xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision 7354eb7f1558466e92e926802d36e69e42938ea9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 
12 #include <kunit/static_stub.h>
13 
14 #include <drm/drm_managed.h>
15 
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_actions_sriov_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "xe_bo.h"
20 #include "xe_device.h"
21 #include "xe_gt.h"
22 #include "xe_gt_pagefault.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_sriov_pf_control.h"
25 #include "xe_gt_sriov_pf_monitor.h"
26 #include "xe_gt_tlb_invalidation.h"
27 #include "xe_guc.h"
28 #include "xe_guc_relay.h"
29 #include "xe_guc_submit.h"
30 #include "xe_map.h"
31 #include "xe_pm.h"
32 #include "xe_trace_guc.h"
33 
34 /* Used when a CT send wants to block and / or receive data */
35 struct g2h_fence {
36 	u32 *response_buffer;
37 	u32 seqno;
38 	u32 response_data;
39 	u16 response_len;
40 	u16 error;
41 	u16 hint;
42 	u16 reason;
43 	bool retry;
44 	bool fail;
45 	bool done;
46 };
47 
48 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
49 {
50 	g2h_fence->response_buffer = response_buffer;
51 	g2h_fence->response_data = 0;
52 	g2h_fence->response_len = 0;
53 	g2h_fence->fail = false;
54 	g2h_fence->retry = false;
55 	g2h_fence->done = false;
56 	g2h_fence->seqno = ~0x0;
57 }
58 
59 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
60 {
61 	return g2h_fence->seqno == ~0x0;
62 }
63 
64 static struct xe_guc *
65 ct_to_guc(struct xe_guc_ct *ct)
66 {
67 	return container_of(ct, struct xe_guc, ct);
68 }
69 
70 static struct xe_gt *
71 ct_to_gt(struct xe_guc_ct *ct)
72 {
73 	return container_of(ct, struct xe_gt, uc.guc.ct);
74 }
75 
76 static struct xe_device *
77 ct_to_xe(struct xe_guc_ct *ct)
78 {
79 	return gt_to_xe(ct_to_gt(ct));
80 }
81 
82 /**
83  * DOC: GuC CTB Blob
84  *
85  * We allocate single blob to hold both CTB descriptors and buffers:
86  *
87  *      +--------+-----------------------------------------------+------+
88  *      | offset | contents                                      | size |
89  *      +========+===============================================+======+
90  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
91  *      +--------+-----------------------------------------------+  4K  |
92  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
93  *      +--------+-----------------------------------------------+------+
94  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
95  *      |        |                                               |      |
96  *      +--------+-----------------------------------------------+------+
97  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
98  *      | + n*4K |                                               |      |
99  *      +--------+-----------------------------------------------+------+
100  *
101  * Size of each ``CT Buffer`` must be multiple of 4K.
102  * We don't expect too many messages in flight at any time, unless we are
103  * using the GuC submission. In that case each request requires a minimum
104  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
105  * enough space to avoid backpressure on the driver. We increase the size
106  * of the receive buffer (relative to the send) to ensure a G2H response
107  * CTB has a landing spot.
108  */
109 
110 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
111 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
112 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
113 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
114 
115 /**
116  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
117  * CT command queue
118  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
119  *
120  * Observation is that a 4KiB buffer full of commands takes a little over a
121  * second to process. Use that to calculate maximum time to process a full CT
122  * command queue.
123  *
124  * Return: Maximum time to process a full CT queue in jiffies.
125  */
126 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
127 {
128 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
129 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
130 }
131 
132 static size_t guc_ct_size(void)
133 {
134 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
135 		CTB_G2H_BUFFER_SIZE;
136 }
137 
138 static void guc_ct_fini(struct drm_device *drm, void *arg)
139 {
140 	struct xe_guc_ct *ct = arg;
141 
142 	destroy_workqueue(ct->g2h_wq);
143 	xa_destroy(&ct->fence_lookup);
144 }
145 
146 static void receive_g2h(struct xe_guc_ct *ct);
147 static void g2h_worker_func(struct work_struct *w);
148 static void safe_mode_worker_func(struct work_struct *w);
149 
150 static void primelockdep(struct xe_guc_ct *ct)
151 {
152 	if (!IS_ENABLED(CONFIG_LOCKDEP))
153 		return;
154 
155 	fs_reclaim_acquire(GFP_KERNEL);
156 	might_lock(&ct->lock);
157 	fs_reclaim_release(GFP_KERNEL);
158 }
159 
160 int xe_guc_ct_init(struct xe_guc_ct *ct)
161 {
162 	struct xe_device *xe = ct_to_xe(ct);
163 	struct xe_gt *gt = ct_to_gt(ct);
164 	struct xe_tile *tile = gt_to_tile(gt);
165 	struct xe_bo *bo;
166 	int err;
167 
168 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
169 
170 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
171 	if (!ct->g2h_wq)
172 		return -ENOMEM;
173 
174 	spin_lock_init(&ct->fast_lock);
175 	xa_init(&ct->fence_lookup);
176 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
177 	INIT_DELAYED_WORK(&ct->safe_mode_worker,  safe_mode_worker_func);
178 	init_waitqueue_head(&ct->wq);
179 	init_waitqueue_head(&ct->g2h_fence_wq);
180 
181 	err = drmm_mutex_init(&xe->drm, &ct->lock);
182 	if (err)
183 		return err;
184 
185 	primelockdep(ct);
186 
187 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
188 					  XE_BO_FLAG_SYSTEM |
189 					  XE_BO_FLAG_GGTT |
190 					  XE_BO_FLAG_GGTT_INVALIDATE);
191 	if (IS_ERR(bo))
192 		return PTR_ERR(bo);
193 
194 	ct->bo = bo;
195 
196 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
197 	if (err)
198 		return err;
199 
200 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
201 	ct->state = XE_GUC_CT_STATE_DISABLED;
202 	return 0;
203 }
204 
205 #define desc_read(xe_, guc_ctb__, field_)			\
206 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
207 			struct guc_ct_buffer_desc, field_)
208 
209 #define desc_write(xe_, guc_ctb__, field_, val_)		\
210 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
211 			struct guc_ct_buffer_desc, field_, val_)
212 
213 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
214 				struct iosys_map *map)
215 {
216 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
217 	h2g->info.resv_space = 0;
218 	h2g->info.tail = 0;
219 	h2g->info.head = 0;
220 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
221 				     h2g->info.size) -
222 			  h2g->info.resv_space;
223 	h2g->info.broken = false;
224 
225 	h2g->desc = *map;
226 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
227 
228 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
229 }
230 
231 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
232 				struct iosys_map *map)
233 {
234 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
235 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
236 	g2h->info.head = 0;
237 	g2h->info.tail = 0;
238 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
239 				     g2h->info.size) -
240 			  g2h->info.resv_space;
241 	g2h->info.broken = false;
242 
243 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
244 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
245 
246 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
247 					    CTB_H2G_BUFFER_SIZE);
248 }
249 
250 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
251 {
252 	struct xe_guc *guc = ct_to_guc(ct);
253 	u32 desc_addr, ctb_addr, size;
254 	int err;
255 
256 	desc_addr = xe_bo_ggtt_addr(ct->bo);
257 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
258 	size = ct->ctbs.h2g.info.size * sizeof(u32);
259 
260 	err = xe_guc_self_cfg64(guc,
261 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
262 				desc_addr);
263 	if (err)
264 		return err;
265 
266 	err = xe_guc_self_cfg64(guc,
267 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
268 				ctb_addr);
269 	if (err)
270 		return err;
271 
272 	return xe_guc_self_cfg32(guc,
273 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
274 				 size);
275 }
276 
277 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
278 {
279 	struct xe_guc *guc = ct_to_guc(ct);
280 	u32 desc_addr, ctb_addr, size;
281 	int err;
282 
283 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
284 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
285 		CTB_H2G_BUFFER_SIZE;
286 	size = ct->ctbs.g2h.info.size * sizeof(u32);
287 
288 	err = xe_guc_self_cfg64(guc,
289 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
290 				desc_addr);
291 	if (err)
292 		return err;
293 
294 	err = xe_guc_self_cfg64(guc,
295 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
296 				ctb_addr);
297 	if (err)
298 		return err;
299 
300 	return xe_guc_self_cfg32(guc,
301 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
302 				 size);
303 }
304 
305 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
306 {
307 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
308 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
309 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
310 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
311 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
312 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
313 			   enable ? GUC_CTB_CONTROL_ENABLE :
314 			   GUC_CTB_CONTROL_DISABLE),
315 	};
316 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
317 
318 	return ret > 0 ? -EPROTO : ret;
319 }
320 
321 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
322 				enum xe_guc_ct_state state)
323 {
324 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
325 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
326 
327 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
328 		     state == XE_GUC_CT_STATE_STOPPED);
329 
330 	ct->g2h_outstanding = 0;
331 	ct->state = state;
332 
333 	spin_unlock_irq(&ct->fast_lock);
334 
335 	/*
336 	 * Lockdep doesn't like this under the fast lock and he destroy only
337 	 * needs to be serialized with the send path which ct lock provides.
338 	 */
339 	xa_destroy(&ct->fence_lookup);
340 
341 	mutex_unlock(&ct->lock);
342 }
343 
344 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
345 {
346 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
347 }
348 
349 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
350 {
351 	if (!ct_needs_safe_mode(ct))
352 		return false;
353 
354 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
355 	return true;
356 }
357 
358 static void safe_mode_worker_func(struct work_struct *w)
359 {
360 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
361 
362 	receive_g2h(ct);
363 
364 	if (!ct_restart_safe_mode_worker(ct))
365 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
366 }
367 
368 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
369 {
370 	if (ct_restart_safe_mode_worker(ct))
371 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
372 }
373 
374 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
375 {
376 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
377 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
378 }
379 
380 int xe_guc_ct_enable(struct xe_guc_ct *ct)
381 {
382 	struct xe_device *xe = ct_to_xe(ct);
383 	struct xe_gt *gt = ct_to_gt(ct);
384 	int err;
385 
386 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
387 
388 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
389 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
390 
391 	err = guc_ct_ctb_h2g_register(ct);
392 	if (err)
393 		goto err_out;
394 
395 	err = guc_ct_ctb_g2h_register(ct);
396 	if (err)
397 		goto err_out;
398 
399 	err = guc_ct_control_toggle(ct, true);
400 	if (err)
401 		goto err_out;
402 
403 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
404 
405 	smp_mb();
406 	wake_up_all(&ct->wq);
407 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
408 
409 	if (ct_needs_safe_mode(ct))
410 		ct_enter_safe_mode(ct);
411 
412 	return 0;
413 
414 err_out:
415 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
416 
417 	return err;
418 }
419 
420 static void stop_g2h_handler(struct xe_guc_ct *ct)
421 {
422 	cancel_work_sync(&ct->g2h_worker);
423 }
424 
425 /**
426  * xe_guc_ct_disable - Set GuC to disabled state
427  * @ct: the &xe_guc_ct
428  *
429  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
430  * in this transition.
431  */
432 void xe_guc_ct_disable(struct xe_guc_ct *ct)
433 {
434 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
435 	ct_exit_safe_mode(ct);
436 	stop_g2h_handler(ct);
437 }
438 
439 /**
440  * xe_guc_ct_stop - Set GuC to stopped state
441  * @ct: the &xe_guc_ct
442  *
443  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
444  */
445 void xe_guc_ct_stop(struct xe_guc_ct *ct)
446 {
447 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
448 	stop_g2h_handler(ct);
449 }
450 
451 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
452 {
453 	struct guc_ctb *h2g = &ct->ctbs.h2g;
454 
455 	lockdep_assert_held(&ct->lock);
456 
457 	if (cmd_len > h2g->info.space) {
458 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
459 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
460 					     h2g->info.size) -
461 				  h2g->info.resv_space;
462 		if (cmd_len > h2g->info.space)
463 			return false;
464 	}
465 
466 	return true;
467 }
468 
469 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
470 {
471 	if (!g2h_len)
472 		return true;
473 
474 	lockdep_assert_held(&ct->fast_lock);
475 
476 	return ct->ctbs.g2h.info.space > g2h_len;
477 }
478 
479 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
480 {
481 	lockdep_assert_held(&ct->lock);
482 
483 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
484 		return -EBUSY;
485 
486 	return 0;
487 }
488 
489 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
490 {
491 	lockdep_assert_held(&ct->lock);
492 	ct->ctbs.h2g.info.space -= cmd_len;
493 }
494 
495 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
496 {
497 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
498 
499 	if (g2h_len) {
500 		lockdep_assert_held(&ct->fast_lock);
501 
502 		ct->ctbs.g2h.info.space -= g2h_len;
503 		ct->g2h_outstanding += num_g2h;
504 	}
505 }
506 
507 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
508 {
509 	lockdep_assert_held(&ct->fast_lock);
510 	xe_gt_assert(ct_to_gt(ct), ct->ctbs.g2h.info.space + g2h_len <=
511 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
512 
513 	ct->ctbs.g2h.info.space += g2h_len;
514 	--ct->g2h_outstanding;
515 }
516 
517 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
518 {
519 	spin_lock_irq(&ct->fast_lock);
520 	__g2h_release_space(ct, g2h_len);
521 	spin_unlock_irq(&ct->fast_lock);
522 }
523 
524 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
525 
526 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
527 		     u32 ct_fence_value, bool want_response)
528 {
529 	struct xe_device *xe = ct_to_xe(ct);
530 	struct xe_gt *gt = ct_to_gt(ct);
531 	struct guc_ctb *h2g = &ct->ctbs.h2g;
532 	u32 cmd[H2G_CT_HEADERS];
533 	u32 tail = h2g->info.tail;
534 	u32 full_len;
535 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
536 							 tail * sizeof(u32));
537 
538 	full_len = len + GUC_CTB_HDR_LEN;
539 
540 	lockdep_assert_held(&ct->lock);
541 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
542 	xe_gt_assert(gt, tail <= h2g->info.size);
543 
544 	/* Command will wrap, zero fill (NOPs), return and check credits again */
545 	if (tail + full_len > h2g->info.size) {
546 		xe_map_memset(xe, &map, 0, 0,
547 			      (h2g->info.size - tail) * sizeof(u32));
548 		h2g_reserve_space(ct, (h2g->info.size - tail));
549 		h2g->info.tail = 0;
550 		desc_write(xe, h2g, tail, h2g->info.tail);
551 
552 		return -EAGAIN;
553 	}
554 
555 	/*
556 	 * dw0: CT header (including fence)
557 	 * dw1: HXG header (including action code)
558 	 * dw2+: action data
559 	 */
560 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
561 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
562 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
563 	if (want_response) {
564 		cmd[1] =
565 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
566 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
567 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
568 	} else {
569 		cmd[1] =
570 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
571 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
572 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
573 	}
574 
575 	/* H2G header in cmd[1] replaces action[0] so: */
576 	--len;
577 	++action;
578 
579 	/* Write H2G ensuring visable before descriptor update */
580 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
581 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
582 	xe_device_wmb(xe);
583 
584 	/* Update local copies */
585 	h2g->info.tail = (tail + full_len) % h2g->info.size;
586 	h2g_reserve_space(ct, full_len);
587 
588 	/* Update descriptor */
589 	desc_write(xe, h2g, tail, h2g->info.tail);
590 
591 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
592 			     desc_read(xe, h2g, head), h2g->info.tail);
593 
594 	return 0;
595 }
596 
597 /*
598  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
599  * driver, the GuC will just copy it to the reply message. Since we need to
600  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
601  * we use one bit of the seqno as an indicator for that and a rolling counter
602  * for the remaining 15 bits.
603  */
604 #define CT_SEQNO_MASK GENMASK(14, 0)
605 #define CT_SEQNO_UNTRACKED BIT(15)
606 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
607 {
608 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
609 
610 	if (!is_g2h_fence)
611 		seqno |= CT_SEQNO_UNTRACKED;
612 
613 	return seqno;
614 }
615 
616 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
617 				u32 len, u32 g2h_len, u32 num_g2h,
618 				struct g2h_fence *g2h_fence)
619 {
620 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
621 	u16 seqno;
622 	int ret;
623 
624 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
625 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
626 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
627 	xe_gt_assert(gt, !g2h_len || num_g2h);
628 	xe_gt_assert(gt, g2h_len || !num_g2h);
629 	lockdep_assert_held(&ct->lock);
630 
631 	if (unlikely(ct->ctbs.h2g.info.broken)) {
632 		ret = -EPIPE;
633 		goto out;
634 	}
635 
636 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
637 		ret = -ENODEV;
638 		goto out;
639 	}
640 
641 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
642 		ret = -ECANCELED;
643 		goto out;
644 	}
645 
646 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
647 
648 	if (g2h_fence) {
649 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
650 		num_g2h = 1;
651 
652 		if (g2h_fence_needs_alloc(g2h_fence)) {
653 			void *ptr;
654 
655 			g2h_fence->seqno = next_ct_seqno(ct, true);
656 			ptr = xa_store(&ct->fence_lookup,
657 				       g2h_fence->seqno,
658 				       g2h_fence, GFP_ATOMIC);
659 			if (IS_ERR(ptr)) {
660 				ret = PTR_ERR(ptr);
661 				goto out;
662 			}
663 		}
664 
665 		seqno = g2h_fence->seqno;
666 	} else {
667 		seqno = next_ct_seqno(ct, false);
668 	}
669 
670 	if (g2h_len)
671 		spin_lock_irq(&ct->fast_lock);
672 retry:
673 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
674 	if (unlikely(ret))
675 		goto out_unlock;
676 
677 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
678 	if (unlikely(ret)) {
679 		if (ret == -EAGAIN)
680 			goto retry;
681 		goto out_unlock;
682 	}
683 
684 	__g2h_reserve_space(ct, g2h_len, num_g2h);
685 	xe_guc_notify(ct_to_guc(ct));
686 out_unlock:
687 	if (g2h_len)
688 		spin_unlock_irq(&ct->fast_lock);
689 out:
690 	return ret;
691 }
692 
693 static void kick_reset(struct xe_guc_ct *ct)
694 {
695 	xe_gt_reset_async(ct_to_gt(ct));
696 }
697 
698 static int dequeue_one_g2h(struct xe_guc_ct *ct);
699 
700 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
701 			      u32 g2h_len, u32 num_g2h,
702 			      struct g2h_fence *g2h_fence)
703 {
704 	struct xe_device *xe = ct_to_xe(ct);
705 	struct xe_gt *gt = ct_to_gt(ct);
706 	struct drm_printer p = xe_gt_info_printer(gt);
707 	unsigned int sleep_period_ms = 1;
708 	int ret;
709 
710 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
711 	lockdep_assert_held(&ct->lock);
712 	xe_device_assert_mem_access(ct_to_xe(ct));
713 
714 try_again:
715 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
716 				   g2h_fence);
717 
718 	/*
719 	 * We wait to try to restore credits for about 1 second before bailing.
720 	 * In the case of H2G credits we have no choice but just to wait for the
721 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
722 	 * the case of G2H we process any G2H in the channel, hopefully freeing
723 	 * credits as we consume the G2H messages.
724 	 */
725 	if (unlikely(ret == -EBUSY &&
726 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
727 		struct guc_ctb *h2g = &ct->ctbs.h2g;
728 
729 		if (sleep_period_ms == 1024)
730 			goto broken;
731 
732 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
733 						 h2g->info.size,
734 						 h2g->info.space,
735 						 len + GUC_CTB_HDR_LEN);
736 		msleep(sleep_period_ms);
737 		sleep_period_ms <<= 1;
738 
739 		goto try_again;
740 	} else if (unlikely(ret == -EBUSY)) {
741 		struct xe_device *xe = ct_to_xe(ct);
742 		struct guc_ctb *g2h = &ct->ctbs.g2h;
743 
744 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
745 						 desc_read(xe, g2h, tail),
746 						 g2h->info.size,
747 						 g2h->info.space,
748 						 g2h_fence ?
749 						 GUC_CTB_HXG_MSG_MAX_LEN :
750 						 g2h_len);
751 
752 #define g2h_avail(ct)	\
753 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
754 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
755 					g2h_avail(ct), HZ))
756 			goto broken;
757 #undef g2h_avail
758 
759 		if (dequeue_one_g2h(ct) < 0)
760 			goto broken;
761 
762 		goto try_again;
763 	}
764 
765 	return ret;
766 
767 broken:
768 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
769 	xe_guc_ct_print(ct, &p, true);
770 	ct->ctbs.h2g.info.broken = true;
771 
772 	return -EDEADLK;
773 }
774 
775 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
776 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
777 {
778 	int ret;
779 
780 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
781 
782 	mutex_lock(&ct->lock);
783 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
784 	mutex_unlock(&ct->lock);
785 
786 	return ret;
787 }
788 
789 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
790 		   u32 g2h_len, u32 num_g2h)
791 {
792 	int ret;
793 
794 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
795 	if (ret == -EDEADLK)
796 		kick_reset(ct);
797 
798 	return ret;
799 }
800 
801 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
802 			  u32 g2h_len, u32 num_g2h)
803 {
804 	int ret;
805 
806 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
807 	if (ret == -EDEADLK)
808 		kick_reset(ct);
809 
810 	return ret;
811 }
812 
813 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
814 {
815 	int ret;
816 
817 	lockdep_assert_held(&ct->lock);
818 
819 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
820 	if (ret == -EDEADLK)
821 		kick_reset(ct);
822 
823 	return ret;
824 }
825 
826 /*
827  * Check if a GT reset is in progress or will occur and if GT reset brought the
828  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
829  */
830 static bool retry_failure(struct xe_guc_ct *ct, int ret)
831 {
832 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
833 		return false;
834 
835 #define ct_alive(ct)	\
836 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
837 	 !ct->ctbs.g2h.info.broken)
838 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
839 		return false;
840 #undef ct_alive
841 
842 	return true;
843 }
844 
845 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
846 			    u32 *response_buffer, bool no_fail)
847 {
848 	struct xe_gt *gt = ct_to_gt(ct);
849 	struct g2h_fence g2h_fence;
850 	int ret = 0;
851 
852 	/*
853 	 * We use a fence to implement blocking sends / receiving response data.
854 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
855 	 * an xarray is used as storage media with the seqno being to key.
856 	 * Fields in the fence hold success, failure, retry status and the
857 	 * response data. Safe to allocate on the stack as the xarray is the
858 	 * only reference and it cannot be present after this function exits.
859 	 */
860 retry:
861 	g2h_fence_init(&g2h_fence, response_buffer);
862 retry_same_fence:
863 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
864 	if (unlikely(ret == -ENOMEM)) {
865 		void *ptr;
866 
867 		/* Retry allocation /w GFP_KERNEL */
868 		ptr = xa_store(&ct->fence_lookup,
869 			       g2h_fence.seqno,
870 			       &g2h_fence, GFP_KERNEL);
871 		if (IS_ERR(ptr))
872 			return PTR_ERR(ptr);
873 
874 		goto retry_same_fence;
875 	} else if (unlikely(ret)) {
876 		if (ret == -EDEADLK)
877 			kick_reset(ct);
878 
879 		if (no_fail && retry_failure(ct, ret))
880 			goto retry_same_fence;
881 
882 		if (!g2h_fence_needs_alloc(&g2h_fence))
883 			xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
884 
885 		return ret;
886 	}
887 
888 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
889 	if (!ret) {
890 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x",
891 			  g2h_fence.seqno, action[0]);
892 		xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
893 		return -ETIME;
894 	}
895 
896 	if (g2h_fence.retry) {
897 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
898 			  action[0], g2h_fence.reason);
899 		goto retry;
900 	}
901 	if (g2h_fence.fail) {
902 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
903 			  action[0], g2h_fence.error, g2h_fence.hint);
904 		ret = -EIO;
905 	}
906 
907 	return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret;
908 }
909 
910 /**
911  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
912  * @ct: the &xe_guc_ct
913  * @action: the dword array with `HXG Request`_ message (can't be NULL)
914  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
915  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
916  *
917  * Send a `HXG Request`_ message to the GuC over CT communication channel and
918  * blocks until GuC replies with a `HXG Response`_ message.
919  *
920  * For non-blocking communication with GuC use xe_guc_ct_send().
921  *
922  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
923  *
924  * Return: response length (in dwords) if &response_buffer was not NULL, or
925  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
926  *         a negative error code on failure.
927  */
928 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
929 			u32 *response_buffer)
930 {
931 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
932 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
933 }
934 
935 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
936 				u32 len, u32 *response_buffer)
937 {
938 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
939 }
940 
941 static u32 *msg_to_hxg(u32 *msg)
942 {
943 	return msg + GUC_CTB_MSG_MIN_LEN;
944 }
945 
946 static u32 msg_len_to_hxg_len(u32 len)
947 {
948 	return len - GUC_CTB_MSG_MIN_LEN;
949 }
950 
951 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
952 {
953 	u32 *hxg = msg_to_hxg(msg);
954 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
955 
956 	lockdep_assert_held(&ct->lock);
957 
958 	switch (action) {
959 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
960 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
961 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
962 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
963 		g2h_release_space(ct, len);
964 	}
965 
966 	return 0;
967 }
968 
969 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
970 {
971 	struct xe_gt *gt =  ct_to_gt(ct);
972 	u32 *hxg = msg_to_hxg(msg);
973 	u32 hxg_len = msg_len_to_hxg_len(len);
974 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
975 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
976 	struct g2h_fence *g2h_fence;
977 
978 	lockdep_assert_held(&ct->lock);
979 
980 	/*
981 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
982 	 * Those messages should never fail, so if we do get an error back it
983 	 * means we're likely doing an illegal operation and the GuC is
984 	 * rejecting it. We have no way to inform the code that submitted the
985 	 * H2G that the message was rejected, so we need to escalate the
986 	 * failure to trigger a reset.
987 	 */
988 	if (fence & CT_SEQNO_UNTRACKED) {
989 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
990 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
991 				  fence,
992 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
993 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
994 		else
995 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
996 				  type, fence);
997 
998 		return -EPROTO;
999 	}
1000 
1001 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1002 	if (unlikely(!g2h_fence)) {
1003 		/* Don't tear down channel, as send could've timed out */
1004 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1005 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1006 		return 0;
1007 	}
1008 
1009 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1010 
1011 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1012 		g2h_fence->fail = true;
1013 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1014 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1015 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1016 		g2h_fence->retry = true;
1017 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1018 	} else if (g2h_fence->response_buffer) {
1019 		g2h_fence->response_len = hxg_len;
1020 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1021 	} else {
1022 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1023 	}
1024 
1025 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1026 
1027 	g2h_fence->done = true;
1028 	smp_mb();
1029 
1030 	wake_up_all(&ct->g2h_fence_wq);
1031 
1032 	return 0;
1033 }
1034 
1035 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1036 {
1037 	struct xe_gt *gt = ct_to_gt(ct);
1038 	u32 *hxg = msg_to_hxg(msg);
1039 	u32 origin, type;
1040 	int ret;
1041 
1042 	lockdep_assert_held(&ct->lock);
1043 
1044 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1045 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1046 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1047 			  origin);
1048 		ct->ctbs.g2h.info.broken = true;
1049 
1050 		return -EPROTO;
1051 	}
1052 
1053 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1054 	switch (type) {
1055 	case GUC_HXG_TYPE_EVENT:
1056 		ret = parse_g2h_event(ct, msg, len);
1057 		break;
1058 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1059 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1060 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1061 		ret = parse_g2h_response(ct, msg, len);
1062 		break;
1063 	default:
1064 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1065 			  type);
1066 		ct->ctbs.g2h.info.broken = true;
1067 
1068 		ret = -EOPNOTSUPP;
1069 	}
1070 
1071 	return ret;
1072 }
1073 
1074 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1075 {
1076 	struct xe_guc *guc = ct_to_guc(ct);
1077 	struct xe_gt *gt = ct_to_gt(ct);
1078 	u32 hxg_len = msg_len_to_hxg_len(len);
1079 	u32 *hxg = msg_to_hxg(msg);
1080 	u32 action, adj_len;
1081 	u32 *payload;
1082 	int ret = 0;
1083 
1084 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1085 		return 0;
1086 
1087 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1088 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1089 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1090 
1091 	switch (action) {
1092 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1093 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1094 		break;
1095 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1096 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1097 		break;
1098 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1099 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1100 		break;
1101 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1102 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1103 							      adj_len);
1104 		break;
1105 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1106 		/* Selftest only at the moment */
1107 		break;
1108 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1109 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1110 		/* FIXME: Handle this */
1111 		break;
1112 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1113 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1114 								 adj_len);
1115 		break;
1116 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1117 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1118 		break;
1119 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1120 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1121 							   adj_len);
1122 		break;
1123 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1124 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1125 							   adj_len);
1126 		break;
1127 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1128 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1129 		break;
1130 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1131 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1132 		break;
1133 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1134 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1135 		break;
1136 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1137 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1138 		break;
1139 	default:
1140 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1141 	}
1142 
1143 	if (ret)
1144 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1145 			  action, ERR_PTR(ret));
1146 
1147 	return 0;
1148 }
1149 
1150 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1151 {
1152 	struct xe_device *xe = ct_to_xe(ct);
1153 	struct xe_gt *gt = ct_to_gt(ct);
1154 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1155 	u32 tail, head, len;
1156 	s32 avail;
1157 	u32 action;
1158 	u32 *hxg;
1159 
1160 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1161 	lockdep_assert_held(&ct->fast_lock);
1162 
1163 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1164 		return -ENODEV;
1165 
1166 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1167 		return -ECANCELED;
1168 
1169 	if (g2h->info.broken)
1170 		return -EPIPE;
1171 
1172 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1173 
1174 	/* Calculate DW available to read */
1175 	tail = desc_read(xe, g2h, tail);
1176 	avail = tail - g2h->info.head;
1177 	if (unlikely(avail == 0))
1178 		return 0;
1179 
1180 	if (avail < 0)
1181 		avail += g2h->info.size;
1182 
1183 	/* Read header */
1184 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1185 			   sizeof(u32));
1186 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1187 	if (len > avail) {
1188 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1189 			  avail, len);
1190 		g2h->info.broken = true;
1191 
1192 		return -EPROTO;
1193 	}
1194 
1195 	head = (g2h->info.head + 1) % g2h->info.size;
1196 	avail = len - 1;
1197 
1198 	/* Read G2H message */
1199 	if (avail + head > g2h->info.size) {
1200 		u32 avail_til_wrap = g2h->info.size - head;
1201 
1202 		xe_map_memcpy_from(xe, msg + 1,
1203 				   &g2h->cmds, sizeof(u32) * head,
1204 				   avail_til_wrap * sizeof(u32));
1205 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1206 				   &g2h->cmds, 0,
1207 				   (avail - avail_til_wrap) * sizeof(u32));
1208 	} else {
1209 		xe_map_memcpy_from(xe, msg + 1,
1210 				   &g2h->cmds, sizeof(u32) * head,
1211 				   avail * sizeof(u32));
1212 	}
1213 
1214 	hxg = msg_to_hxg(msg);
1215 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1216 
1217 	if (fast_path) {
1218 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1219 			return 0;
1220 
1221 		switch (action) {
1222 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1223 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1224 			break;	/* Process these in fast-path */
1225 		default:
1226 			return 0;
1227 		}
1228 	}
1229 
1230 	/* Update local / descriptor header */
1231 	g2h->info.head = (head + avail) % g2h->info.size;
1232 	desc_write(xe, g2h, head, g2h->info.head);
1233 
1234 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1235 			     action, len, g2h->info.head, tail);
1236 
1237 	return len;
1238 }
1239 
1240 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1241 {
1242 	struct xe_gt *gt = ct_to_gt(ct);
1243 	struct xe_guc *guc = ct_to_guc(ct);
1244 	u32 hxg_len = msg_len_to_hxg_len(len);
1245 	u32 *hxg = msg_to_hxg(msg);
1246 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1247 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1248 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1249 	int ret = 0;
1250 
1251 	switch (action) {
1252 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1253 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1254 		break;
1255 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1256 		__g2h_release_space(ct, len);
1257 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1258 							   adj_len);
1259 		break;
1260 	default:
1261 		xe_gt_warn(gt, "NOT_POSSIBLE");
1262 	}
1263 
1264 	if (ret)
1265 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1266 			  action, ERR_PTR(ret));
1267 }
1268 
1269 /**
1270  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1271  * @ct: GuC CT object
1272  *
1273  * Anything related to page faults is critical for performance, process these
1274  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1275  * waiters or queue another worker.
1276  */
1277 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1278 {
1279 	struct xe_device *xe = ct_to_xe(ct);
1280 	bool ongoing;
1281 	int len;
1282 
1283 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1284 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1285 		return;
1286 
1287 	spin_lock(&ct->fast_lock);
1288 	do {
1289 		len = g2h_read(ct, ct->fast_msg, true);
1290 		if (len > 0)
1291 			g2h_fast_path(ct, ct->fast_msg, len);
1292 	} while (len > 0);
1293 	spin_unlock(&ct->fast_lock);
1294 
1295 	if (ongoing)
1296 		xe_pm_runtime_put(xe);
1297 }
1298 
1299 /* Returns less than zero on error, 0 on done, 1 on more available */
1300 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1301 {
1302 	int len;
1303 	int ret;
1304 
1305 	lockdep_assert_held(&ct->lock);
1306 
1307 	spin_lock_irq(&ct->fast_lock);
1308 	len = g2h_read(ct, ct->msg, false);
1309 	spin_unlock_irq(&ct->fast_lock);
1310 	if (len <= 0)
1311 		return len;
1312 
1313 	ret = parse_g2h_msg(ct, ct->msg, len);
1314 	if (unlikely(ret < 0))
1315 		return ret;
1316 
1317 	ret = process_g2h_msg(ct, ct->msg, len);
1318 	if (unlikely(ret < 0))
1319 		return ret;
1320 
1321 	return 1;
1322 }
1323 
1324 static void receive_g2h(struct xe_guc_ct *ct)
1325 {
1326 	struct xe_gt *gt = ct_to_gt(ct);
1327 	bool ongoing;
1328 	int ret;
1329 
1330 	/*
1331 	 * Normal users must always hold mem_access.ref around CT calls. However
1332 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1333 	 * at this stage we can't rely on mem_access.ref and even the
1334 	 * callback_task will be different than current.  For such cases we just
1335 	 * need to ensure we always process the responses from any blocking
1336 	 * ct_send requests or where we otherwise expect some response when
1337 	 * initiated from those callbacks (which will need to wait for the below
1338 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1339 	 * the device has suspended to the point that the CT communication has
1340 	 * been disabled.
1341 	 *
1342 	 * If we are inside the runtime pm callback, we can be the only task
1343 	 * still issuing CT requests (since that requires having the
1344 	 * mem_access.ref).  It seems like it might in theory be possible to
1345 	 * receive unsolicited events from the GuC just as we are
1346 	 * suspending-resuming, but those will currently anyway be lost when
1347 	 * eventually exiting from suspend, hence no need to wake up the device
1348 	 * here. If we ever need something stronger than get_if_ongoing() then
1349 	 * we need to be careful with blocking the pm callbacks from getting CT
1350 	 * responses, if the worker here is blocked on those callbacks
1351 	 * completing, creating a deadlock.
1352 	 */
1353 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1354 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1355 		return;
1356 
1357 	do {
1358 		mutex_lock(&ct->lock);
1359 		ret = dequeue_one_g2h(ct);
1360 		mutex_unlock(&ct->lock);
1361 
1362 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1363 			struct drm_printer p = xe_gt_info_printer(gt);
1364 
1365 			xe_guc_ct_print(ct, &p, false);
1366 			kick_reset(ct);
1367 		}
1368 	} while (ret == 1);
1369 
1370 	if (ongoing)
1371 		xe_pm_runtime_put(ct_to_xe(ct));
1372 }
1373 
1374 static void g2h_worker_func(struct work_struct *w)
1375 {
1376 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1377 
1378 	receive_g2h(ct);
1379 }
1380 
1381 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1382 				     struct guc_ctb_snapshot *snapshot,
1383 				     bool atomic)
1384 {
1385 	u32 head, tail;
1386 
1387 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1388 			   sizeof(struct guc_ct_buffer_desc));
1389 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1390 
1391 	snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
1392 				       atomic ? GFP_ATOMIC : GFP_KERNEL);
1393 
1394 	if (!snapshot->cmds) {
1395 		drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
1396 		return;
1397 	}
1398 
1399 	head = snapshot->desc.head;
1400 	tail = snapshot->desc.tail;
1401 
1402 	if (head != tail) {
1403 		struct iosys_map map =
1404 			IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
1405 
1406 		while (head != tail) {
1407 			snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
1408 			++head;
1409 			if (head == ctb->info.size) {
1410 				head = 0;
1411 				map = ctb->cmds;
1412 			} else {
1413 				iosys_map_incr(&map, sizeof(u32));
1414 			}
1415 		}
1416 	}
1417 }
1418 
1419 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1420 				   struct drm_printer *p)
1421 {
1422 	u32 head, tail;
1423 
1424 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1425 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1426 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1427 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1428 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1429 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1430 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1431 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1432 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1433 
1434 	if (!snapshot->cmds)
1435 		return;
1436 
1437 	head = snapshot->desc.head;
1438 	tail = snapshot->desc.tail;
1439 
1440 	while (head != tail) {
1441 		drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
1442 			   snapshot->cmds[head]);
1443 		++head;
1444 		if (head == snapshot->info.size)
1445 			head = 0;
1446 	}
1447 }
1448 
1449 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
1450 {
1451 	kfree(snapshot->cmds);
1452 }
1453 
1454 /**
1455  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1456  * @ct: GuC CT object.
1457  * @atomic: Boolean to indicate if this is called from atomic context like
1458  * reset or CTB handler or from some regular path like debugfs.
1459  *
1460  * This can be printed out in a later stage like during dev_coredump
1461  * analysis.
1462  *
1463  * Returns: a GuC CT snapshot object that must be freed by the caller
1464  * by using `xe_guc_ct_snapshot_free`.
1465  */
1466 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
1467 						      bool atomic)
1468 {
1469 	struct xe_device *xe = ct_to_xe(ct);
1470 	struct xe_guc_ct_snapshot *snapshot;
1471 
1472 	snapshot = kzalloc(sizeof(*snapshot),
1473 			   atomic ? GFP_ATOMIC : GFP_KERNEL);
1474 
1475 	if (!snapshot) {
1476 		drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
1477 		return NULL;
1478 	}
1479 
1480 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1481 		snapshot->ct_enabled = true;
1482 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1483 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
1484 					 &snapshot->h2g, atomic);
1485 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
1486 					 &snapshot->g2h, atomic);
1487 	}
1488 
1489 	return snapshot;
1490 }
1491 
1492 /**
1493  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1494  * @snapshot: GuC CT snapshot object.
1495  * @p: drm_printer where it will be printed out.
1496  *
1497  * This function prints out a given GuC CT snapshot object.
1498  */
1499 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1500 			      struct drm_printer *p)
1501 {
1502 	if (!snapshot)
1503 		return;
1504 
1505 	if (snapshot->ct_enabled) {
1506 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1507 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1508 
1509 		drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
1510 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1511 
1512 		drm_printf(p, "\tg2h outstanding: %d\n",
1513 			   snapshot->g2h_outstanding);
1514 	} else {
1515 		drm_puts(p, "CT disabled\n");
1516 	}
1517 }
1518 
1519 /**
1520  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1521  * @snapshot: GuC CT snapshot object.
1522  *
1523  * This function free all the memory that needed to be allocated at capture
1524  * time.
1525  */
1526 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1527 {
1528 	if (!snapshot)
1529 		return;
1530 
1531 	guc_ctb_snapshot_free(&snapshot->h2g);
1532 	guc_ctb_snapshot_free(&snapshot->g2h);
1533 	kfree(snapshot);
1534 }
1535 
1536 /**
1537  * xe_guc_ct_print - GuC CT Print.
1538  * @ct: GuC CT.
1539  * @p: drm_printer where it will be printed out.
1540  * @atomic: Boolean to indicate if this is called from atomic context like
1541  * reset or CTB handler or from some regular path like debugfs.
1542  *
1543  * This function quickly capture a snapshot and immediately print it out.
1544  */
1545 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
1546 {
1547 	struct xe_guc_ct_snapshot *snapshot;
1548 
1549 	snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
1550 	xe_guc_ct_snapshot_print(snapshot, p);
1551 	xe_guc_ct_snapshot_free(snapshot);
1552 }
1553