xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 
12 #include <kunit/static_stub.h>
13 
14 #include <drm/drm_managed.h>
15 
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_actions_sriov_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "xe_bo.h"
20 #include "xe_device.h"
21 #include "xe_gt.h"
22 #include "xe_gt_pagefault.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_sriov_pf_control.h"
25 #include "xe_gt_sriov_pf_monitor.h"
26 #include "xe_gt_tlb_invalidation.h"
27 #include "xe_guc.h"
28 #include "xe_guc_relay.h"
29 #include "xe_guc_submit.h"
30 #include "xe_map.h"
31 #include "xe_pm.h"
32 #include "xe_trace_guc.h"
33 
34 /* Used when a CT send wants to block and / or receive data */
35 struct g2h_fence {
36 	u32 *response_buffer;
37 	u32 seqno;
38 	u32 response_data;
39 	u16 response_len;
40 	u16 error;
41 	u16 hint;
42 	u16 reason;
43 	bool retry;
44 	bool fail;
45 	bool done;
46 };
47 
48 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
49 {
50 	g2h_fence->response_buffer = response_buffer;
51 	g2h_fence->response_data = 0;
52 	g2h_fence->response_len = 0;
53 	g2h_fence->fail = false;
54 	g2h_fence->retry = false;
55 	g2h_fence->done = false;
56 	g2h_fence->seqno = ~0x0;
57 }
58 
59 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
60 {
61 	return g2h_fence->seqno == ~0x0;
62 }
63 
64 static struct xe_guc *
65 ct_to_guc(struct xe_guc_ct *ct)
66 {
67 	return container_of(ct, struct xe_guc, ct);
68 }
69 
70 static struct xe_gt *
71 ct_to_gt(struct xe_guc_ct *ct)
72 {
73 	return container_of(ct, struct xe_gt, uc.guc.ct);
74 }
75 
76 static struct xe_device *
77 ct_to_xe(struct xe_guc_ct *ct)
78 {
79 	return gt_to_xe(ct_to_gt(ct));
80 }
81 
82 /**
83  * DOC: GuC CTB Blob
84  *
85  * We allocate single blob to hold both CTB descriptors and buffers:
86  *
87  *      +--------+-----------------------------------------------+------+
88  *      | offset | contents                                      | size |
89  *      +========+===============================================+======+
90  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
91  *      +--------+-----------------------------------------------+  4K  |
92  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
93  *      +--------+-----------------------------------------------+------+
94  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
95  *      |        |                                               |      |
96  *      +--------+-----------------------------------------------+------+
97  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
98  *      | + n*4K |                                               |      |
99  *      +--------+-----------------------------------------------+------+
100  *
101  * Size of each ``CT Buffer`` must be multiple of 4K.
102  * We don't expect too many messages in flight at any time, unless we are
103  * using the GuC submission. In that case each request requires a minimum
104  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
105  * enough space to avoid backpressure on the driver. We increase the size
106  * of the receive buffer (relative to the send) to ensure a G2H response
107  * CTB has a landing spot.
108  *
109  * In addition to submissions, the G2H buffer needs to be able to hold
110  * enough space for recoverable page fault notifications. The number of
111  * page faults is interrupt driven and can be as much as the number of
112  * compute resources available. However, most of the actual work for these
113  * is in a separate page fault worker thread. Therefore we only need to
114  * make sure the queue has enough space to handle all of the submissions
115  * and responses and an extra buffer for incoming page faults.
116  */
117 
118 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
119 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
120 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
121 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
122 
123 /**
124  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
125  * CT command queue
126  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
127  *
128  * Observation is that a 4KiB buffer full of commands takes a little over a
129  * second to process. Use that to calculate maximum time to process a full CT
130  * command queue.
131  *
132  * Return: Maximum time to process a full CT queue in jiffies.
133  */
134 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
135 {
136 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
137 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
138 }
139 
140 static size_t guc_ct_size(void)
141 {
142 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
143 		CTB_G2H_BUFFER_SIZE;
144 }
145 
146 static void guc_ct_fini(struct drm_device *drm, void *arg)
147 {
148 	struct xe_guc_ct *ct = arg;
149 
150 	destroy_workqueue(ct->g2h_wq);
151 	xa_destroy(&ct->fence_lookup);
152 }
153 
154 static void receive_g2h(struct xe_guc_ct *ct);
155 static void g2h_worker_func(struct work_struct *w);
156 static void safe_mode_worker_func(struct work_struct *w);
157 
158 static void primelockdep(struct xe_guc_ct *ct)
159 {
160 	if (!IS_ENABLED(CONFIG_LOCKDEP))
161 		return;
162 
163 	fs_reclaim_acquire(GFP_KERNEL);
164 	might_lock(&ct->lock);
165 	fs_reclaim_release(GFP_KERNEL);
166 }
167 
168 int xe_guc_ct_init(struct xe_guc_ct *ct)
169 {
170 	struct xe_device *xe = ct_to_xe(ct);
171 	struct xe_gt *gt = ct_to_gt(ct);
172 	struct xe_tile *tile = gt_to_tile(gt);
173 	struct xe_bo *bo;
174 	int err;
175 
176 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
177 
178 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
179 	if (!ct->g2h_wq)
180 		return -ENOMEM;
181 
182 	spin_lock_init(&ct->fast_lock);
183 	xa_init(&ct->fence_lookup);
184 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
185 	INIT_DELAYED_WORK(&ct->safe_mode_worker,  safe_mode_worker_func);
186 	init_waitqueue_head(&ct->wq);
187 	init_waitqueue_head(&ct->g2h_fence_wq);
188 
189 	err = drmm_mutex_init(&xe->drm, &ct->lock);
190 	if (err)
191 		return err;
192 
193 	primelockdep(ct);
194 
195 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
196 					  XE_BO_FLAG_SYSTEM |
197 					  XE_BO_FLAG_GGTT |
198 					  XE_BO_FLAG_GGTT_INVALIDATE);
199 	if (IS_ERR(bo))
200 		return PTR_ERR(bo);
201 
202 	ct->bo = bo;
203 
204 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
205 	if (err)
206 		return err;
207 
208 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
209 	ct->state = XE_GUC_CT_STATE_DISABLED;
210 	return 0;
211 }
212 
213 #define desc_read(xe_, guc_ctb__, field_)			\
214 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
215 			struct guc_ct_buffer_desc, field_)
216 
217 #define desc_write(xe_, guc_ctb__, field_, val_)		\
218 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
219 			struct guc_ct_buffer_desc, field_, val_)
220 
221 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
222 				struct iosys_map *map)
223 {
224 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
225 	h2g->info.resv_space = 0;
226 	h2g->info.tail = 0;
227 	h2g->info.head = 0;
228 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
229 				     h2g->info.size) -
230 			  h2g->info.resv_space;
231 	h2g->info.broken = false;
232 
233 	h2g->desc = *map;
234 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
235 
236 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
237 }
238 
239 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
240 				struct iosys_map *map)
241 {
242 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
243 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
244 	g2h->info.head = 0;
245 	g2h->info.tail = 0;
246 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
247 				     g2h->info.size) -
248 			  g2h->info.resv_space;
249 	g2h->info.broken = false;
250 
251 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
252 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
253 
254 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
255 					    CTB_H2G_BUFFER_SIZE);
256 }
257 
258 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
259 {
260 	struct xe_guc *guc = ct_to_guc(ct);
261 	u32 desc_addr, ctb_addr, size;
262 	int err;
263 
264 	desc_addr = xe_bo_ggtt_addr(ct->bo);
265 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
266 	size = ct->ctbs.h2g.info.size * sizeof(u32);
267 
268 	err = xe_guc_self_cfg64(guc,
269 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
270 				desc_addr);
271 	if (err)
272 		return err;
273 
274 	err = xe_guc_self_cfg64(guc,
275 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
276 				ctb_addr);
277 	if (err)
278 		return err;
279 
280 	return xe_guc_self_cfg32(guc,
281 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
282 				 size);
283 }
284 
285 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
286 {
287 	struct xe_guc *guc = ct_to_guc(ct);
288 	u32 desc_addr, ctb_addr, size;
289 	int err;
290 
291 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
292 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
293 		CTB_H2G_BUFFER_SIZE;
294 	size = ct->ctbs.g2h.info.size * sizeof(u32);
295 
296 	err = xe_guc_self_cfg64(guc,
297 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
298 				desc_addr);
299 	if (err)
300 		return err;
301 
302 	err = xe_guc_self_cfg64(guc,
303 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
304 				ctb_addr);
305 	if (err)
306 		return err;
307 
308 	return xe_guc_self_cfg32(guc,
309 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
310 				 size);
311 }
312 
313 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
314 {
315 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
316 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
317 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
318 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
319 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
320 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
321 			   enable ? GUC_CTB_CONTROL_ENABLE :
322 			   GUC_CTB_CONTROL_DISABLE),
323 	};
324 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
325 
326 	return ret > 0 ? -EPROTO : ret;
327 }
328 
329 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
330 				enum xe_guc_ct_state state)
331 {
332 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
333 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
334 
335 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
336 		     state == XE_GUC_CT_STATE_STOPPED);
337 
338 	if (ct->g2h_outstanding)
339 		xe_pm_runtime_put(ct_to_xe(ct));
340 	ct->g2h_outstanding = 0;
341 	ct->state = state;
342 
343 	spin_unlock_irq(&ct->fast_lock);
344 
345 	/*
346 	 * Lockdep doesn't like this under the fast lock and he destroy only
347 	 * needs to be serialized with the send path which ct lock provides.
348 	 */
349 	xa_destroy(&ct->fence_lookup);
350 
351 	mutex_unlock(&ct->lock);
352 }
353 
354 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
355 {
356 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
357 }
358 
359 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
360 {
361 	if (!ct_needs_safe_mode(ct))
362 		return false;
363 
364 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
365 	return true;
366 }
367 
368 static void safe_mode_worker_func(struct work_struct *w)
369 {
370 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
371 
372 	receive_g2h(ct);
373 
374 	if (!ct_restart_safe_mode_worker(ct))
375 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
376 }
377 
378 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
379 {
380 	if (ct_restart_safe_mode_worker(ct))
381 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
382 }
383 
384 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
385 {
386 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
387 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
388 }
389 
390 int xe_guc_ct_enable(struct xe_guc_ct *ct)
391 {
392 	struct xe_device *xe = ct_to_xe(ct);
393 	struct xe_gt *gt = ct_to_gt(ct);
394 	int err;
395 
396 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
397 
398 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
399 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
400 
401 	err = guc_ct_ctb_h2g_register(ct);
402 	if (err)
403 		goto err_out;
404 
405 	err = guc_ct_ctb_g2h_register(ct);
406 	if (err)
407 		goto err_out;
408 
409 	err = guc_ct_control_toggle(ct, true);
410 	if (err)
411 		goto err_out;
412 
413 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
414 
415 	smp_mb();
416 	wake_up_all(&ct->wq);
417 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
418 
419 	if (ct_needs_safe_mode(ct))
420 		ct_enter_safe_mode(ct);
421 
422 	return 0;
423 
424 err_out:
425 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
426 
427 	return err;
428 }
429 
430 static void stop_g2h_handler(struct xe_guc_ct *ct)
431 {
432 	cancel_work_sync(&ct->g2h_worker);
433 }
434 
435 /**
436  * xe_guc_ct_disable - Set GuC to disabled state
437  * @ct: the &xe_guc_ct
438  *
439  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
440  * in this transition.
441  */
442 void xe_guc_ct_disable(struct xe_guc_ct *ct)
443 {
444 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
445 	ct_exit_safe_mode(ct);
446 	stop_g2h_handler(ct);
447 }
448 
449 /**
450  * xe_guc_ct_stop - Set GuC to stopped state
451  * @ct: the &xe_guc_ct
452  *
453  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
454  */
455 void xe_guc_ct_stop(struct xe_guc_ct *ct)
456 {
457 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
458 	stop_g2h_handler(ct);
459 }
460 
461 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
462 {
463 	struct guc_ctb *h2g = &ct->ctbs.h2g;
464 
465 	lockdep_assert_held(&ct->lock);
466 
467 	if (cmd_len > h2g->info.space) {
468 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
469 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
470 					     h2g->info.size) -
471 				  h2g->info.resv_space;
472 		if (cmd_len > h2g->info.space)
473 			return false;
474 	}
475 
476 	return true;
477 }
478 
479 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
480 {
481 	if (!g2h_len)
482 		return true;
483 
484 	lockdep_assert_held(&ct->fast_lock);
485 
486 	return ct->ctbs.g2h.info.space > g2h_len;
487 }
488 
489 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
490 {
491 	lockdep_assert_held(&ct->lock);
492 
493 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
494 		return -EBUSY;
495 
496 	return 0;
497 }
498 
499 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
500 {
501 	lockdep_assert_held(&ct->lock);
502 	ct->ctbs.h2g.info.space -= cmd_len;
503 }
504 
505 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
506 {
507 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
508 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
509 		     (g2h_len && num_g2h));
510 
511 	if (g2h_len) {
512 		lockdep_assert_held(&ct->fast_lock);
513 
514 		if (!ct->g2h_outstanding)
515 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
516 
517 		ct->ctbs.g2h.info.space -= g2h_len;
518 		ct->g2h_outstanding += num_g2h;
519 	}
520 }
521 
522 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
523 {
524 	lockdep_assert_held(&ct->fast_lock);
525 	xe_gt_assert(ct_to_gt(ct), ct->ctbs.g2h.info.space + g2h_len <=
526 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
527 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding);
528 
529 	ct->ctbs.g2h.info.space += g2h_len;
530 	if (!--ct->g2h_outstanding)
531 		xe_pm_runtime_put(ct_to_xe(ct));
532 }
533 
534 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
535 {
536 	spin_lock_irq(&ct->fast_lock);
537 	__g2h_release_space(ct, g2h_len);
538 	spin_unlock_irq(&ct->fast_lock);
539 }
540 
541 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
542 
543 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
544 		     u32 ct_fence_value, bool want_response)
545 {
546 	struct xe_device *xe = ct_to_xe(ct);
547 	struct xe_gt *gt = ct_to_gt(ct);
548 	struct guc_ctb *h2g = &ct->ctbs.h2g;
549 	u32 cmd[H2G_CT_HEADERS];
550 	u32 tail = h2g->info.tail;
551 	u32 full_len;
552 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
553 							 tail * sizeof(u32));
554 
555 	full_len = len + GUC_CTB_HDR_LEN;
556 
557 	lockdep_assert_held(&ct->lock);
558 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
559 	xe_gt_assert(gt, tail <= h2g->info.size);
560 
561 	/* Command will wrap, zero fill (NOPs), return and check credits again */
562 	if (tail + full_len > h2g->info.size) {
563 		xe_map_memset(xe, &map, 0, 0,
564 			      (h2g->info.size - tail) * sizeof(u32));
565 		h2g_reserve_space(ct, (h2g->info.size - tail));
566 		h2g->info.tail = 0;
567 		desc_write(xe, h2g, tail, h2g->info.tail);
568 
569 		return -EAGAIN;
570 	}
571 
572 	/*
573 	 * dw0: CT header (including fence)
574 	 * dw1: HXG header (including action code)
575 	 * dw2+: action data
576 	 */
577 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
578 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
579 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
580 	if (want_response) {
581 		cmd[1] =
582 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
583 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
584 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
585 	} else {
586 		cmd[1] =
587 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
588 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
589 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
590 	}
591 
592 	/* H2G header in cmd[1] replaces action[0] so: */
593 	--len;
594 	++action;
595 
596 	/* Write H2G ensuring visable before descriptor update */
597 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
598 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
599 	xe_device_wmb(xe);
600 
601 	/* Update local copies */
602 	h2g->info.tail = (tail + full_len) % h2g->info.size;
603 	h2g_reserve_space(ct, full_len);
604 
605 	/* Update descriptor */
606 	desc_write(xe, h2g, tail, h2g->info.tail);
607 
608 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
609 			     desc_read(xe, h2g, head), h2g->info.tail);
610 
611 	return 0;
612 }
613 
614 /*
615  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
616  * driver, the GuC will just copy it to the reply message. Since we need to
617  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
618  * we use one bit of the seqno as an indicator for that and a rolling counter
619  * for the remaining 15 bits.
620  */
621 #define CT_SEQNO_MASK GENMASK(14, 0)
622 #define CT_SEQNO_UNTRACKED BIT(15)
623 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
624 {
625 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
626 
627 	if (!is_g2h_fence)
628 		seqno |= CT_SEQNO_UNTRACKED;
629 
630 	return seqno;
631 }
632 
633 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
634 				u32 len, u32 g2h_len, u32 num_g2h,
635 				struct g2h_fence *g2h_fence)
636 {
637 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
638 	u16 seqno;
639 	int ret;
640 
641 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
642 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
643 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
644 	xe_gt_assert(gt, !g2h_len || num_g2h);
645 	xe_gt_assert(gt, g2h_len || !num_g2h);
646 	lockdep_assert_held(&ct->lock);
647 
648 	if (unlikely(ct->ctbs.h2g.info.broken)) {
649 		ret = -EPIPE;
650 		goto out;
651 	}
652 
653 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
654 		ret = -ENODEV;
655 		goto out;
656 	}
657 
658 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
659 		ret = -ECANCELED;
660 		goto out;
661 	}
662 
663 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
664 
665 	if (g2h_fence) {
666 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
667 		num_g2h = 1;
668 
669 		if (g2h_fence_needs_alloc(g2h_fence)) {
670 			g2h_fence->seqno = next_ct_seqno(ct, true);
671 			ret = xa_err(xa_store(&ct->fence_lookup,
672 					      g2h_fence->seqno, g2h_fence,
673 					      GFP_ATOMIC));
674 			if (ret)
675 				goto out;
676 		}
677 
678 		seqno = g2h_fence->seqno;
679 	} else {
680 		seqno = next_ct_seqno(ct, false);
681 	}
682 
683 	if (g2h_len)
684 		spin_lock_irq(&ct->fast_lock);
685 retry:
686 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
687 	if (unlikely(ret))
688 		goto out_unlock;
689 
690 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
691 	if (unlikely(ret)) {
692 		if (ret == -EAGAIN)
693 			goto retry;
694 		goto out_unlock;
695 	}
696 
697 	__g2h_reserve_space(ct, g2h_len, num_g2h);
698 	xe_guc_notify(ct_to_guc(ct));
699 out_unlock:
700 	if (g2h_len)
701 		spin_unlock_irq(&ct->fast_lock);
702 out:
703 	return ret;
704 }
705 
706 static void kick_reset(struct xe_guc_ct *ct)
707 {
708 	xe_gt_reset_async(ct_to_gt(ct));
709 }
710 
711 static int dequeue_one_g2h(struct xe_guc_ct *ct);
712 
713 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
714 			      u32 g2h_len, u32 num_g2h,
715 			      struct g2h_fence *g2h_fence)
716 {
717 	struct xe_device *xe = ct_to_xe(ct);
718 	struct xe_gt *gt = ct_to_gt(ct);
719 	struct drm_printer p = xe_gt_info_printer(gt);
720 	unsigned int sleep_period_ms = 1;
721 	int ret;
722 
723 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
724 	lockdep_assert_held(&ct->lock);
725 	xe_device_assert_mem_access(ct_to_xe(ct));
726 
727 try_again:
728 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
729 				   g2h_fence);
730 
731 	/*
732 	 * We wait to try to restore credits for about 1 second before bailing.
733 	 * In the case of H2G credits we have no choice but just to wait for the
734 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
735 	 * the case of G2H we process any G2H in the channel, hopefully freeing
736 	 * credits as we consume the G2H messages.
737 	 */
738 	if (unlikely(ret == -EBUSY &&
739 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
740 		struct guc_ctb *h2g = &ct->ctbs.h2g;
741 
742 		if (sleep_period_ms == 1024)
743 			goto broken;
744 
745 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
746 						 h2g->info.size,
747 						 h2g->info.space,
748 						 len + GUC_CTB_HDR_LEN);
749 		msleep(sleep_period_ms);
750 		sleep_period_ms <<= 1;
751 
752 		goto try_again;
753 	} else if (unlikely(ret == -EBUSY)) {
754 		struct xe_device *xe = ct_to_xe(ct);
755 		struct guc_ctb *g2h = &ct->ctbs.g2h;
756 
757 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
758 						 desc_read(xe, g2h, tail),
759 						 g2h->info.size,
760 						 g2h->info.space,
761 						 g2h_fence ?
762 						 GUC_CTB_HXG_MSG_MAX_LEN :
763 						 g2h_len);
764 
765 #define g2h_avail(ct)	\
766 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
767 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
768 					g2h_avail(ct), HZ))
769 			goto broken;
770 #undef g2h_avail
771 
772 		if (dequeue_one_g2h(ct) < 0)
773 			goto broken;
774 
775 		goto try_again;
776 	}
777 
778 	return ret;
779 
780 broken:
781 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
782 	xe_guc_ct_print(ct, &p, true);
783 	ct->ctbs.h2g.info.broken = true;
784 
785 	return -EDEADLK;
786 }
787 
788 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
789 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
790 {
791 	int ret;
792 
793 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
794 
795 	mutex_lock(&ct->lock);
796 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
797 	mutex_unlock(&ct->lock);
798 
799 	return ret;
800 }
801 
802 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
803 		   u32 g2h_len, u32 num_g2h)
804 {
805 	int ret;
806 
807 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
808 	if (ret == -EDEADLK)
809 		kick_reset(ct);
810 
811 	return ret;
812 }
813 
814 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
815 			  u32 g2h_len, u32 num_g2h)
816 {
817 	int ret;
818 
819 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
820 	if (ret == -EDEADLK)
821 		kick_reset(ct);
822 
823 	return ret;
824 }
825 
826 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
827 {
828 	int ret;
829 
830 	lockdep_assert_held(&ct->lock);
831 
832 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
833 	if (ret == -EDEADLK)
834 		kick_reset(ct);
835 
836 	return ret;
837 }
838 
839 /*
840  * Check if a GT reset is in progress or will occur and if GT reset brought the
841  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
842  */
843 static bool retry_failure(struct xe_guc_ct *ct, int ret)
844 {
845 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
846 		return false;
847 
848 #define ct_alive(ct)	\
849 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
850 	 !ct->ctbs.g2h.info.broken)
851 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
852 		return false;
853 #undef ct_alive
854 
855 	return true;
856 }
857 
858 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
859 			    u32 *response_buffer, bool no_fail)
860 {
861 	struct xe_gt *gt = ct_to_gt(ct);
862 	struct g2h_fence g2h_fence;
863 	int ret = 0;
864 
865 	/*
866 	 * We use a fence to implement blocking sends / receiving response data.
867 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
868 	 * an xarray is used as storage media with the seqno being to key.
869 	 * Fields in the fence hold success, failure, retry status and the
870 	 * response data. Safe to allocate on the stack as the xarray is the
871 	 * only reference and it cannot be present after this function exits.
872 	 */
873 retry:
874 	g2h_fence_init(&g2h_fence, response_buffer);
875 retry_same_fence:
876 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
877 	if (unlikely(ret == -ENOMEM)) {
878 		/* Retry allocation /w GFP_KERNEL */
879 		ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
880 				      &g2h_fence, GFP_KERNEL));
881 		if (ret)
882 			return ret;
883 
884 		goto retry_same_fence;
885 	} else if (unlikely(ret)) {
886 		if (ret == -EDEADLK)
887 			kick_reset(ct);
888 
889 		if (no_fail && retry_failure(ct, ret))
890 			goto retry_same_fence;
891 
892 		if (!g2h_fence_needs_alloc(&g2h_fence))
893 			xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
894 
895 		return ret;
896 	}
897 
898 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
899 
900 	/*
901 	 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
902 	 * the stack, since we have no clue if it will fire after the timeout before we can erase
903 	 * from the xa. Also we have some dependent loads and stores below for which we need the
904 	 * correct ordering, and we lack the needed barriers.
905 	 */
906 	mutex_lock(&ct->lock);
907 	if (!ret) {
908 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
909 			  g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
910 		xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
911 		mutex_unlock(&ct->lock);
912 		return -ETIME;
913 	}
914 
915 	if (g2h_fence.retry) {
916 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
917 			  action[0], g2h_fence.reason);
918 		mutex_unlock(&ct->lock);
919 		goto retry;
920 	}
921 	if (g2h_fence.fail) {
922 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
923 			  action[0], g2h_fence.error, g2h_fence.hint);
924 		ret = -EIO;
925 	}
926 
927 	if (ret > 0)
928 		ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
929 
930 	mutex_unlock(&ct->lock);
931 
932 	return ret;
933 }
934 
935 /**
936  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
937  * @ct: the &xe_guc_ct
938  * @action: the dword array with `HXG Request`_ message (can't be NULL)
939  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
940  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
941  *
942  * Send a `HXG Request`_ message to the GuC over CT communication channel and
943  * blocks until GuC replies with a `HXG Response`_ message.
944  *
945  * For non-blocking communication with GuC use xe_guc_ct_send().
946  *
947  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
948  *
949  * Return: response length (in dwords) if &response_buffer was not NULL, or
950  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
951  *         a negative error code on failure.
952  */
953 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
954 			u32 *response_buffer)
955 {
956 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
957 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
958 }
959 
960 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
961 				u32 len, u32 *response_buffer)
962 {
963 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
964 }
965 
966 static u32 *msg_to_hxg(u32 *msg)
967 {
968 	return msg + GUC_CTB_MSG_MIN_LEN;
969 }
970 
971 static u32 msg_len_to_hxg_len(u32 len)
972 {
973 	return len - GUC_CTB_MSG_MIN_LEN;
974 }
975 
976 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
977 {
978 	u32 *hxg = msg_to_hxg(msg);
979 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
980 
981 	lockdep_assert_held(&ct->lock);
982 
983 	switch (action) {
984 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
985 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
986 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
987 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
988 		g2h_release_space(ct, len);
989 	}
990 
991 	return 0;
992 }
993 
994 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
995 {
996 	struct xe_gt *gt =  ct_to_gt(ct);
997 	u32 *hxg = msg_to_hxg(msg);
998 	u32 hxg_len = msg_len_to_hxg_len(len);
999 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1000 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1001 	struct g2h_fence *g2h_fence;
1002 
1003 	lockdep_assert_held(&ct->lock);
1004 
1005 	/*
1006 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1007 	 * Those messages should never fail, so if we do get an error back it
1008 	 * means we're likely doing an illegal operation and the GuC is
1009 	 * rejecting it. We have no way to inform the code that submitted the
1010 	 * H2G that the message was rejected, so we need to escalate the
1011 	 * failure to trigger a reset.
1012 	 */
1013 	if (fence & CT_SEQNO_UNTRACKED) {
1014 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1015 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1016 				  fence,
1017 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1018 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1019 		else
1020 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1021 				  type, fence);
1022 
1023 		return -EPROTO;
1024 	}
1025 
1026 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1027 	if (unlikely(!g2h_fence)) {
1028 		/* Don't tear down channel, as send could've timed out */
1029 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1030 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1031 		return 0;
1032 	}
1033 
1034 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1035 
1036 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1037 		g2h_fence->fail = true;
1038 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1039 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1040 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1041 		g2h_fence->retry = true;
1042 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1043 	} else if (g2h_fence->response_buffer) {
1044 		g2h_fence->response_len = hxg_len;
1045 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1046 	} else {
1047 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1048 	}
1049 
1050 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1051 
1052 	g2h_fence->done = true;
1053 	smp_mb();
1054 
1055 	wake_up_all(&ct->g2h_fence_wq);
1056 
1057 	return 0;
1058 }
1059 
1060 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1061 {
1062 	struct xe_gt *gt = ct_to_gt(ct);
1063 	u32 *hxg = msg_to_hxg(msg);
1064 	u32 origin, type;
1065 	int ret;
1066 
1067 	lockdep_assert_held(&ct->lock);
1068 
1069 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1070 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1071 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1072 			  origin);
1073 		ct->ctbs.g2h.info.broken = true;
1074 
1075 		return -EPROTO;
1076 	}
1077 
1078 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1079 	switch (type) {
1080 	case GUC_HXG_TYPE_EVENT:
1081 		ret = parse_g2h_event(ct, msg, len);
1082 		break;
1083 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1084 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1085 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1086 		ret = parse_g2h_response(ct, msg, len);
1087 		break;
1088 	default:
1089 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1090 			  type);
1091 		ct->ctbs.g2h.info.broken = true;
1092 
1093 		ret = -EOPNOTSUPP;
1094 	}
1095 
1096 	return ret;
1097 }
1098 
1099 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1100 {
1101 	struct xe_guc *guc = ct_to_guc(ct);
1102 	struct xe_gt *gt = ct_to_gt(ct);
1103 	u32 hxg_len = msg_len_to_hxg_len(len);
1104 	u32 *hxg = msg_to_hxg(msg);
1105 	u32 action, adj_len;
1106 	u32 *payload;
1107 	int ret = 0;
1108 
1109 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1110 		return 0;
1111 
1112 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1113 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1114 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1115 
1116 	switch (action) {
1117 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1118 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1119 		break;
1120 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1121 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1122 		break;
1123 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1124 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1125 		break;
1126 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1127 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1128 							      adj_len);
1129 		break;
1130 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1131 		/* Selftest only at the moment */
1132 		break;
1133 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1134 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1135 		/* FIXME: Handle this */
1136 		break;
1137 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1138 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1139 								 adj_len);
1140 		break;
1141 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1142 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1143 		break;
1144 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1145 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1146 							   adj_len);
1147 		break;
1148 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1149 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1150 							   adj_len);
1151 		break;
1152 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1153 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1154 		break;
1155 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1156 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1157 		break;
1158 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1159 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1160 		break;
1161 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1162 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1163 		break;
1164 	default:
1165 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1166 	}
1167 
1168 	if (ret)
1169 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1170 			  action, ERR_PTR(ret));
1171 
1172 	return 0;
1173 }
1174 
1175 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1176 {
1177 	struct xe_device *xe = ct_to_xe(ct);
1178 	struct xe_gt *gt = ct_to_gt(ct);
1179 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1180 	u32 tail, head, len;
1181 	s32 avail;
1182 	u32 action;
1183 	u32 *hxg;
1184 
1185 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1186 	lockdep_assert_held(&ct->fast_lock);
1187 
1188 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1189 		return -ENODEV;
1190 
1191 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1192 		return -ECANCELED;
1193 
1194 	if (g2h->info.broken)
1195 		return -EPIPE;
1196 
1197 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1198 
1199 	/* Calculate DW available to read */
1200 	tail = desc_read(xe, g2h, tail);
1201 	avail = tail - g2h->info.head;
1202 	if (unlikely(avail == 0))
1203 		return 0;
1204 
1205 	if (avail < 0)
1206 		avail += g2h->info.size;
1207 
1208 	/* Read header */
1209 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1210 			   sizeof(u32));
1211 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1212 	if (len > avail) {
1213 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1214 			  avail, len);
1215 		g2h->info.broken = true;
1216 
1217 		return -EPROTO;
1218 	}
1219 
1220 	head = (g2h->info.head + 1) % g2h->info.size;
1221 	avail = len - 1;
1222 
1223 	/* Read G2H message */
1224 	if (avail + head > g2h->info.size) {
1225 		u32 avail_til_wrap = g2h->info.size - head;
1226 
1227 		xe_map_memcpy_from(xe, msg + 1,
1228 				   &g2h->cmds, sizeof(u32) * head,
1229 				   avail_til_wrap * sizeof(u32));
1230 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1231 				   &g2h->cmds, 0,
1232 				   (avail - avail_til_wrap) * sizeof(u32));
1233 	} else {
1234 		xe_map_memcpy_from(xe, msg + 1,
1235 				   &g2h->cmds, sizeof(u32) * head,
1236 				   avail * sizeof(u32));
1237 	}
1238 
1239 	hxg = msg_to_hxg(msg);
1240 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1241 
1242 	if (fast_path) {
1243 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1244 			return 0;
1245 
1246 		switch (action) {
1247 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1248 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1249 			break;	/* Process these in fast-path */
1250 		default:
1251 			return 0;
1252 		}
1253 	}
1254 
1255 	/* Update local / descriptor header */
1256 	g2h->info.head = (head + avail) % g2h->info.size;
1257 	desc_write(xe, g2h, head, g2h->info.head);
1258 
1259 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1260 			     action, len, g2h->info.head, tail);
1261 
1262 	return len;
1263 }
1264 
1265 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1266 {
1267 	struct xe_gt *gt = ct_to_gt(ct);
1268 	struct xe_guc *guc = ct_to_guc(ct);
1269 	u32 hxg_len = msg_len_to_hxg_len(len);
1270 	u32 *hxg = msg_to_hxg(msg);
1271 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1272 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1273 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1274 	int ret = 0;
1275 
1276 	switch (action) {
1277 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1278 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1279 		break;
1280 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1281 		__g2h_release_space(ct, len);
1282 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1283 							   adj_len);
1284 		break;
1285 	default:
1286 		xe_gt_warn(gt, "NOT_POSSIBLE");
1287 	}
1288 
1289 	if (ret)
1290 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1291 			  action, ERR_PTR(ret));
1292 }
1293 
1294 /**
1295  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1296  * @ct: GuC CT object
1297  *
1298  * Anything related to page faults is critical for performance, process these
1299  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1300  * waiters or queue another worker.
1301  */
1302 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1303 {
1304 	struct xe_device *xe = ct_to_xe(ct);
1305 	bool ongoing;
1306 	int len;
1307 
1308 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1309 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1310 		return;
1311 
1312 	spin_lock(&ct->fast_lock);
1313 	do {
1314 		len = g2h_read(ct, ct->fast_msg, true);
1315 		if (len > 0)
1316 			g2h_fast_path(ct, ct->fast_msg, len);
1317 	} while (len > 0);
1318 	spin_unlock(&ct->fast_lock);
1319 
1320 	if (ongoing)
1321 		xe_pm_runtime_put(xe);
1322 }
1323 
1324 /* Returns less than zero on error, 0 on done, 1 on more available */
1325 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1326 {
1327 	int len;
1328 	int ret;
1329 
1330 	lockdep_assert_held(&ct->lock);
1331 
1332 	spin_lock_irq(&ct->fast_lock);
1333 	len = g2h_read(ct, ct->msg, false);
1334 	spin_unlock_irq(&ct->fast_lock);
1335 	if (len <= 0)
1336 		return len;
1337 
1338 	ret = parse_g2h_msg(ct, ct->msg, len);
1339 	if (unlikely(ret < 0))
1340 		return ret;
1341 
1342 	ret = process_g2h_msg(ct, ct->msg, len);
1343 	if (unlikely(ret < 0))
1344 		return ret;
1345 
1346 	return 1;
1347 }
1348 
1349 static void receive_g2h(struct xe_guc_ct *ct)
1350 {
1351 	struct xe_gt *gt = ct_to_gt(ct);
1352 	bool ongoing;
1353 	int ret;
1354 
1355 	/*
1356 	 * Normal users must always hold mem_access.ref around CT calls. However
1357 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1358 	 * at this stage we can't rely on mem_access.ref and even the
1359 	 * callback_task will be different than current.  For such cases we just
1360 	 * need to ensure we always process the responses from any blocking
1361 	 * ct_send requests or where we otherwise expect some response when
1362 	 * initiated from those callbacks (which will need to wait for the below
1363 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1364 	 * the device has suspended to the point that the CT communication has
1365 	 * been disabled.
1366 	 *
1367 	 * If we are inside the runtime pm callback, we can be the only task
1368 	 * still issuing CT requests (since that requires having the
1369 	 * mem_access.ref).  It seems like it might in theory be possible to
1370 	 * receive unsolicited events from the GuC just as we are
1371 	 * suspending-resuming, but those will currently anyway be lost when
1372 	 * eventually exiting from suspend, hence no need to wake up the device
1373 	 * here. If we ever need something stronger than get_if_ongoing() then
1374 	 * we need to be careful with blocking the pm callbacks from getting CT
1375 	 * responses, if the worker here is blocked on those callbacks
1376 	 * completing, creating a deadlock.
1377 	 */
1378 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1379 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1380 		return;
1381 
1382 	do {
1383 		mutex_lock(&ct->lock);
1384 		ret = dequeue_one_g2h(ct);
1385 		mutex_unlock(&ct->lock);
1386 
1387 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1388 			struct drm_printer p = xe_gt_info_printer(gt);
1389 
1390 			xe_guc_ct_print(ct, &p, false);
1391 			kick_reset(ct);
1392 		}
1393 	} while (ret == 1);
1394 
1395 	if (ongoing)
1396 		xe_pm_runtime_put(ct_to_xe(ct));
1397 }
1398 
1399 static void g2h_worker_func(struct work_struct *w)
1400 {
1401 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1402 
1403 	receive_g2h(ct);
1404 }
1405 
1406 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1407 				     struct guc_ctb_snapshot *snapshot,
1408 				     bool atomic)
1409 {
1410 	u32 head, tail;
1411 
1412 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1413 			   sizeof(struct guc_ct_buffer_desc));
1414 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1415 
1416 	snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
1417 				       atomic ? GFP_ATOMIC : GFP_KERNEL);
1418 
1419 	if (!snapshot->cmds) {
1420 		drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
1421 		return;
1422 	}
1423 
1424 	head = snapshot->desc.head;
1425 	tail = snapshot->desc.tail;
1426 
1427 	if (head != tail) {
1428 		struct iosys_map map =
1429 			IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
1430 
1431 		while (head != tail) {
1432 			snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
1433 			++head;
1434 			if (head == ctb->info.size) {
1435 				head = 0;
1436 				map = ctb->cmds;
1437 			} else {
1438 				iosys_map_incr(&map, sizeof(u32));
1439 			}
1440 		}
1441 	}
1442 }
1443 
1444 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1445 				   struct drm_printer *p)
1446 {
1447 	u32 head, tail;
1448 
1449 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1450 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1451 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1452 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1453 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1454 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1455 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1456 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1457 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1458 
1459 	if (!snapshot->cmds)
1460 		return;
1461 
1462 	head = snapshot->desc.head;
1463 	tail = snapshot->desc.tail;
1464 
1465 	while (head != tail) {
1466 		drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
1467 			   snapshot->cmds[head]);
1468 		++head;
1469 		if (head == snapshot->info.size)
1470 			head = 0;
1471 	}
1472 }
1473 
1474 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
1475 {
1476 	kfree(snapshot->cmds);
1477 }
1478 
1479 /**
1480  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1481  * @ct: GuC CT object.
1482  * @atomic: Boolean to indicate if this is called from atomic context like
1483  * reset or CTB handler or from some regular path like debugfs.
1484  *
1485  * This can be printed out in a later stage like during dev_coredump
1486  * analysis.
1487  *
1488  * Returns: a GuC CT snapshot object that must be freed by the caller
1489  * by using `xe_guc_ct_snapshot_free`.
1490  */
1491 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
1492 						      bool atomic)
1493 {
1494 	struct xe_device *xe = ct_to_xe(ct);
1495 	struct xe_guc_ct_snapshot *snapshot;
1496 
1497 	snapshot = kzalloc(sizeof(*snapshot),
1498 			   atomic ? GFP_ATOMIC : GFP_KERNEL);
1499 
1500 	if (!snapshot) {
1501 		drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
1502 		return NULL;
1503 	}
1504 
1505 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1506 		snapshot->ct_enabled = true;
1507 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1508 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
1509 					 &snapshot->h2g, atomic);
1510 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
1511 					 &snapshot->g2h, atomic);
1512 	}
1513 
1514 	return snapshot;
1515 }
1516 
1517 /**
1518  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1519  * @snapshot: GuC CT snapshot object.
1520  * @p: drm_printer where it will be printed out.
1521  *
1522  * This function prints out a given GuC CT snapshot object.
1523  */
1524 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1525 			      struct drm_printer *p)
1526 {
1527 	if (!snapshot)
1528 		return;
1529 
1530 	if (snapshot->ct_enabled) {
1531 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1532 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1533 
1534 		drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
1535 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1536 
1537 		drm_printf(p, "\tg2h outstanding: %d\n",
1538 			   snapshot->g2h_outstanding);
1539 	} else {
1540 		drm_puts(p, "CT disabled\n");
1541 	}
1542 }
1543 
1544 /**
1545  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1546  * @snapshot: GuC CT snapshot object.
1547  *
1548  * This function free all the memory that needed to be allocated at capture
1549  * time.
1550  */
1551 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1552 {
1553 	if (!snapshot)
1554 		return;
1555 
1556 	guc_ctb_snapshot_free(&snapshot->h2g);
1557 	guc_ctb_snapshot_free(&snapshot->g2h);
1558 	kfree(snapshot);
1559 }
1560 
1561 /**
1562  * xe_guc_ct_print - GuC CT Print.
1563  * @ct: GuC CT.
1564  * @p: drm_printer where it will be printed out.
1565  * @atomic: Boolean to indicate if this is called from atomic context like
1566  * reset or CTB handler or from some regular path like debugfs.
1567  *
1568  * This function quickly capture a snapshot and immediately print it out.
1569  */
1570 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
1571 {
1572 	struct xe_guc_ct_snapshot *snapshot;
1573 
1574 	snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
1575 	xe_guc_ct_snapshot_print(snapshot, p);
1576 	xe_guc_ct_snapshot_free(snapshot);
1577 }
1578