 xe_device_assert_mem_access(ct_to_xe(ct)); 647 648 try_again: 649 ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, 650 g2h_fence); 651 652 /* 653 * We wait to try to restore credits for about 1 second before bailing. 654 * In the case of H2G credits we have no choice but just to wait for the 655 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In 656 * the case of G2H we process any G2H in the channel, hopefully freeing 657 * credits as we consume the G2H messages. 658 */ 659 if (unlikely(ret == -EBUSY && 660 !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { 661 struct guc_ctb *h2g = &ct->ctbs.h2g; 662 663 if (sleep_period_ms == 1024) 664 goto broken; 665 666 trace_xe_guc_ct_h2g_flow_control(h2g->info.head, h2g->info.tail, 667 h2g->info.size, 668 h2g->info.space, 669 len + GUC_CTB_HDR_LEN); 670 msleep(sleep_period_ms); 671 sleep_period_ms <<= 1; 672 673 goto try_again; 674 } else if (unlikely(ret == -EBUSY)) { 675 struct xe_device *xe = ct_to_xe(ct); 676 struct guc_ctb *g2h = &ct->ctbs.g2h; 677 678 trace_xe_guc_ct_g2h_flow_control(g2h->info.head, 679 desc_read(xe, g2h, tail), 680 g2h->info.size, 681 g2h->info.space, 682 g2h_fence ? 683 GUC_CTB_HXG_MSG_MAX_LEN : 684 g2h_len); 685 686 #define g2h_avail(ct) \ 687 (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) 688 if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || 689 g2h_avail(ct), HZ)) 690 goto broken; 691 #undef g2h_avail 692 693 if (dequeue_one_g2h(ct) < 0) 694 goto broken; 695 696 goto try_again; 697 } 698 699 return ret; 700 701 broken: 702 drm_err(drm, "No forward process on H2G, reset required"); 703 xe_guc_ct_print(ct, &p, true); 704 ct->ctbs.h2g.info.broken = true; 705 706 return -EDEADLK; 707 } 708 709 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, 710 u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) 711 { 712 int ret; 713 714 xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence); 715 716 mutex_lock(&ct->lock); 717 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); 718 mutex_unlock(&ct->lock); 719 720 return ret; 721 } 722 723 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, 724 u32 g2h_len, u32 num_g2h) 725 { 726 int ret; 727 728 ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); 729 if (ret == -EDEADLK) 730 kick_reset(ct); 731 732 return ret; 733 } 734 735 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, 736 u32 g2h_len, u32 num_g2h) 737 { 738 int ret; 739 740 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); 741 if (ret == -EDEADLK) 742 kick_reset(ct); 743 744 return ret; 745 } 746 747 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) 748 { 749 int ret; 750 751 lockdep_assert_held(&ct->lock); 752 753 ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); 754 if (ret == -EDEADLK) 755 kick_reset(ct); 756 757 return ret; 758 } 759 760 /* 761 * Check if a GT reset is in progress or will occur and if GT reset brought the 762 * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. 763 */ 764 static bool retry_failure(struct xe_guc_ct *ct, int ret) 765 { 766 if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) 767 return false; 768 769 #define ct_alive(ct) \ 770 (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ 771 !ct->ctbs.g2h.info.broken) 772 if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) 773 return false; 774 #undef ct_alive 775 776 return true; 777 } 778 779 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, 780 u32 *response_buffer, bool no_fail) 781 { 782 struct xe_device *xe = ct_to_xe(ct); 783 struct g2h_fence g2h_fence; 784 int ret = 0; 785 786 /* 787 * We use a fence to implement blocking sends / receiving response data. 788 * The seqno of the fence is sent in the H2G, returned in the G2H, and 789 * an xarray is used as storage media with the seqno being to key. 790 * Fields in the fence hold success, failure, retry status and the 791 * response data. Safe to allocate on the stack as the xarray is the 792 * only reference and it cannot be present after this function exits. 793 */ 794 retry: 795 g2h_fence_init(&g2h_fence, response_buffer); 796 retry_same_fence: 797 ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); 798 if (unlikely(ret == -ENOMEM)) { 799 void *ptr; 800 801 /* Retry allocation /w GFP_KERNEL */ 802 ptr = xa_store(&ct->fence_lookup, 803 g2h_fence.seqno, 804 &g2h_fence, GFP_KERNEL); 805 if (IS_ERR(ptr)) 806 return PTR_ERR(ptr); 807 808 goto retry_same_fence; 809 } else if (unlikely(ret)) { 810 if (ret == -EDEADLK) 811 kick_reset(ct); 812 813 if (no_fail && retry_failure(ct, ret)) 814 goto retry_same_fence; 815 816 if (!g2h_fence_needs_alloc(&g2h_fence)) 817 xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); 818 819 return ret; 820 } 821 822 ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); 823 if (!ret) { 824 drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x", 825 g2h_fence.seqno, action[0]); 826 xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); 827 return -ETIME; 828 } 829 830 if (g2h_fence.retry) { 831 drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d", 832 action[0], g2h_fence.reason); 833 goto retry; 834 } 835 if (g2h_fence.fail) { 836 drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d", 837 action[0], g2h_fence.error, g2h_fence.hint); 838 ret = -EIO; 839 } 840 841 return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret; 842 } 843 844 /** 845 * xe_guc_ct_send_recv - Send and receive HXG to the GuC 846 * @ct: the &xe_guc_ct 847 * @action: the dword array with `HXG Request`_ message (can't be NULL) 848 * @len: length of the `HXG Request`_ message (in dwords, can't be 0) 849 * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) 850 * 851 * Send a `HXG Request`_ message to the GuC over CT communication channel and 852 * blocks until GuC replies with a `HXG Response`_ message. 853 * 854 * For non-blocking communication with GuC use xe_guc_ct_send(). 855 * 856 * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. 857 * 858 * Return: response length (in dwords) if &response_buffer was not NULL, or 859 * DATA0 from `HXG Response`_ if &response_buffer was NULL, or 860 * a negative error code on failure. 861 */ 862 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, 863 u32 *response_buffer) 864 { 865 KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); 866 return guc_ct_send_recv(ct, action, len, response_buffer, false); 867 } 868 869 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, 870 u32 len, u32 *response_buffer) 871 { 872 return guc_ct_send_recv(ct, action, len, response_buffer, true); 873 } 874 875 static u32 *msg_to_hxg(u32 *msg) 876 { 877 return msg + GUC_CTB_MSG_MIN_LEN; 878 } 879 880 static u32 msg_len_to_hxg_len(u32 len) 881 { 882 return len - GUC_CTB_MSG_MIN_LEN; 883 } 884 885 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) 886 { 887 u32 *hxg = msg_to_hxg(msg); 888 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 889 890 lockdep_assert_held(&ct->lock); 891 892 switch (action) { 893 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: 894 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: 895 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: 896 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 897 g2h_release_space(ct, len); 898 } 899 900 return 0; 901 } 902 903 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) 904 { 905 struct xe_gt *gt = ct_to_gt(ct); 906 struct xe_device *xe = gt_to_xe(gt); 907 u32 *hxg = msg_to_hxg(msg); 908 u32 hxg_len = msg_len_to_hxg_len(len); 909 u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); 910 u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); 911 struct g2h_fence *g2h_fence; 912 913 lockdep_assert_held(&ct->lock); 914 915 /* 916 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. 917 * Those messages should never fail, so if we do get an error back it 918 * means we're likely doing an illegal operation and the GuC is 919 * rejecting it. We have no way to inform the code that submitted the 920 * H2G that the message was rejected, so we need to escalate the 921 * failure to trigger a reset. 922 */ 923 if (fence & CT_SEQNO_UNTRACKED) { 924 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) 925 xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", 926 fence, 927 FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), 928 FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); 929 else 930 xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", 931 type, fence); 932 933 return -EPROTO; 934 } 935 936 g2h_fence = xa_erase(&ct->fence_lookup, fence); 937 if (unlikely(!g2h_fence)) { 938 /* Don't tear down channel, as send could've timed out */ 939 xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); 940 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); 941 return 0; 942 } 943 944 xe_assert(xe, fence == g2h_fence->seqno); 945 946 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { 947 g2h_fence->fail = true; 948 g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); 949 g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); 950 } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 951 g2h_fence->retry = true; 952 g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); 953 } else if (g2h_fence->response_buffer) { 954 g2h_fence->response_len = hxg_len; 955 memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); 956 } else { 957 g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); 958 } 959 960 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); 961 962 g2h_fence->done = true; 963 smp_mb(); 964 965 wake_up_all(&ct->g2h_fence_wq); 966 967 return 0; 968 } 969 970 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) 971 { 972 struct xe_device *xe = ct_to_xe(ct); 973 u32 *hxg = msg_to_hxg(msg); 974 u32 origin, type; 975 int ret; 976 977 lockdep_assert_held(&ct->lock); 978 979 origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); 980 if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { 981 drm_err(&xe->drm, 982 "G2H channel broken on read, origin=%d, reset required\n", 983 origin); 984 ct->ctbs.g2h.info.broken = true; 985 986 return -EPROTO; 987 } 988 989 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); 990 switch (type) { 991 case GUC_HXG_TYPE_EVENT: 992 ret = parse_g2h_event(ct, msg, len); 993 break; 994 case GUC_HXG_TYPE_RESPONSE_SUCCESS: 995 case GUC_HXG_TYPE_RESPONSE_FAILURE: 996 case GUC_HXG_TYPE_NO_RESPONSE_RETRY: 997 ret = parse_g2h_response(ct, msg, len); 998 break; 999 default: 1000 drm_err(&xe->drm, 1001 "G2H channel broken on read, type=%d, reset required\n", 1002 type); 1003 ct->ctbs.g2h.info.broken = true; 1004 1005 ret = -EOPNOTSUPP; 1006 } 1007 1008 return ret; 1009 } 1010 1011 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) 1012 { 1013 struct xe_device *xe = ct_to_xe(ct); 1014 struct xe_guc *guc = ct_to_guc(ct); 1015 u32 hxg_len = msg_len_to_hxg_len(len); 1016 u32 *hxg = msg_to_hxg(msg); 1017 u32 action, adj_len; 1018 u32 *payload; 1019 int ret = 0; 1020 1021 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) 1022 return 0; 1023 1024 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1025 payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; 1026 adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; 1027 1028 switch (action) { 1029 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: 1030 ret = xe_guc_sched_done_handler(guc, payload, adj_len); 1031 break; 1032 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: 1033 ret = xe_guc_deregister_done_handler(guc, payload, adj_len); 1034 break; 1035 case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: 1036 ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); 1037 break; 1038 case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: 1039 ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, 1040 adj_len); 1041 break; 1042 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: 1043 /* Selftest only at the moment */ 1044 break; 1045 case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: 1046 case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: 1047 /* FIXME: Handle this */ 1048 break; 1049 case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: 1050 ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, 1051 adj_len); 1052 break; 1053 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1054 ret = xe_guc_pagefault_handler(guc, payload, adj_len); 1055 break; 1056 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1057 ret = xe_guc_tlb_invalidation_done_handler(guc, payload, 1058 adj_len); 1059 break; 1060 case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: 1061 ret = xe_guc_access_counter_notify_handler(guc, payload, 1062 adj_len); 1063 break; 1064 case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: 1065 ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len); 1066 break; 1067 case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: 1068 ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len); 1069 break; 1070 default: 1071 drm_err(&xe->drm, "unexpected action 0x%04x\n", action); 1072 } 1073 1074 if (ret) 1075 drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n", 1076 action, ret); 1077 1078 return 0; 1079 } 1080 1081 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) 1082 { 1083 struct xe_device *xe = ct_to_xe(ct); 1084 struct guc_ctb *g2h = &ct->ctbs.g2h; 1085 u32 tail, head, len; 1086 s32 avail; 1087 u32 action; 1088 u32 *hxg; 1089 1090 xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); 1091 lockdep_assert_held(&ct->fast_lock); 1092 1093 if (ct->state == XE_GUC_CT_STATE_DISABLED) 1094 return -ENODEV; 1095 1096 if (ct->state == XE_GUC_CT_STATE_STOPPED) 1097 return -ECANCELED; 1098 1099 if (g2h->info.broken) 1100 return -EPIPE; 1101 1102 xe_assert(xe, xe_guc_ct_enabled(ct)); 1103 1104 /* Calculate DW available to read */ 1105 tail = desc_read(xe, g2h, tail); 1106 avail = tail - g2h->info.head; 1107 if (unlikely(avail == 0)) 1108 return 0; 1109 1110 if (avail < 0) 1111 avail += g2h->info.size; 1112 1113 /* Read header */ 1114 xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, 1115 sizeof(u32)); 1116 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; 1117 if (len > avail) { 1118 drm_err(&xe->drm, 1119 "G2H channel broken on read, avail=%d, len=%d, reset required\n", 1120 avail, len); 1121 g2h->info.broken = true; 1122 1123 return -EPROTO; 1124 } 1125 1126 head = (g2h->info.head + 1) % g2h->info.size; 1127 avail = len - 1; 1128 1129 /* Read G2H message */ 1130 if (avail + head > g2h->info.size) { 1131 u32 avail_til_wrap = g2h->info.size - head; 1132 1133 xe_map_memcpy_from(xe, msg + 1, 1134 &g2h->cmds, sizeof(u32) * head, 1135 avail_til_wrap * sizeof(u32)); 1136 xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, 1137 &g2h->cmds, 0, 1138 (avail - avail_til_wrap) * sizeof(u32)); 1139 } else { 1140 xe_map_memcpy_from(xe, msg + 1, 1141 &g2h->cmds, sizeof(u32) * head, 1142 avail * sizeof(u32)); 1143 } 1144 1145 hxg = msg_to_hxg(msg); 1146 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1147 1148 if (fast_path) { 1149 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) 1150 return 0; 1151 1152 switch (action) { 1153 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1154 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1155 break; /* Process these in fast-path */ 1156 default: 1157 return 0; 1158 } 1159 } 1160 1161 /* Update local / descriptor header */ 1162 g2h->info.head = (head + avail) % g2h->info.size; 1163 desc_write(xe, g2h, head, g2h->info.head); 1164 1165 trace_xe_guc_ctb_g2h(ct_to_gt(ct)->info.id, action, len, 1166 g2h->info.head, tail); 1167 1168 return len; 1169 } 1170 1171 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) 1172 { 1173 struct xe_device *xe = ct_to_xe(ct); 1174 struct xe_guc *guc = ct_to_guc(ct); 1175 u32 hxg_len = msg_len_to_hxg_len(len); 1176 u32 *hxg = msg_to_hxg(msg); 1177 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1178 u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; 1179 u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; 1180 int ret = 0; 1181 1182 switch (action) { 1183 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1184 ret = xe_guc_pagefault_handler(guc, payload, adj_len); 1185 break; 1186 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1187 __g2h_release_space(ct, len); 1188 ret = xe_guc_tlb_invalidation_done_handler(guc, payload, 1189 adj_len); 1190 break; 1191 default: 1192 drm_warn(&xe->drm, "NOT_POSSIBLE"); 1193 } 1194 1195 if (ret) 1196 drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n", 1197 action, ret); 1198 } 1199 1200 /** 1201 * xe_guc_ct_fast_path - process critical G2H in the IRQ handler 1202 * @ct: GuC CT object 1203 * 1204 * Anything related to page faults is critical for performance, process these 1205 * critical G2H in the IRQ. This is safe as these handlers either just wake up 1206 * waiters or queue another worker. 1207 */ 1208 void xe_guc_ct_fast_path(struct xe_guc_ct *ct) 1209 { 1210 struct xe_device *xe = ct_to_xe(ct); 1211 bool ongoing; 1212 int len; 1213 1214 ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct)); 1215 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) 1216 return; 1217 1218 spin_lock(&ct->fast_lock); 1219 do { 1220 len = g2h_read(ct, ct->fast_msg, true); 1221 if (len > 0) 1222 g2h_fast_path(ct, ct->fast_msg, len); 1223 } while (len > 0); 1224 spin_unlock(&ct->fast_lock); 1225 1226 if (ongoing) 1227 xe_device_mem_access_put(xe); 1228 } 1229 1230 /* Returns less than zero on error, 0 on done, 1 on more available */ 1231 static int dequeue_one_g2h(struct xe_guc_ct *ct) 1232 { 1233 int len; 1234 int ret; 1235 1236 lockdep_assert_held(&ct->lock); 1237 1238 spin_lock_irq(&ct->fast_lock); 1239 len = g2h_read(ct, ct->msg, false); 1240 spin_unlock_irq(&ct->fast_lock); 1241 if (len <= 0) 1242 return len; 1243 1244 ret = parse_g2h_msg(ct, ct->msg, len); 1245 if (unlikely(ret < 0)) 1246 return ret; 1247 1248 ret = process_g2h_msg(ct, ct->msg, len); 1249 if (unlikely(ret < 0)) 1250 return ret; 1251 1252 return 1; 1253 } 1254 1255 static void g2h_worker_func(struct work_struct *w) 1256 { 1257 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); 1258 bool ongoing; 1259 int ret; 1260 1261 /* 1262 * Normal users must always hold mem_access.ref around CT calls. However 1263 * during the runtime pm callbacks we rely on CT to talk to the GuC, but 1264 * at this stage we can't rely on mem_access.ref and even the 1265 * callback_task will be different than current. For such cases we just 1266 * need to ensure we always process the responses from any blocking 1267 * ct_send requests or where we otherwise expect some response when 1268 * initiated from those callbacks (which will need to wait for the below 1269 * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if 1270 * the device has suspended to the point that the CT communication has 1271 * been disabled. 1272 * 1273 * If we are inside the runtime pm callback, we can be the only task 1274 * still issuing CT requests (since that requires having the 1275 * mem_access.ref). It seems like it might in theory be possible to 1276 * receive unsolicited events from the GuC just as we are 1277 * suspending-resuming, but those will currently anyway be lost when 1278 * eventually exiting from suspend, hence no need to wake up the device 1279 * here. If we ever need something stronger than get_if_ongoing() then 1280 * we need to be careful with blocking the pm callbacks from getting CT 1281 * responses, if the worker here is blocked on those callbacks 1282 * completing, creating a deadlock. 1283 */ 1284 ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct)); 1285 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) 1286 return; 1287 1288 do { 1289 mutex_lock(&ct->lock); 1290 ret = dequeue_one_g2h(ct); 1291 mutex_unlock(&ct->lock); 1292 1293 if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { 1294 struct drm_device *drm = &ct_to_xe(ct)->drm; 1295 struct drm_printer p = drm_info_printer(drm->dev); 1296 1297 xe_guc_ct_print(ct, &p, false); 1298 kick_reset(ct); 1299 } 1300 } while (ret == 1); 1301 1302 if (ongoing) 1303 xe_device_mem_access_put(ct_to_xe(ct)); 1304 } 1305 1306 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, 1307 struct guc_ctb_snapshot *snapshot, 1308 bool atomic) 1309 { 1310 u32 head, tail; 1311 1312 xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, 1313 sizeof(struct guc_ct_buffer_desc)); 1314 memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); 1315 1316 snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32), 1317 atomic ? GFP_ATOMIC : GFP_KERNEL); 1318 1319 if (!snapshot->cmds) { 1320 drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n"); 1321 return; 1322 } 1323 1324 head = snapshot->desc.head; 1325 tail = snapshot->desc.tail; 1326 1327 if (head != tail) { 1328 struct iosys_map map = 1329 IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32)); 1330 1331 while (head != tail) { 1332 snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32); 1333 ++head; 1334 if (head == ctb->info.size) { 1335 head = 0; 1336 map = ctb->cmds; 1337 } else { 1338 iosys_map_incr(&map, sizeof(u32)); 1339 } 1340 } 1341 } 1342 } 1343 1344 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, 1345 struct drm_printer *p) 1346 { 1347 u32 head, tail; 1348 1349 drm_printf(p, "\tsize: %d\n", snapshot->info.size); 1350 drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); 1351 drm_printf(p, "\thead: %d\n", snapshot->info.head); 1352 drm_printf(p, "\ttail: %d\n", snapshot->info.tail); 1353 drm_printf(p, "\tspace: %d\n", snapshot->info.space); 1354 drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); 1355 drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); 1356 drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); 1357 drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); 1358 1359 if (!snapshot->cmds) 1360 return; 1361 1362 head = snapshot->desc.head; 1363 tail = snapshot->desc.tail; 1364 1365 while (head != tail) { 1366 drm_printf(p, "\tcmd[%d]: 0x%08x\n", head, 1367 snapshot->cmds[head]); 1368 ++head; 1369 if (head == snapshot->info.size) 1370 head = 0; 1371 } 1372 } 1373 1374 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot) 1375 { 1376 kfree(snapshot->cmds); 1377 } 1378 1379 /** 1380 * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. 1381 * @ct: GuC CT object. 1382 * @atomic: Boolean to indicate if this is called from atomic context like 1383 * reset or CTB handler or from some regular path like debugfs. 1384 * 1385 * This can be printed out in a later stage like during dev_coredump 1386 * analysis. 1387 * 1388 * Returns: a GuC CT snapshot object that must be freed by the caller 1389 * by using `xe_guc_ct_snapshot_free`. 1390 */ 1391 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct, 1392 bool atomic) 1393 { 1394 struct xe_device *xe = ct_to_xe(ct); 1395 struct xe_guc_ct_snapshot *snapshot; 1396 1397 snapshot = kzalloc(sizeof(*snapshot), 1398 atomic ? GFP_ATOMIC : GFP_KERNEL); 1399 1400 if (!snapshot) { 1401 drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n"); 1402 return NULL; 1403 } 1404 1405 if (xe_guc_ct_enabled(ct)) { 1406 snapshot->ct_enabled = true; 1407 snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); 1408 guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, 1409 &snapshot->h2g, atomic); 1410 guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, 1411 &snapshot->g2h, atomic); 1412 } 1413 1414 return snapshot; 1415 } 1416 1417 /** 1418 * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. 1419 * @snapshot: GuC CT snapshot object. 1420 * @p: drm_printer where it will be printed out. 1421 * 1422 * This function prints out a given GuC CT snapshot object. 1423 */ 1424 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, 1425 struct drm_printer *p) 1426 { 1427 if (!snapshot) 1428 return; 1429 1430 if (snapshot->ct_enabled) { 1431 drm_puts(p, "H2G CTB (all sizes in DW):\n"); 1432 guc_ctb_snapshot_print(&snapshot->h2g, p); 1433 1434 drm_puts(p, "\nG2H CTB (all sizes in DW):\n"); 1435 guc_ctb_snapshot_print(&snapshot->g2h, p); 1436 1437 drm_printf(p, "\tg2h outstanding: %d\n", 1438 snapshot->g2h_outstanding); 1439 } else { 1440 drm_puts(p, "CT disabled\n"); 1441 } 1442 } 1443 1444 /** 1445 * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. 1446 * @snapshot: GuC CT snapshot object. 1447 * 1448 * This function free all the memory that needed to be allocated at capture 1449 * time. 1450 */ 1451 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) 1452 { 1453 if (!snapshot) 1454 return; 1455 1456 guc_ctb_snapshot_free(&snapshot->h2g); 1457 guc_ctb_snapshot_free(&snapshot->g2h); 1458 kfree(snapshot); 1459 } 1460 1461 /** 1462 * xe_guc_ct_print - GuC CT Print. 1463 * @ct: GuC CT. 1464 * @p: drm_printer where it will be printed out. 1465 * @atomic: Boolean to indicate if this is called from atomic context like 1466 * reset or CTB handler or from some regular path like debugfs. 1467 * 1468 * This function quickly capture a snapshot and immediately print it out. 1469 */ 1470 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic) 1471 { 1472 struct xe_guc_ct_snapshot *snapshot; 1473 1474 snapshot = xe_guc_ct_snapshot_capture(ct, atomic); 1475 xe_guc_ct_snapshot_print(snapshot, p); 1476 xe_guc_ct_snapshot_free(snapshot); 1477 } 1478