xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 
12 #include <kunit/static_stub.h>
13 
14 #include <drm/drm_managed.h>
15 
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_actions_sriov_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "xe_bo.h"
20 #include "xe_device.h"
21 #include "xe_gt.h"
22 #include "xe_gt_pagefault.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_sriov_pf_control.h"
25 #include "xe_gt_sriov_pf_monitor.h"
26 #include "xe_gt_tlb_invalidation.h"
27 #include "xe_guc.h"
28 #include "xe_guc_relay.h"
29 #include "xe_guc_submit.h"
30 #include "xe_map.h"
31 #include "xe_pm.h"
32 #include "xe_trace_guc.h"
33 
34 /* Used when a CT send wants to block and / or receive data */
35 struct g2h_fence {
36 	u32 *response_buffer;
37 	u32 seqno;
38 	u32 response_data;
39 	u16 response_len;
40 	u16 error;
41 	u16 hint;
42 	u16 reason;
43 	bool retry;
44 	bool fail;
45 	bool done;
46 };
47 
48 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
49 {
50 	g2h_fence->response_buffer = response_buffer;
51 	g2h_fence->response_data = 0;
52 	g2h_fence->response_len = 0;
53 	g2h_fence->fail = false;
54 	g2h_fence->retry = false;
55 	g2h_fence->done = false;
56 	g2h_fence->seqno = ~0x0;
57 }
58 
59 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
60 {
61 	return g2h_fence->seqno == ~0x0;
62 }
63 
64 static struct xe_guc *
65 ct_to_guc(struct xe_guc_ct *ct)
66 {
67 	return container_of(ct, struct xe_guc, ct);
68 }
69 
70 static struct xe_gt *
71 ct_to_gt(struct xe_guc_ct *ct)
72 {
73 	return container_of(ct, struct xe_gt, uc.guc.ct);
74 }
75 
76 static struct xe_device *
77 ct_to_xe(struct xe_guc_ct *ct)
78 {
79 	return gt_to_xe(ct_to_gt(ct));
80 }
81 
82 /**
83  * DOC: GuC CTB Blob
84  *
85  * We allocate single blob to hold both CTB descriptors and buffers:
86  *
87  *      +--------+-----------------------------------------------+------+
88  *      | offset | contents                                      | size |
89  *      +========+===============================================+======+
90  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
91  *      +--------+-----------------------------------------------+  4K  |
92  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
93  *      +--------+-----------------------------------------------+------+
94  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
95  *      |        |                                               |      |
96  *      +--------+-----------------------------------------------+------+
97  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
98  *      | + n*4K |                                               |      |
99  *      +--------+-----------------------------------------------+------+
100  *
101  * Size of each ``CT Buffer`` must be multiple of 4K.
102  * We don't expect too many messages in flight at any time, unless we are
103  * using the GuC submission. In that case each request requires a minimum
104  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
105  * enough space to avoid backpressure on the driver. We increase the size
106  * of the receive buffer (relative to the send) to ensure a G2H response
107  * CTB has a landing spot.
108  */
109 
110 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
111 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
112 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
113 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
114 
115 /**
116  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
117  * CT command queue
118  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
119  *
120  * Observation is that a 4KiB buffer full of commands takes a little over a
121  * second to process. Use that to calculate maximum time to process a full CT
122  * command queue.
123  *
124  * Return: Maximum time to process a full CT queue in jiffies.
125  */
126 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
127 {
128 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
129 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
130 }
131 
132 static size_t guc_ct_size(void)
133 {
134 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
135 		CTB_G2H_BUFFER_SIZE;
136 }
137 
138 static void guc_ct_fini(struct drm_device *drm, void *arg)
139 {
140 	struct xe_guc_ct *ct = arg;
141 
142 	destroy_workqueue(ct->g2h_wq);
143 	xa_destroy(&ct->fence_lookup);
144 }
145 
146 static void receive_g2h(struct xe_guc_ct *ct);
147 static void g2h_worker_func(struct work_struct *w);
148 static void safe_mode_worker_func(struct work_struct *w);
149 
150 static void primelockdep(struct xe_guc_ct *ct)
151 {
152 	if (!IS_ENABLED(CONFIG_LOCKDEP))
153 		return;
154 
155 	fs_reclaim_acquire(GFP_KERNEL);
156 	might_lock(&ct->lock);
157 	fs_reclaim_release(GFP_KERNEL);
158 }
159 
160 int xe_guc_ct_init(struct xe_guc_ct *ct)
161 {
162 	struct xe_device *xe = ct_to_xe(ct);
163 	struct xe_gt *gt = ct_to_gt(ct);
164 	struct xe_tile *tile = gt_to_tile(gt);
165 	struct xe_bo *bo;
166 	int err;
167 
168 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
169 
170 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
171 	if (!ct->g2h_wq)
172 		return -ENOMEM;
173 
174 	spin_lock_init(&ct->fast_lock);
175 	xa_init(&ct->fence_lookup);
176 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
177 	INIT_DELAYED_WORK(&ct->safe_mode_worker,  safe_mode_worker_func);
178 	init_waitqueue_head(&ct->wq);
179 	init_waitqueue_head(&ct->g2h_fence_wq);
180 
181 	err = drmm_mutex_init(&xe->drm, &ct->lock);
182 	if (err)
183 		return err;
184 
185 	primelockdep(ct);
186 
187 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
188 					  XE_BO_FLAG_SYSTEM |
189 					  XE_BO_FLAG_GGTT |
190 					  XE_BO_FLAG_GGTT_INVALIDATE);
191 	if (IS_ERR(bo))
192 		return PTR_ERR(bo);
193 
194 	ct->bo = bo;
195 
196 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
197 	if (err)
198 		return err;
199 
200 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
201 	ct->state = XE_GUC_CT_STATE_DISABLED;
202 	return 0;
203 }
204 
205 #define desc_read(xe_, guc_ctb__, field_)			\
206 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
207 			struct guc_ct_buffer_desc, field_)
208 
209 #define desc_write(xe_, guc_ctb__, field_, val_)		\
210 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
211 			struct guc_ct_buffer_desc, field_, val_)
212 
213 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
214 				struct iosys_map *map)
215 {
216 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
217 	h2g->info.resv_space = 0;
218 	h2g->info.tail = 0;
219 	h2g->info.head = 0;
220 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
221 				     h2g->info.size) -
222 			  h2g->info.resv_space;
223 	h2g->info.broken = false;
224 
225 	h2g->desc = *map;
226 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
227 
228 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
229 }
230 
231 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
232 				struct iosys_map *map)
233 {
234 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
235 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
236 	g2h->info.head = 0;
237 	g2h->info.tail = 0;
238 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
239 				     g2h->info.size) -
240 			  g2h->info.resv_space;
241 	g2h->info.broken = false;
242 
243 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
244 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
245 
246 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
247 					    CTB_H2G_BUFFER_SIZE);
248 }
249 
250 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
251 {
252 	struct xe_guc *guc = ct_to_guc(ct);
253 	u32 desc_addr, ctb_addr, size;
254 	int err;
255 
256 	desc_addr = xe_bo_ggtt_addr(ct->bo);
257 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
258 	size = ct->ctbs.h2g.info.size * sizeof(u32);
259 
260 	err = xe_guc_self_cfg64(guc,
261 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
262 				desc_addr);
263 	if (err)
264 		return err;
265 
266 	err = xe_guc_self_cfg64(guc,
267 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
268 				ctb_addr);
269 	if (err)
270 		return err;
271 
272 	return xe_guc_self_cfg32(guc,
273 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
274 				 size);
275 }
276 
277 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
278 {
279 	struct xe_guc *guc = ct_to_guc(ct);
280 	u32 desc_addr, ctb_addr, size;
281 	int err;
282 
283 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
284 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
285 		CTB_H2G_BUFFER_SIZE;
286 	size = ct->ctbs.g2h.info.size * sizeof(u32);
287 
288 	err = xe_guc_self_cfg64(guc,
289 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
290 				desc_addr);
291 	if (err)
292 		return err;
293 
294 	err = xe_guc_self_cfg64(guc,
295 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
296 				ctb_addr);
297 	if (err)
298 		return err;
299 
300 	return xe_guc_self_cfg32(guc,
301 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
302 				 size);
303 }
304 
305 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
306 {
307 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
308 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
309 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
310 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
311 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
312 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
313 			   enable ? GUC_CTB_CONTROL_ENABLE :
314 			   GUC_CTB_CONTROL_DISABLE),
315 	};
316 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
317 
318 	return ret > 0 ? -EPROTO : ret;
319 }
320 
321 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
322 				enum xe_guc_ct_state state)
323 {
324 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
325 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
326 
327 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
328 		     state == XE_GUC_CT_STATE_STOPPED);
329 
330 	if (ct->g2h_outstanding)
331 		xe_pm_runtime_put(ct_to_xe(ct));
332 	ct->g2h_outstanding = 0;
333 	ct->state = state;
334 
335 	spin_unlock_irq(&ct->fast_lock);
336 
337 	/*
338 	 * Lockdep doesn't like this under the fast lock and he destroy only
339 	 * needs to be serialized with the send path which ct lock provides.
340 	 */
341 	xa_destroy(&ct->fence_lookup);
342 
343 	mutex_unlock(&ct->lock);
344 }
345 
346 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
347 {
348 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
349 }
350 
351 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
352 {
353 	if (!ct_needs_safe_mode(ct))
354 		return false;
355 
356 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
357 	return true;
358 }
359 
360 static void safe_mode_worker_func(struct work_struct *w)
361 {
362 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
363 
364 	receive_g2h(ct);
365 
366 	if (!ct_restart_safe_mode_worker(ct))
367 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
368 }
369 
370 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
371 {
372 	if (ct_restart_safe_mode_worker(ct))
373 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
374 }
375 
376 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
377 {
378 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
379 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
380 }
381 
382 int xe_guc_ct_enable(struct xe_guc_ct *ct)
383 {
384 	struct xe_device *xe = ct_to_xe(ct);
385 	struct xe_gt *gt = ct_to_gt(ct);
386 	int err;
387 
388 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
389 
390 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
391 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
392 
393 	err = guc_ct_ctb_h2g_register(ct);
394 	if (err)
395 		goto err_out;
396 
397 	err = guc_ct_ctb_g2h_register(ct);
398 	if (err)
399 		goto err_out;
400 
401 	err = guc_ct_control_toggle(ct, true);
402 	if (err)
403 		goto err_out;
404 
405 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
406 
407 	smp_mb();
408 	wake_up_all(&ct->wq);
409 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
410 
411 	if (ct_needs_safe_mode(ct))
412 		ct_enter_safe_mode(ct);
413 
414 	return 0;
415 
416 err_out:
417 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
418 
419 	return err;
420 }
421 
422 static void stop_g2h_handler(struct xe_guc_ct *ct)
423 {
424 	cancel_work_sync(&ct->g2h_worker);
425 }
426 
427 /**
428  * xe_guc_ct_disable - Set GuC to disabled state
429  * @ct: the &xe_guc_ct
430  *
431  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
432  * in this transition.
433  */
434 void xe_guc_ct_disable(struct xe_guc_ct *ct)
435 {
436 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
437 	ct_exit_safe_mode(ct);
438 	stop_g2h_handler(ct);
439 }
440 
441 /**
442  * xe_guc_ct_stop - Set GuC to stopped state
443  * @ct: the &xe_guc_ct
444  *
445  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
446  */
447 void xe_guc_ct_stop(struct xe_guc_ct *ct)
448 {
449 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
450 	stop_g2h_handler(ct);
451 }
452 
453 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
454 {
455 	struct guc_ctb *h2g = &ct->ctbs.h2g;
456 
457 	lockdep_assert_held(&ct->lock);
458 
459 	if (cmd_len > h2g->info.space) {
460 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
461 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
462 					     h2g->info.size) -
463 				  h2g->info.resv_space;
464 		if (cmd_len > h2g->info.space)
465 			return false;
466 	}
467 
468 	return true;
469 }
470 
471 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
472 {
473 	if (!g2h_len)
474 		return true;
475 
476 	lockdep_assert_held(&ct->fast_lock);
477 
478 	return ct->ctbs.g2h.info.space > g2h_len;
479 }
480 
481 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
482 {
483 	lockdep_assert_held(&ct->lock);
484 
485 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
486 		return -EBUSY;
487 
488 	return 0;
489 }
490 
491 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
492 {
493 	lockdep_assert_held(&ct->lock);
494 	ct->ctbs.h2g.info.space -= cmd_len;
495 }
496 
497 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
498 {
499 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
500 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
501 		     (g2h_len && num_g2h));
502 
503 	if (g2h_len) {
504 		lockdep_assert_held(&ct->fast_lock);
505 
506 		if (!ct->g2h_outstanding)
507 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
508 
509 		ct->ctbs.g2h.info.space -= g2h_len;
510 		ct->g2h_outstanding += num_g2h;
511 	}
512 }
513 
514 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
515 {
516 	lockdep_assert_held(&ct->fast_lock);
517 	xe_gt_assert(ct_to_gt(ct), ct->ctbs.g2h.info.space + g2h_len <=
518 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
519 
520 	ct->ctbs.g2h.info.space += g2h_len;
521 	if (!--ct->g2h_outstanding)
522 		xe_pm_runtime_put(ct_to_xe(ct));
523 }
524 
525 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
526 {
527 	spin_lock_irq(&ct->fast_lock);
528 	__g2h_release_space(ct, g2h_len);
529 	spin_unlock_irq(&ct->fast_lock);
530 }
531 
532 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
533 
534 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
535 		     u32 ct_fence_value, bool want_response)
536 {
537 	struct xe_device *xe = ct_to_xe(ct);
538 	struct xe_gt *gt = ct_to_gt(ct);
539 	struct guc_ctb *h2g = &ct->ctbs.h2g;
540 	u32 cmd[H2G_CT_HEADERS];
541 	u32 tail = h2g->info.tail;
542 	u32 full_len;
543 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
544 							 tail * sizeof(u32));
545 
546 	full_len = len + GUC_CTB_HDR_LEN;
547 
548 	lockdep_assert_held(&ct->lock);
549 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
550 	xe_gt_assert(gt, tail <= h2g->info.size);
551 
552 	/* Command will wrap, zero fill (NOPs), return and check credits again */
553 	if (tail + full_len > h2g->info.size) {
554 		xe_map_memset(xe, &map, 0, 0,
555 			      (h2g->info.size - tail) * sizeof(u32));
556 		h2g_reserve_space(ct, (h2g->info.size - tail));
557 		h2g->info.tail = 0;
558 		desc_write(xe, h2g, tail, h2g->info.tail);
559 
560 		return -EAGAIN;
561 	}
562 
563 	/*
564 	 * dw0: CT header (including fence)
565 	 * dw1: HXG header (including action code)
566 	 * dw2+: action data
567 	 */
568 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
569 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
570 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
571 	if (want_response) {
572 		cmd[1] =
573 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
574 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
575 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
576 	} else {
577 		cmd[1] =
578 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
579 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
580 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
581 	}
582 
583 	/* H2G header in cmd[1] replaces action[0] so: */
584 	--len;
585 	++action;
586 
587 	/* Write H2G ensuring visable before descriptor update */
588 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
589 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
590 	xe_device_wmb(xe);
591 
592 	/* Update local copies */
593 	h2g->info.tail = (tail + full_len) % h2g->info.size;
594 	h2g_reserve_space(ct, full_len);
595 
596 	/* Update descriptor */
597 	desc_write(xe, h2g, tail, h2g->info.tail);
598 
599 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
600 			     desc_read(xe, h2g, head), h2g->info.tail);
601 
602 	return 0;
603 }
604 
605 /*
606  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
607  * driver, the GuC will just copy it to the reply message. Since we need to
608  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
609  * we use one bit of the seqno as an indicator for that and a rolling counter
610  * for the remaining 15 bits.
611  */
612 #define CT_SEQNO_MASK GENMASK(14, 0)
613 #define CT_SEQNO_UNTRACKED BIT(15)
614 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
615 {
616 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
617 
618 	if (!is_g2h_fence)
619 		seqno |= CT_SEQNO_UNTRACKED;
620 
621 	return seqno;
622 }
623 
624 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
625 				u32 len, u32 g2h_len, u32 num_g2h,
626 				struct g2h_fence *g2h_fence)
627 {
628 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
629 	u16 seqno;
630 	int ret;
631 
632 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
633 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
634 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
635 	xe_gt_assert(gt, !g2h_len || num_g2h);
636 	xe_gt_assert(gt, g2h_len || !num_g2h);
637 	lockdep_assert_held(&ct->lock);
638 
639 	if (unlikely(ct->ctbs.h2g.info.broken)) {
640 		ret = -EPIPE;
641 		goto out;
642 	}
643 
644 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
645 		ret = -ENODEV;
646 		goto out;
647 	}
648 
649 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
650 		ret = -ECANCELED;
651 		goto out;
652 	}
653 
654 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
655 
656 	if (g2h_fence) {
657 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
658 		num_g2h = 1;
659 
660 		if (g2h_fence_needs_alloc(g2h_fence)) {
661 			void *ptr;
662 
663 			g2h_fence->seqno = next_ct_seqno(ct, true);
664 			ptr = xa_store(&ct->fence_lookup,
665 				       g2h_fence->seqno,
666 				       g2h_fence, GFP_ATOMIC);
667 			if (IS_ERR(ptr)) {
668 				ret = PTR_ERR(ptr);
669 				goto out;
670 			}
671 		}
672 
673 		seqno = g2h_fence->seqno;
674 	} else {
675 		seqno = next_ct_seqno(ct, false);
676 	}
677 
678 	if (g2h_len)
679 		spin_lock_irq(&ct->fast_lock);
680 retry:
681 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
682 	if (unlikely(ret))
683 		goto out_unlock;
684 
685 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
686 	if (unlikely(ret)) {
687 		if (ret == -EAGAIN)
688 			goto retry;
689 		goto out_unlock;
690 	}
691 
692 	__g2h_reserve_space(ct, g2h_len, num_g2h);
693 	xe_guc_notify(ct_to_guc(ct));
694 out_unlock:
695 	if (g2h_len)
696 		spin_unlock_irq(&ct->fast_lock);
697 out:
698 	return ret;
699 }
700 
701 static void kick_reset(struct xe_guc_ct *ct)
702 {
703 	xe_gt_reset_async(ct_to_gt(ct));
704 }
705 
706 static int dequeue_one_g2h(struct xe_guc_ct *ct);
707 
708 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
709 			      u32 g2h_len, u32 num_g2h,
710 			      struct g2h_fence *g2h_fence)
711 {
712 	struct xe_device *xe = ct_to_xe(ct);
713 	struct xe_gt *gt = ct_to_gt(ct);
714 	struct drm_printer p = xe_gt_info_printer(gt);
715 	unsigned int sleep_period_ms = 1;
716 	int ret;
717 
718 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
719 	lockdep_assert_held(&ct->lock);
720 	xe_device_assert_mem_access(ct_to_xe(ct));
721 
722 try_again:
723 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
724 				   g2h_fence);
725 
726 	/*
727 	 * We wait to try to restore credits for about 1 second before bailing.
728 	 * In the case of H2G credits we have no choice but just to wait for the
729 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
730 	 * the case of G2H we process any G2H in the channel, hopefully freeing
731 	 * credits as we consume the G2H messages.
732 	 */
733 	if (unlikely(ret == -EBUSY &&
734 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
735 		struct guc_ctb *h2g = &ct->ctbs.h2g;
736 
737 		if (sleep_period_ms == 1024)
738 			goto broken;
739 
740 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
741 						 h2g->info.size,
742 						 h2g->info.space,
743 						 len + GUC_CTB_HDR_LEN);
744 		msleep(sleep_period_ms);
745 		sleep_period_ms <<= 1;
746 
747 		goto try_again;
748 	} else if (unlikely(ret == -EBUSY)) {
749 		struct xe_device *xe = ct_to_xe(ct);
750 		struct guc_ctb *g2h = &ct->ctbs.g2h;
751 
752 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
753 						 desc_read(xe, g2h, tail),
754 						 g2h->info.size,
755 						 g2h->info.space,
756 						 g2h_fence ?
757 						 GUC_CTB_HXG_MSG_MAX_LEN :
758 						 g2h_len);
759 
760 #define g2h_avail(ct)	\
761 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
762 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
763 					g2h_avail(ct), HZ))
764 			goto broken;
765 #undef g2h_avail
766 
767 		if (dequeue_one_g2h(ct) < 0)
768 			goto broken;
769 
770 		goto try_again;
771 	}
772 
773 	return ret;
774 
775 broken:
776 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
777 	xe_guc_ct_print(ct, &p, true);
778 	ct->ctbs.h2g.info.broken = true;
779 
780 	return -EDEADLK;
781 }
782 
783 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
784 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
785 {
786 	int ret;
787 
788 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
789 
790 	mutex_lock(&ct->lock);
791 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
792 	mutex_unlock(&ct->lock);
793 
794 	return ret;
795 }
796 
797 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
798 		   u32 g2h_len, u32 num_g2h)
799 {
800 	int ret;
801 
802 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
803 	if (ret == -EDEADLK)
804 		kick_reset(ct);
805 
806 	return ret;
807 }
808 
809 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
810 			  u32 g2h_len, u32 num_g2h)
811 {
812 	int ret;
813 
814 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
815 	if (ret == -EDEADLK)
816 		kick_reset(ct);
817 
818 	return ret;
819 }
820 
821 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
822 {
823 	int ret;
824 
825 	lockdep_assert_held(&ct->lock);
826 
827 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
828 	if (ret == -EDEADLK)
829 		kick_reset(ct);
830 
831 	return ret;
832 }
833 
834 /*
835  * Check if a GT reset is in progress or will occur and if GT reset brought the
836  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
837  */
838 static bool retry_failure(struct xe_guc_ct *ct, int ret)
839 {
840 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
841 		return false;
842 
843 #define ct_alive(ct)	\
844 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
845 	 !ct->ctbs.g2h.info.broken)
846 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
847 		return false;
848 #undef ct_alive
849 
850 	return true;
851 }
852 
853 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
854 			    u32 *response_buffer, bool no_fail)
855 {
856 	struct xe_gt *gt = ct_to_gt(ct);
857 	struct g2h_fence g2h_fence;
858 	int ret = 0;
859 
860 	/*
861 	 * We use a fence to implement blocking sends / receiving response data.
862 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
863 	 * an xarray is used as storage media with the seqno being to key.
864 	 * Fields in the fence hold success, failure, retry status and the
865 	 * response data. Safe to allocate on the stack as the xarray is the
866 	 * only reference and it cannot be present after this function exits.
867 	 */
868 retry:
869 	g2h_fence_init(&g2h_fence, response_buffer);
870 retry_same_fence:
871 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
872 	if (unlikely(ret == -ENOMEM)) {
873 		void *ptr;
874 
875 		/* Retry allocation /w GFP_KERNEL */
876 		ptr = xa_store(&ct->fence_lookup,
877 			       g2h_fence.seqno,
878 			       &g2h_fence, GFP_KERNEL);
879 		if (IS_ERR(ptr))
880 			return PTR_ERR(ptr);
881 
882 		goto retry_same_fence;
883 	} else if (unlikely(ret)) {
884 		if (ret == -EDEADLK)
885 			kick_reset(ct);
886 
887 		if (no_fail && retry_failure(ct, ret))
888 			goto retry_same_fence;
889 
890 		if (!g2h_fence_needs_alloc(&g2h_fence))
891 			xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
892 
893 		return ret;
894 	}
895 
896 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
897 	if (!ret) {
898 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x",
899 			  g2h_fence.seqno, action[0]);
900 		xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
901 		return -ETIME;
902 	}
903 
904 	if (g2h_fence.retry) {
905 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
906 			  action[0], g2h_fence.reason);
907 		goto retry;
908 	}
909 	if (g2h_fence.fail) {
910 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
911 			  action[0], g2h_fence.error, g2h_fence.hint);
912 		ret = -EIO;
913 	}
914 
915 	return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret;
916 }
917 
918 /**
919  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
920  * @ct: the &xe_guc_ct
921  * @action: the dword array with `HXG Request`_ message (can't be NULL)
922  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
923  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
924  *
925  * Send a `HXG Request`_ message to the GuC over CT communication channel and
926  * blocks until GuC replies with a `HXG Response`_ message.
927  *
928  * For non-blocking communication with GuC use xe_guc_ct_send().
929  *
930  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
931  *
932  * Return: response length (in dwords) if &response_buffer was not NULL, or
933  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
934  *         a negative error code on failure.
935  */
936 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
937 			u32 *response_buffer)
938 {
939 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
940 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
941 }
942 
943 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
944 				u32 len, u32 *response_buffer)
945 {
946 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
947 }
948 
949 static u32 *msg_to_hxg(u32 *msg)
950 {
951 	return msg + GUC_CTB_MSG_MIN_LEN;
952 }
953 
954 static u32 msg_len_to_hxg_len(u32 len)
955 {
956 	return len - GUC_CTB_MSG_MIN_LEN;
957 }
958 
959 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
960 {
961 	u32 *hxg = msg_to_hxg(msg);
962 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
963 
964 	lockdep_assert_held(&ct->lock);
965 
966 	switch (action) {
967 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
968 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
969 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
970 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
971 		g2h_release_space(ct, len);
972 	}
973 
974 	return 0;
975 }
976 
977 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
978 {
979 	struct xe_gt *gt =  ct_to_gt(ct);
980 	u32 *hxg = msg_to_hxg(msg);
981 	u32 hxg_len = msg_len_to_hxg_len(len);
982 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
983 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
984 	struct g2h_fence *g2h_fence;
985 
986 	lockdep_assert_held(&ct->lock);
987 
988 	/*
989 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
990 	 * Those messages should never fail, so if we do get an error back it
991 	 * means we're likely doing an illegal operation and the GuC is
992 	 * rejecting it. We have no way to inform the code that submitted the
993 	 * H2G that the message was rejected, so we need to escalate the
994 	 * failure to trigger a reset.
995 	 */
996 	if (fence & CT_SEQNO_UNTRACKED) {
997 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
998 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
999 				  fence,
1000 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1001 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1002 		else
1003 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1004 				  type, fence);
1005 
1006 		return -EPROTO;
1007 	}
1008 
1009 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1010 	if (unlikely(!g2h_fence)) {
1011 		/* Don't tear down channel, as send could've timed out */
1012 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1013 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1014 		return 0;
1015 	}
1016 
1017 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1018 
1019 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1020 		g2h_fence->fail = true;
1021 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1022 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1023 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1024 		g2h_fence->retry = true;
1025 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1026 	} else if (g2h_fence->response_buffer) {
1027 		g2h_fence->response_len = hxg_len;
1028 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1029 	} else {
1030 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1031 	}
1032 
1033 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1034 
1035 	g2h_fence->done = true;
1036 	smp_mb();
1037 
1038 	wake_up_all(&ct->g2h_fence_wq);
1039 
1040 	return 0;
1041 }
1042 
1043 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1044 {
1045 	struct xe_gt *gt = ct_to_gt(ct);
1046 	u32 *hxg = msg_to_hxg(msg);
1047 	u32 origin, type;
1048 	int ret;
1049 
1050 	lockdep_assert_held(&ct->lock);
1051 
1052 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1053 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1054 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1055 			  origin);
1056 		ct->ctbs.g2h.info.broken = true;
1057 
1058 		return -EPROTO;
1059 	}
1060 
1061 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1062 	switch (type) {
1063 	case GUC_HXG_TYPE_EVENT:
1064 		ret = parse_g2h_event(ct, msg, len);
1065 		break;
1066 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1067 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1068 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1069 		ret = parse_g2h_response(ct, msg, len);
1070 		break;
1071 	default:
1072 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1073 			  type);
1074 		ct->ctbs.g2h.info.broken = true;
1075 
1076 		ret = -EOPNOTSUPP;
1077 	}
1078 
1079 	return ret;
1080 }
1081 
1082 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1083 {
1084 	struct xe_guc *guc = ct_to_guc(ct);
1085 	struct xe_gt *gt = ct_to_gt(ct);
1086 	u32 hxg_len = msg_len_to_hxg_len(len);
1087 	u32 *hxg = msg_to_hxg(msg);
1088 	u32 action, adj_len;
1089 	u32 *payload;
1090 	int ret = 0;
1091 
1092 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1093 		return 0;
1094 
1095 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1096 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1097 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1098 
1099 	switch (action) {
1100 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1101 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1102 		break;
1103 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1104 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1105 		break;
1106 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1107 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1108 		break;
1109 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1110 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1111 							      adj_len);
1112 		break;
1113 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1114 		/* Selftest only at the moment */
1115 		break;
1116 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1117 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1118 		/* FIXME: Handle this */
1119 		break;
1120 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1121 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1122 								 adj_len);
1123 		break;
1124 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1125 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1126 		break;
1127 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1128 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1129 							   adj_len);
1130 		break;
1131 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1132 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1133 							   adj_len);
1134 		break;
1135 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1136 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1137 		break;
1138 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1139 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1140 		break;
1141 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1142 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1143 		break;
1144 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1145 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1146 		break;
1147 	default:
1148 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1149 	}
1150 
1151 	if (ret)
1152 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1153 			  action, ERR_PTR(ret));
1154 
1155 	return 0;
1156 }
1157 
1158 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1159 {
1160 	struct xe_device *xe = ct_to_xe(ct);
1161 	struct xe_gt *gt = ct_to_gt(ct);
1162 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1163 	u32 tail, head, len;
1164 	s32 avail;
1165 	u32 action;
1166 	u32 *hxg;
1167 
1168 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1169 	lockdep_assert_held(&ct->fast_lock);
1170 
1171 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1172 		return -ENODEV;
1173 
1174 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1175 		return -ECANCELED;
1176 
1177 	if (g2h->info.broken)
1178 		return -EPIPE;
1179 
1180 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1181 
1182 	/* Calculate DW available to read */
1183 	tail = desc_read(xe, g2h, tail);
1184 	avail = tail - g2h->info.head;
1185 	if (unlikely(avail == 0))
1186 		return 0;
1187 
1188 	if (avail < 0)
1189 		avail += g2h->info.size;
1190 
1191 	/* Read header */
1192 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1193 			   sizeof(u32));
1194 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1195 	if (len > avail) {
1196 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1197 			  avail, len);
1198 		g2h->info.broken = true;
1199 
1200 		return -EPROTO;
1201 	}
1202 
1203 	head = (g2h->info.head + 1) % g2h->info.size;
1204 	avail = len - 1;
1205 
1206 	/* Read G2H message */
1207 	if (avail + head > g2h->info.size) {
1208 		u32 avail_til_wrap = g2h->info.size - head;
1209 
1210 		xe_map_memcpy_from(xe, msg + 1,
1211 				   &g2h->cmds, sizeof(u32) * head,
1212 				   avail_til_wrap * sizeof(u32));
1213 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1214 				   &g2h->cmds, 0,
1215 				   (avail - avail_til_wrap) * sizeof(u32));
1216 	} else {
1217 		xe_map_memcpy_from(xe, msg + 1,
1218 				   &g2h->cmds, sizeof(u32) * head,
1219 				   avail * sizeof(u32));
1220 	}
1221 
1222 	hxg = msg_to_hxg(msg);
1223 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1224 
1225 	if (fast_path) {
1226 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1227 			return 0;
1228 
1229 		switch (action) {
1230 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1231 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1232 			break;	/* Process these in fast-path */
1233 		default:
1234 			return 0;
1235 		}
1236 	}
1237 
1238 	/* Update local / descriptor header */
1239 	g2h->info.head = (head + avail) % g2h->info.size;
1240 	desc_write(xe, g2h, head, g2h->info.head);
1241 
1242 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1243 			     action, len, g2h->info.head, tail);
1244 
1245 	return len;
1246 }
1247 
1248 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1249 {
1250 	struct xe_gt *gt = ct_to_gt(ct);
1251 	struct xe_guc *guc = ct_to_guc(ct);
1252 	u32 hxg_len = msg_len_to_hxg_len(len);
1253 	u32 *hxg = msg_to_hxg(msg);
1254 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1255 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1256 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1257 	int ret = 0;
1258 
1259 	switch (action) {
1260 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1261 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1262 		break;
1263 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1264 		__g2h_release_space(ct, len);
1265 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1266 							   adj_len);
1267 		break;
1268 	default:
1269 		xe_gt_warn(gt, "NOT_POSSIBLE");
1270 	}
1271 
1272 	if (ret)
1273 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1274 			  action, ERR_PTR(ret));
1275 }
1276 
1277 /**
1278  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1279  * @ct: GuC CT object
1280  *
1281  * Anything related to page faults is critical for performance, process these
1282  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1283  * waiters or queue another worker.
1284  */
1285 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1286 {
1287 	struct xe_device *xe = ct_to_xe(ct);
1288 	bool ongoing;
1289 	int len;
1290 
1291 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1292 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1293 		return;
1294 
1295 	spin_lock(&ct->fast_lock);
1296 	do {
1297 		len = g2h_read(ct, ct->fast_msg, true);
1298 		if (len > 0)
1299 			g2h_fast_path(ct, ct->fast_msg, len);
1300 	} while (len > 0);
1301 	spin_unlock(&ct->fast_lock);
1302 
1303 	if (ongoing)
1304 		xe_pm_runtime_put(xe);
1305 }
1306 
1307 /* Returns less than zero on error, 0 on done, 1 on more available */
1308 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1309 {
1310 	int len;
1311 	int ret;
1312 
1313 	lockdep_assert_held(&ct->lock);
1314 
1315 	spin_lock_irq(&ct->fast_lock);
1316 	len = g2h_read(ct, ct->msg, false);
1317 	spin_unlock_irq(&ct->fast_lock);
1318 	if (len <= 0)
1319 		return len;
1320 
1321 	ret = parse_g2h_msg(ct, ct->msg, len);
1322 	if (unlikely(ret < 0))
1323 		return ret;
1324 
1325 	ret = process_g2h_msg(ct, ct->msg, len);
1326 	if (unlikely(ret < 0))
1327 		return ret;
1328 
1329 	return 1;
1330 }
1331 
1332 static void receive_g2h(struct xe_guc_ct *ct)
1333 {
1334 	struct xe_gt *gt = ct_to_gt(ct);
1335 	bool ongoing;
1336 	int ret;
1337 
1338 	/*
1339 	 * Normal users must always hold mem_access.ref around CT calls. However
1340 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1341 	 * at this stage we can't rely on mem_access.ref and even the
1342 	 * callback_task will be different than current.  For such cases we just
1343 	 * need to ensure we always process the responses from any blocking
1344 	 * ct_send requests or where we otherwise expect some response when
1345 	 * initiated from those callbacks (which will need to wait for the below
1346 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1347 	 * the device has suspended to the point that the CT communication has
1348 	 * been disabled.
1349 	 *
1350 	 * If we are inside the runtime pm callback, we can be the only task
1351 	 * still issuing CT requests (since that requires having the
1352 	 * mem_access.ref).  It seems like it might in theory be possible to
1353 	 * receive unsolicited events from the GuC just as we are
1354 	 * suspending-resuming, but those will currently anyway be lost when
1355 	 * eventually exiting from suspend, hence no need to wake up the device
1356 	 * here. If we ever need something stronger than get_if_ongoing() then
1357 	 * we need to be careful with blocking the pm callbacks from getting CT
1358 	 * responses, if the worker here is blocked on those callbacks
1359 	 * completing, creating a deadlock.
1360 	 */
1361 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1362 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1363 		return;
1364 
1365 	do {
1366 		mutex_lock(&ct->lock);
1367 		ret = dequeue_one_g2h(ct);
1368 		mutex_unlock(&ct->lock);
1369 
1370 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1371 			struct drm_printer p = xe_gt_info_printer(gt);
1372 
1373 			xe_guc_ct_print(ct, &p, false);
1374 			kick_reset(ct);
1375 		}
1376 	} while (ret == 1);
1377 
1378 	if (ongoing)
1379 		xe_pm_runtime_put(ct_to_xe(ct));
1380 }
1381 
1382 static void g2h_worker_func(struct work_struct *w)
1383 {
1384 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1385 
1386 	receive_g2h(ct);
1387 }
1388 
1389 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1390 				     struct guc_ctb_snapshot *snapshot,
1391 				     bool atomic)
1392 {
1393 	u32 head, tail;
1394 
1395 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1396 			   sizeof(struct guc_ct_buffer_desc));
1397 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1398 
1399 	snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
1400 				       atomic ? GFP_ATOMIC : GFP_KERNEL);
1401 
1402 	if (!snapshot->cmds) {
1403 		drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
1404 		return;
1405 	}
1406 
1407 	head = snapshot->desc.head;
1408 	tail = snapshot->desc.tail;
1409 
1410 	if (head != tail) {
1411 		struct iosys_map map =
1412 			IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
1413 
1414 		while (head != tail) {
1415 			snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
1416 			++head;
1417 			if (head == ctb->info.size) {
1418 				head = 0;
1419 				map = ctb->cmds;
1420 			} else {
1421 				iosys_map_incr(&map, sizeof(u32));
1422 			}
1423 		}
1424 	}
1425 }
1426 
1427 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1428 				   struct drm_printer *p)
1429 {
1430 	u32 head, tail;
1431 
1432 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1433 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1434 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1435 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1436 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1437 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1438 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1439 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1440 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1441 
1442 	if (!snapshot->cmds)
1443 		return;
1444 
1445 	head = snapshot->desc.head;
1446 	tail = snapshot->desc.tail;
1447 
1448 	while (head != tail) {
1449 		drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
1450 			   snapshot->cmds[head]);
1451 		++head;
1452 		if (head == snapshot->info.size)
1453 			head = 0;
1454 	}
1455 }
1456 
1457 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
1458 {
1459 	kfree(snapshot->cmds);
1460 }
1461 
1462 /**
1463  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1464  * @ct: GuC CT object.
1465  * @atomic: Boolean to indicate if this is called from atomic context like
1466  * reset or CTB handler or from some regular path like debugfs.
1467  *
1468  * This can be printed out in a later stage like during dev_coredump
1469  * analysis.
1470  *
1471  * Returns: a GuC CT snapshot object that must be freed by the caller
1472  * by using `xe_guc_ct_snapshot_free`.
1473  */
1474 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
1475 						      bool atomic)
1476 {
1477 	struct xe_device *xe = ct_to_xe(ct);
1478 	struct xe_guc_ct_snapshot *snapshot;
1479 
1480 	snapshot = kzalloc(sizeof(*snapshot),
1481 			   atomic ? GFP_ATOMIC : GFP_KERNEL);
1482 
1483 	if (!snapshot) {
1484 		drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
1485 		return NULL;
1486 	}
1487 
1488 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1489 		snapshot->ct_enabled = true;
1490 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1491 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
1492 					 &snapshot->h2g, atomic);
1493 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
1494 					 &snapshot->g2h, atomic);
1495 	}
1496 
1497 	return snapshot;
1498 }
1499 
1500 /**
1501  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1502  * @snapshot: GuC CT snapshot object.
1503  * @p: drm_printer where it will be printed out.
1504  *
1505  * This function prints out a given GuC CT snapshot object.
1506  */
1507 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1508 			      struct drm_printer *p)
1509 {
1510 	if (!snapshot)
1511 		return;
1512 
1513 	if (snapshot->ct_enabled) {
1514 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1515 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1516 
1517 		drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
1518 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1519 
1520 		drm_printf(p, "\tg2h outstanding: %d\n",
1521 			   snapshot->g2h_outstanding);
1522 	} else {
1523 		drm_puts(p, "CT disabled\n");
1524 	}
1525 }
1526 
1527 /**
1528  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1529  * @snapshot: GuC CT snapshot object.
1530  *
1531  * This function free all the memory that needed to be allocated at capture
1532  * time.
1533  */
1534 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1535 {
1536 	if (!snapshot)
1537 		return;
1538 
1539 	guc_ctb_snapshot_free(&snapshot->h2g);
1540 	guc_ctb_snapshot_free(&snapshot->g2h);
1541 	kfree(snapshot);
1542 }
1543 
1544 /**
1545  * xe_guc_ct_print - GuC CT Print.
1546  * @ct: GuC CT.
1547  * @p: drm_printer where it will be printed out.
1548  * @atomic: Boolean to indicate if this is called from atomic context like
1549  * reset or CTB handler or from some regular path like debugfs.
1550  *
1551  * This function quickly capture a snapshot and immediately print it out.
1552  */
1553 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
1554 {
1555 	struct xe_guc_ct_snapshot *snapshot;
1556 
1557 	snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
1558 	xe_guc_ct_snapshot_print(snapshot, p);
1559 	xe_guc_ct_snapshot_free(snapshot);
1560 }
1561