1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_ct.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/circ_buf.h> 10 #include <linux/delay.h> 11 12 #include <kunit/static_stub.h> 13 14 #include <drm/drm_managed.h> 15 16 #include "abi/guc_actions_abi.h" 17 #include "abi/guc_actions_sriov_abi.h" 18 #include "abi/guc_klvs_abi.h" 19 #include "xe_bo.h" 20 #include "xe_device.h" 21 #include "xe_gt.h" 22 #include "xe_gt_pagefault.h" 23 #include "xe_gt_printk.h" 24 #include "xe_gt_tlb_invalidation.h" 25 #include "xe_guc.h" 26 #include "xe_guc_relay.h" 27 #include "xe_guc_submit.h" 28 #include "xe_map.h" 29 #include "xe_pm.h" 30 #include "xe_trace.h" 31 32 /* Used when a CT send wants to block and / or receive data */ 33 struct g2h_fence { 34 u32 *response_buffer; 35 u32 seqno; 36 u32 response_data; 37 u16 response_len; 38 u16 error; 39 u16 hint; 40 u16 reason; 41 bool retry; 42 bool fail; 43 bool done; 44 }; 45 46 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) 47 { 48 g2h_fence->response_buffer = response_buffer; 49 g2h_fence->response_data = 0; 50 g2h_fence->response_len = 0; 51 g2h_fence->fail = false; 52 g2h_fence->retry = false; 53 g2h_fence->done = false; 54 g2h_fence->seqno = ~0x0; 55 } 56 57 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) 58 { 59 return g2h_fence->seqno == ~0x0; 60 } 61 62 static struct xe_guc * 63 ct_to_guc(struct xe_guc_ct *ct) 64 { 65 return container_of(ct, struct xe_guc, ct); 66 } 67 68 static struct xe_gt * 69 ct_to_gt(struct xe_guc_ct *ct) 70 { 71 return container_of(ct, struct xe_gt, uc.guc.ct); 72 } 73 74 static struct xe_device * 75 ct_to_xe(struct xe_guc_ct *ct) 76 { 77 return gt_to_xe(ct_to_gt(ct)); 78 } 79 80 /** 81 * DOC: GuC CTB Blob 82 * 83 * We allocate single blob to hold both CTB descriptors and buffers: 84 * 85 * +--------+-----------------------------------------------+------+ 86 * | offset | contents | size | 87 * +========+===============================================+======+ 88 * | 0x0000 | H2G CTB Descriptor (send) | | 89 * +--------+-----------------------------------------------+ 4K | 90 * | 0x0800 | G2H CTB Descriptor (g2h) | | 91 * +--------+-----------------------------------------------+------+ 92 * | 0x1000 | H2G CT Buffer (send) | n*4K | 93 * | | | | 94 * +--------+-----------------------------------------------+------+ 95 * | 0x1000 | G2H CT Buffer (g2h) | m*4K | 96 * | + n*4K | | | 97 * +--------+-----------------------------------------------+------+ 98 * 99 * Size of each ``CT Buffer`` must be multiple of 4K. 100 * We don't expect too many messages in flight at any time, unless we are 101 * using the GuC submission. In that case each request requires a minimum 102 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this 103 * enough space to avoid backpressure on the driver. We increase the size 104 * of the receive buffer (relative to the send) to ensure a G2H response 105 * CTB has a landing spot. 106 */ 107 108 #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) 109 #define CTB_H2G_BUFFER_SIZE (SZ_4K) 110 #define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE) 111 #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4) 112 113 static size_t guc_ct_size(void) 114 { 115 return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + 116 CTB_G2H_BUFFER_SIZE; 117 } 118 119 static void guc_ct_fini(struct drm_device *drm, void *arg) 120 { 121 struct xe_guc_ct *ct = arg; 122 123 xa_destroy(&ct->fence_lookup); 124 } 125 126 static void g2h_worker_func(struct work_struct *w); 127 128 static void primelockdep(struct xe_guc_ct *ct) 129 { 130 if (!IS_ENABLED(CONFIG_LOCKDEP)) 131 return; 132 133 fs_reclaim_acquire(GFP_KERNEL); 134 might_lock(&ct->lock); 135 fs_reclaim_release(GFP_KERNEL); 136 } 137 138 int xe_guc_ct_init(struct xe_guc_ct *ct) 139 { 140 struct xe_device *xe = ct_to_xe(ct); 141 struct xe_gt *gt = ct_to_gt(ct); 142 struct xe_tile *tile = gt_to_tile(gt); 143 struct xe_bo *bo; 144 int err; 145 146 xe_assert(xe, !(guc_ct_size() % PAGE_SIZE)); 147 148 drmm_mutex_init(&xe->drm, &ct->lock); 149 spin_lock_init(&ct->fast_lock); 150 xa_init(&ct->fence_lookup); 151 INIT_WORK(&ct->g2h_worker, g2h_worker_func); 152 init_waitqueue_head(&ct->wq); 153 init_waitqueue_head(&ct->g2h_fence_wq); 154 155 primelockdep(ct); 156 157 bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), 158 XE_BO_CREATE_SYSTEM_BIT | 159 XE_BO_CREATE_GGTT_BIT); 160 if (IS_ERR(bo)) 161 return PTR_ERR(bo); 162 163 ct->bo = bo; 164 165 err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); 166 if (err) 167 return err; 168 169 xe_assert(xe, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); 170 ct->state = XE_GUC_CT_STATE_DISABLED; 171 return 0; 172 } 173 174 #define desc_read(xe_, guc_ctb__, field_) \ 175 xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ 176 struct guc_ct_buffer_desc, field_) 177 178 #define desc_write(xe_, guc_ctb__, field_, val_) \ 179 xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ 180 struct guc_ct_buffer_desc, field_, val_) 181 182 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, 183 struct iosys_map *map) 184 { 185 h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); 186 h2g->info.resv_space = 0; 187 h2g->info.tail = 0; 188 h2g->info.head = 0; 189 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, 190 h2g->info.size) - 191 h2g->info.resv_space; 192 h2g->info.broken = false; 193 194 h2g->desc = *map; 195 xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); 196 197 h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); 198 } 199 200 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, 201 struct iosys_map *map) 202 { 203 g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); 204 g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); 205 g2h->info.head = 0; 206 g2h->info.tail = 0; 207 g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, 208 g2h->info.size) - 209 g2h->info.resv_space; 210 g2h->info.broken = false; 211 212 g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); 213 xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); 214 215 g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + 216 CTB_H2G_BUFFER_SIZE); 217 } 218 219 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) 220 { 221 struct xe_guc *guc = ct_to_guc(ct); 222 u32 desc_addr, ctb_addr, size; 223 int err; 224 225 desc_addr = xe_bo_ggtt_addr(ct->bo); 226 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; 227 size = ct->ctbs.h2g.info.size * sizeof(u32); 228 229 err = xe_guc_self_cfg64(guc, 230 GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, 231 desc_addr); 232 if (err) 233 return err; 234 235 err = xe_guc_self_cfg64(guc, 236 GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, 237 ctb_addr); 238 if (err) 239 return err; 240 241 return xe_guc_self_cfg32(guc, 242 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, 243 size); 244 } 245 246 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) 247 { 248 struct xe_guc *guc = ct_to_guc(ct); 249 u32 desc_addr, ctb_addr, size; 250 int err; 251 252 desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; 253 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + 254 CTB_H2G_BUFFER_SIZE; 255 size = ct->ctbs.g2h.info.size * sizeof(u32); 256 257 err = xe_guc_self_cfg64(guc, 258 GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, 259 desc_addr); 260 if (err) 261 return err; 262 263 err = xe_guc_self_cfg64(guc, 264 GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, 265 ctb_addr); 266 if (err) 267 return err; 268 269 return xe_guc_self_cfg32(guc, 270 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, 271 size); 272 } 273 274 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) 275 { 276 u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { 277 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 278 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 279 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, 280 GUC_ACTION_HOST2GUC_CONTROL_CTB), 281 FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, 282 enable ? GUC_CTB_CONTROL_ENABLE : 283 GUC_CTB_CONTROL_DISABLE), 284 }; 285 int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); 286 287 return ret > 0 ? -EPROTO : ret; 288 } 289 290 static void xe_guc_ct_set_state(struct xe_guc_ct *ct, 291 enum xe_guc_ct_state state) 292 { 293 mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ 294 spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ 295 296 xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || 297 state == XE_GUC_CT_STATE_STOPPED); 298 299 ct->g2h_outstanding = 0; 300 ct->state = state; 301 302 spin_unlock_irq(&ct->fast_lock); 303 304 /* 305 * Lockdep doesn't like this under the fast lock and he destroy only 306 * needs to be serialized with the send path which ct lock provides. 307 */ 308 xa_destroy(&ct->fence_lookup); 309 310 mutex_unlock(&ct->lock); 311 } 312 313 int xe_guc_ct_enable(struct xe_guc_ct *ct) 314 { 315 struct xe_device *xe = ct_to_xe(ct); 316 int err; 317 318 xe_assert(xe, !xe_guc_ct_enabled(ct)); 319 320 guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); 321 guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); 322 323 err = guc_ct_ctb_h2g_register(ct); 324 if (err) 325 goto err_out; 326 327 err = guc_ct_ctb_g2h_register(ct); 328 if (err) 329 goto err_out; 330 331 err = guc_ct_control_toggle(ct, true); 332 if (err) 333 goto err_out; 334 335 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); 336 337 smp_mb(); 338 wake_up_all(&ct->wq); 339 drm_dbg(&xe->drm, "GuC CT communication channel enabled\n"); 340 341 return 0; 342 343 err_out: 344 drm_err(&xe->drm, "Failed to enable CT (%d)\n", err); 345 346 return err; 347 } 348 349 static void stop_g2h_handler(struct xe_guc_ct *ct) 350 { 351 cancel_work_sync(&ct->g2h_worker); 352 } 353 354 /** 355 * xe_guc_ct_disable - Set GuC to disabled state 356 * @ct: the &xe_guc_ct 357 * 358 * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected 359 * in this transition. 360 */ 361 void xe_guc_ct_disable(struct xe_guc_ct *ct) 362 { 363 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); 364 stop_g2h_handler(ct); 365 } 366 367 /** 368 * xe_guc_ct_stop - Set GuC to stopped state 369 * @ct: the &xe_guc_ct 370 * 371 * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h 372 */ 373 void xe_guc_ct_stop(struct xe_guc_ct *ct) 374 { 375 xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); 376 stop_g2h_handler(ct); 377 } 378 379 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) 380 { 381 struct guc_ctb *h2g = &ct->ctbs.h2g; 382 383 lockdep_assert_held(&ct->lock); 384 385 if (cmd_len > h2g->info.space) { 386 h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); 387 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, 388 h2g->info.size) - 389 h2g->info.resv_space; 390 if (cmd_len > h2g->info.space) 391 return false; 392 } 393 394 return true; 395 } 396 397 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) 398 { 399 if (!g2h_len) 400 return true; 401 402 lockdep_assert_held(&ct->fast_lock); 403 404 return ct->ctbs.g2h.info.space > g2h_len; 405 } 406 407 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) 408 { 409 lockdep_assert_held(&ct->lock); 410 411 if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) 412 return -EBUSY; 413 414 return 0; 415 } 416 417 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) 418 { 419 lockdep_assert_held(&ct->lock); 420 ct->ctbs.h2g.info.space -= cmd_len; 421 } 422 423 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) 424 { 425 xe_assert(ct_to_xe(ct), g2h_len <= ct->ctbs.g2h.info.space); 426 427 if (g2h_len) { 428 lockdep_assert_held(&ct->fast_lock); 429 430 ct->ctbs.g2h.info.space -= g2h_len; 431 ct->g2h_outstanding += num_g2h; 432 } 433 } 434 435 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) 436 { 437 lockdep_assert_held(&ct->fast_lock); 438 xe_assert(ct_to_xe(ct), ct->ctbs.g2h.info.space + g2h_len <= 439 ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space); 440 441 ct->ctbs.g2h.info.space += g2h_len; 442 --ct->g2h_outstanding; 443 } 444 445 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) 446 { 447 spin_lock_irq(&ct->fast_lock); 448 __g2h_release_space(ct, g2h_len); 449 spin_unlock_irq(&ct->fast_lock); 450 } 451 452 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ 453 454 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, 455 u32 ct_fence_value, bool want_response) 456 { 457 struct xe_device *xe = ct_to_xe(ct); 458 struct guc_ctb *h2g = &ct->ctbs.h2g; 459 u32 cmd[H2G_CT_HEADERS]; 460 u32 tail = h2g->info.tail; 461 u32 full_len; 462 struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, 463 tail * sizeof(u32)); 464 465 full_len = len + GUC_CTB_HDR_LEN; 466 467 lockdep_assert_held(&ct->lock); 468 xe_assert(xe, full_len <= GUC_CTB_MSG_MAX_LEN); 469 xe_assert(xe, tail <= h2g->info.size); 470 471 /* Command will wrap, zero fill (NOPs), return and check credits again */ 472 if (tail + full_len > h2g->info.size) { 473 xe_map_memset(xe, &map, 0, 0, 474 (h2g->info.size - tail) * sizeof(u32)); 475 h2g_reserve_space(ct, (h2g->info.size - tail)); 476 h2g->info.tail = 0; 477 desc_write(xe, h2g, tail, h2g->info.tail); 478 479 return -EAGAIN; 480 } 481 482 /* 483 * dw0: CT header (including fence) 484 * dw1: HXG header (including action code) 485 * dw2+: action data 486 */ 487 cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | 488 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | 489 FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); 490 if (want_response) { 491 cmd[1] = 492 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 493 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | 494 GUC_HXG_EVENT_MSG_0_DATA0, action[0]); 495 } else { 496 cmd[1] = 497 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | 498 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | 499 GUC_HXG_EVENT_MSG_0_DATA0, action[0]); 500 } 501 502 /* H2G header in cmd[1] replaces action[0] so: */ 503 --len; 504 ++action; 505 506 /* Write H2G ensuring visable before descriptor update */ 507 xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); 508 xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); 509 xe_device_wmb(xe); 510 511 /* Update local copies */ 512 h2g->info.tail = (tail + full_len) % h2g->info.size; 513 h2g_reserve_space(ct, full_len); 514 515 /* Update descriptor */ 516 desc_write(xe, h2g, tail, h2g->info.tail); 517 518 trace_xe_guc_ctb_h2g(ct_to_gt(ct)->info.id, *(action - 1), full_len, 519 desc_read(xe, h2g, head), h2g->info.tail); 520 521 return 0; 522 } 523 524 /* 525 * The CT protocol accepts a 16 bits fence. This field is fully owned by the 526 * driver, the GuC will just copy it to the reply message. Since we need to 527 * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, 528 * we use one bit of the seqno as an indicator for that and a rolling counter 529 * for the remaining 15 bits. 530 */ 531 #define CT_SEQNO_MASK GENMASK(14, 0) 532 #define CT_SEQNO_UNTRACKED BIT(15) 533 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) 534 { 535 u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; 536 537 if (!is_g2h_fence) 538 seqno |= CT_SEQNO_UNTRACKED; 539 540 return seqno; 541 } 542 543 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, 544 u32 len, u32 g2h_len, u32 num_g2h, 545 struct g2h_fence *g2h_fence) 546 { 547 struct xe_device *xe = ct_to_xe(ct); 548 u16 seqno; 549 int ret; 550 551 xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); 552 xe_assert(xe, !g2h_len || !g2h_fence); 553 xe_assert(xe, !num_g2h || !g2h_fence); 554 xe_assert(xe, !g2h_len || num_g2h); 555 xe_assert(xe, g2h_len || !num_g2h); 556 lockdep_assert_held(&ct->lock); 557 558 if (unlikely(ct->ctbs.h2g.info.broken)) { 559 ret = -EPIPE; 560 goto out; 561 } 562 563 if (ct->state == XE_GUC_CT_STATE_DISABLED) { 564 ret = -ENODEV; 565 goto out; 566 } 567 568 if (ct->state == XE_GUC_CT_STATE_STOPPED) { 569 ret = -ECANCELED; 570 goto out; 571 } 572 573 xe_assert(xe, xe_guc_ct_enabled(ct)); 574 575 if (g2h_fence) { 576 g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; 577 num_g2h = 1; 578 579 if (g2h_fence_needs_alloc(g2h_fence)) { 580 void *ptr; 581 582 g2h_fence->seqno = next_ct_seqno(ct, true); 583 ptr = xa_store(&ct->fence_lookup, 584 g2h_fence->seqno, 585 g2h_fence, GFP_ATOMIC); 586 if (IS_ERR(ptr)) { 587 ret = PTR_ERR(ptr); 588 goto out; 589 } 590 } 591 592 seqno = g2h_fence->seqno; 593 } else { 594 seqno = next_ct_seqno(ct, false); 595 } 596 597 if (g2h_len) 598 spin_lock_irq(&ct->fast_lock); 599 retry: 600 ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); 601 if (unlikely(ret)) 602 goto out_unlock; 603 604 ret = h2g_write(ct, action, len, seqno, !!g2h_fence); 605 if (unlikely(ret)) { 606 if (ret == -EAGAIN) 607 goto retry; 608 goto out_unlock; 609 } 610 611 __g2h_reserve_space(ct, g2h_len, num_g2h); 612 xe_guc_notify(ct_to_guc(ct)); 613 out_unlock: 614 if (g2h_len) 615 spin_unlock_irq(&ct->fast_lock); 616 out: 617 return ret; 618 } 619 620 static void kick_reset(struct xe_guc_ct *ct) 621 { 622 xe_gt_reset_async(ct_to_gt(ct)); 623 } 624 625 static int dequeue_one_g2h(struct xe_guc_ct *ct); 626 627 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, 628 u32 g2h_len, u32 num_g2h, 629 struct g2h_fence *g2h_fence) 630 { 631 struct drm_device *drm = &ct_to_xe(ct)->drm; 632 struct drm_printer p = drm_info_printer(drm->dev); 633 unsigned int sleep_period_ms = 1; 634 int ret; 635 636 xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence); 637 lockdep_assert_held(&ct->lock); 638 xe_device_assert_mem_access(ct_to_xe(ct)); 639 640 try_again: 641 ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, 642 g2h_fence); 643 644 /* 645 * We wait to try to restore credits for about 1 second before bailing. 646 * In the case of H2G credits we have no choice but just to wait for the 647 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In 648 * the case of G2H we process any G2H in the channel, hopefully freeing 649 * credits as we consume the G2H messages. 650 */ 651 if (unlikely(ret == -EBUSY && 652 !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { 653 struct guc_ctb *h2g = &ct->ctbs.h2g; 654 655 if (sleep_period_ms == 1024) 656 goto broken; 657 658 trace_xe_guc_ct_h2g_flow_control(h2g->info.head, h2g->info.tail, 659 h2g->info.size, 660 h2g->info.space, 661 len + GUC_CTB_HDR_LEN); 662 msleep(sleep_period_ms); 663 sleep_period_ms <<= 1; 664 665 goto try_again; 666 } else if (unlikely(ret == -EBUSY)) { 667 struct xe_device *xe = ct_to_xe(ct); 668 struct guc_ctb *g2h = &ct->ctbs.g2h; 669 670 trace_xe_guc_ct_g2h_flow_control(g2h->info.head, 671 desc_read(xe, g2h, tail), 672 g2h->info.size, 673 g2h->info.space, 674 g2h_fence ? 675 GUC_CTB_HXG_MSG_MAX_LEN : 676 g2h_len); 677 678 #define g2h_avail(ct) \ 679 (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) 680 if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || 681 g2h_avail(ct), HZ)) 682 goto broken; 683 #undef g2h_avail 684 685 if (dequeue_one_g2h(ct) < 0) 686 goto broken; 687 688 goto try_again; 689 } 690 691 return ret; 692 693 broken: 694 drm_err(drm, "No forward process on H2G, reset required"); 695 xe_guc_ct_print(ct, &p, true); 696 ct->ctbs.h2g.info.broken = true; 697 698 return -EDEADLK; 699 } 700 701 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, 702 u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) 703 { 704 int ret; 705 706 xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence); 707 708 mutex_lock(&ct->lock); 709 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); 710 mutex_unlock(&ct->lock); 711 712 return ret; 713 } 714 715 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, 716 u32 g2h_len, u32 num_g2h) 717 { 718 int ret; 719 720 ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); 721 if (ret == -EDEADLK) 722 kick_reset(ct); 723 724 return ret; 725 } 726 727 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, 728 u32 g2h_len, u32 num_g2h) 729 { 730 int ret; 731 732 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); 733 if (ret == -EDEADLK) 734 kick_reset(ct); 735 736 return ret; 737 } 738 739 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) 740 { 741 int ret; 742 743 lockdep_assert_held(&ct->lock); 744 745 ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); 746 if (ret == -EDEADLK) 747 kick_reset(ct); 748 749 return ret; 750 } 751 752 /* 753 * Check if a GT reset is in progress or will occur and if GT reset brought the 754 * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. 755 */ 756 static bool retry_failure(struct xe_guc_ct *ct, int ret) 757 { 758 if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) 759 return false; 760 761 #define ct_alive(ct) \ 762 (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ 763 !ct->ctbs.g2h.info.broken) 764 if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) 765 return false; 766 #undef ct_alive 767 768 return true; 769 } 770 771 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, 772 u32 *response_buffer, bool no_fail) 773 { 774 struct xe_device *xe = ct_to_xe(ct); 775 struct g2h_fence g2h_fence; 776 int ret = 0; 777 778 /* 779 * We use a fence to implement blocking sends / receiving response data. 780 * The seqno of the fence is sent in the H2G, returned in the G2H, and 781 * an xarray is used as storage media with the seqno being to key. 782 * Fields in the fence hold success, failure, retry status and the 783 * response data. Safe to allocate on the stack as the xarray is the 784 * only reference and it cannot be present after this function exits. 785 */ 786 retry: 787 g2h_fence_init(&g2h_fence, response_buffer); 788 retry_same_fence: 789 ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); 790 if (unlikely(ret == -ENOMEM)) { 791 void *ptr; 792 793 /* Retry allocation /w GFP_KERNEL */ 794 ptr = xa_store(&ct->fence_lookup, 795 g2h_fence.seqno, 796 &g2h_fence, GFP_KERNEL); 797 if (IS_ERR(ptr)) 798 return PTR_ERR(ptr); 799 800 goto retry_same_fence; 801 } else if (unlikely(ret)) { 802 if (ret == -EDEADLK) 803 kick_reset(ct); 804 805 if (no_fail && retry_failure(ct, ret)) 806 goto retry_same_fence; 807 808 if (!g2h_fence_needs_alloc(&g2h_fence)) 809 xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); 810 811 return ret; 812 } 813 814 ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); 815 if (!ret) { 816 drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x", 817 g2h_fence.seqno, action[0]); 818 xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); 819 return -ETIME; 820 } 821 822 if (g2h_fence.retry) { 823 drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d", 824 action[0], g2h_fence.reason); 825 goto retry; 826 } 827 if (g2h_fence.fail) { 828 drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d", 829 action[0], g2h_fence.error, g2h_fence.hint); 830 ret = -EIO; 831 } 832 833 return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret; 834 } 835 836 /** 837 * xe_guc_ct_send_recv - Send and receive HXG to the GuC 838 * @ct: the &xe_guc_ct 839 * @action: the dword array with `HXG Request`_ message (can't be NULL) 840 * @len: length of the `HXG Request`_ message (in dwords, can't be 0) 841 * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) 842 * 843 * Send a `HXG Request`_ message to the GuC over CT communication channel and 844 * blocks until GuC replies with a `HXG Response`_ message. 845 * 846 * For non-blocking communication with GuC use xe_guc_ct_send(). 847 * 848 * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. 849 * 850 * Return: response length (in dwords) if &response_buffer was not NULL, or 851 * DATA0 from `HXG Response`_ if &response_buffer was NULL, or 852 * a negative error code on failure. 853 */ 854 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, 855 u32 *response_buffer) 856 { 857 KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); 858 return guc_ct_send_recv(ct, action, len, response_buffer, false); 859 } 860 861 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, 862 u32 len, u32 *response_buffer) 863 { 864 return guc_ct_send_recv(ct, action, len, response_buffer, true); 865 } 866 867 static u32 *msg_to_hxg(u32 *msg) 868 { 869 return msg + GUC_CTB_MSG_MIN_LEN; 870 } 871 872 static u32 msg_len_to_hxg_len(u32 len) 873 { 874 return len - GUC_CTB_MSG_MIN_LEN; 875 } 876 877 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) 878 { 879 u32 *hxg = msg_to_hxg(msg); 880 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 881 882 lockdep_assert_held(&ct->lock); 883 884 switch (action) { 885 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: 886 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: 887 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: 888 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 889 g2h_release_space(ct, len); 890 } 891 892 return 0; 893 } 894 895 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) 896 { 897 struct xe_gt *gt = ct_to_gt(ct); 898 struct xe_device *xe = gt_to_xe(gt); 899 u32 *hxg = msg_to_hxg(msg); 900 u32 hxg_len = msg_len_to_hxg_len(len); 901 u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); 902 u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); 903 struct g2h_fence *g2h_fence; 904 905 lockdep_assert_held(&ct->lock); 906 907 /* 908 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. 909 * Those messages should never fail, so if we do get an error back it 910 * means we're likely doing an illegal operation and the GuC is 911 * rejecting it. We have no way to inform the code that submitted the 912 * H2G that the message was rejected, so we need to escalate the 913 * failure to trigger a reset. 914 */ 915 if (fence & CT_SEQNO_UNTRACKED) { 916 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) 917 xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", 918 fence, 919 FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), 920 FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); 921 else 922 xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", 923 type, fence); 924 925 return -EPROTO; 926 } 927 928 g2h_fence = xa_erase(&ct->fence_lookup, fence); 929 if (unlikely(!g2h_fence)) { 930 /* Don't tear down channel, as send could've timed out */ 931 xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); 932 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); 933 return 0; 934 } 935 936 xe_assert(xe, fence == g2h_fence->seqno); 937 938 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { 939 g2h_fence->fail = true; 940 g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); 941 g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); 942 } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 943 g2h_fence->retry = true; 944 g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); 945 } else if (g2h_fence->response_buffer) { 946 g2h_fence->response_len = hxg_len; 947 memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); 948 } else { 949 g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); 950 } 951 952 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); 953 954 g2h_fence->done = true; 955 smp_mb(); 956 957 wake_up_all(&ct->g2h_fence_wq); 958 959 return 0; 960 } 961 962 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) 963 { 964 struct xe_device *xe = ct_to_xe(ct); 965 u32 *hxg = msg_to_hxg(msg); 966 u32 origin, type; 967 int ret; 968 969 lockdep_assert_held(&ct->lock); 970 971 origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); 972 if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { 973 drm_err(&xe->drm, 974 "G2H channel broken on read, origin=%d, reset required\n", 975 origin); 976 ct->ctbs.g2h.info.broken = true; 977 978 return -EPROTO; 979 } 980 981 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); 982 switch (type) { 983 case GUC_HXG_TYPE_EVENT: 984 ret = parse_g2h_event(ct, msg, len); 985 break; 986 case GUC_HXG_TYPE_RESPONSE_SUCCESS: 987 case GUC_HXG_TYPE_RESPONSE_FAILURE: 988 case GUC_HXG_TYPE_NO_RESPONSE_RETRY: 989 ret = parse_g2h_response(ct, msg, len); 990 break; 991 default: 992 drm_err(&xe->drm, 993 "G2H channel broken on read, type=%d, reset required\n", 994 type); 995 ct->ctbs.g2h.info.broken = true; 996 997 ret = -EOPNOTSUPP; 998 } 999 1000 return ret; 1001 } 1002 1003 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) 1004 { 1005 struct xe_device *xe = ct_to_xe(ct); 1006 struct xe_guc *guc = ct_to_guc(ct); 1007 u32 hxg_len = msg_len_to_hxg_len(len); 1008 u32 *hxg = msg_to_hxg(msg); 1009 u32 action, adj_len; 1010 u32 *payload; 1011 int ret = 0; 1012 1013 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) 1014 return 0; 1015 1016 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1017 payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; 1018 adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; 1019 1020 switch (action) { 1021 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: 1022 ret = xe_guc_sched_done_handler(guc, payload, adj_len); 1023 break; 1024 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: 1025 ret = xe_guc_deregister_done_handler(guc, payload, adj_len); 1026 break; 1027 case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: 1028 ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); 1029 break; 1030 case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: 1031 ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, 1032 adj_len); 1033 break; 1034 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: 1035 /* Selftest only at the moment */ 1036 break; 1037 case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: 1038 case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: 1039 /* FIXME: Handle this */ 1040 break; 1041 case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: 1042 ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, 1043 adj_len); 1044 break; 1045 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1046 ret = xe_guc_pagefault_handler(guc, payload, adj_len); 1047 break; 1048 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1049 ret = xe_guc_tlb_invalidation_done_handler(guc, payload, 1050 adj_len); 1051 break; 1052 case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: 1053 ret = xe_guc_access_counter_notify_handler(guc, payload, 1054 adj_len); 1055 break; 1056 case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: 1057 ret = xe_guc_relay_process_guc2pf(&guc->relay, payload, adj_len); 1058 break; 1059 case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: 1060 ret = xe_guc_relay_process_guc2vf(&guc->relay, payload, adj_len); 1061 break; 1062 default: 1063 drm_err(&xe->drm, "unexpected action 0x%04x\n", action); 1064 } 1065 1066 if (ret) 1067 drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n", 1068 action, ret); 1069 1070 return 0; 1071 } 1072 1073 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) 1074 { 1075 struct xe_device *xe = ct_to_xe(ct); 1076 struct guc_ctb *g2h = &ct->ctbs.g2h; 1077 u32 tail, head, len; 1078 s32 avail; 1079 u32 action; 1080 u32 *hxg; 1081 1082 xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); 1083 lockdep_assert_held(&ct->fast_lock); 1084 1085 if (ct->state == XE_GUC_CT_STATE_DISABLED) 1086 return -ENODEV; 1087 1088 if (ct->state == XE_GUC_CT_STATE_STOPPED) 1089 return -ECANCELED; 1090 1091 if (g2h->info.broken) 1092 return -EPIPE; 1093 1094 xe_assert(xe, xe_guc_ct_enabled(ct)); 1095 1096 /* Calculate DW available to read */ 1097 tail = desc_read(xe, g2h, tail); 1098 avail = tail - g2h->info.head; 1099 if (unlikely(avail == 0)) 1100 return 0; 1101 1102 if (avail < 0) 1103 avail += g2h->info.size; 1104 1105 /* Read header */ 1106 xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, 1107 sizeof(u32)); 1108 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; 1109 if (len > avail) { 1110 drm_err(&xe->drm, 1111 "G2H channel broken on read, avail=%d, len=%d, reset required\n", 1112 avail, len); 1113 g2h->info.broken = true; 1114 1115 return -EPROTO; 1116 } 1117 1118 head = (g2h->info.head + 1) % g2h->info.size; 1119 avail = len - 1; 1120 1121 /* Read G2H message */ 1122 if (avail + head > g2h->info.size) { 1123 u32 avail_til_wrap = g2h->info.size - head; 1124 1125 xe_map_memcpy_from(xe, msg + 1, 1126 &g2h->cmds, sizeof(u32) * head, 1127 avail_til_wrap * sizeof(u32)); 1128 xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, 1129 &g2h->cmds, 0, 1130 (avail - avail_til_wrap) * sizeof(u32)); 1131 } else { 1132 xe_map_memcpy_from(xe, msg + 1, 1133 &g2h->cmds, sizeof(u32) * head, 1134 avail * sizeof(u32)); 1135 } 1136 1137 hxg = msg_to_hxg(msg); 1138 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1139 1140 if (fast_path) { 1141 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) 1142 return 0; 1143 1144 switch (action) { 1145 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1146 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1147 break; /* Process these in fast-path */ 1148 default: 1149 return 0; 1150 } 1151 } 1152 1153 /* Update local / descriptor header */ 1154 g2h->info.head = (head + avail) % g2h->info.size; 1155 desc_write(xe, g2h, head, g2h->info.head); 1156 1157 trace_xe_guc_ctb_g2h(ct_to_gt(ct)->info.id, action, len, 1158 g2h->info.head, tail); 1159 1160 return len; 1161 } 1162 1163 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) 1164 { 1165 struct xe_device *xe = ct_to_xe(ct); 1166 struct xe_guc *guc = ct_to_guc(ct); 1167 u32 hxg_len = msg_len_to_hxg_len(len); 1168 u32 *hxg = msg_to_hxg(msg); 1169 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); 1170 u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; 1171 u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; 1172 int ret = 0; 1173 1174 switch (action) { 1175 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: 1176 ret = xe_guc_pagefault_handler(guc, payload, adj_len); 1177 break; 1178 case XE_GUC_ACTION_TLB_INVALIDATION_DONE: 1179 __g2h_release_space(ct, len); 1180 ret = xe_guc_tlb_invalidation_done_handler(guc, payload, 1181 adj_len); 1182 break; 1183 default: 1184 drm_warn(&xe->drm, "NOT_POSSIBLE"); 1185 } 1186 1187 if (ret) 1188 drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n", 1189 action, ret); 1190 } 1191 1192 /** 1193 * xe_guc_ct_fast_path - process critical G2H in the IRQ handler 1194 * @ct: GuC CT object 1195 * 1196 * Anything related to page faults is critical for performance, process these 1197 * critical G2H in the IRQ. This is safe as these handlers either just wake up 1198 * waiters or queue another worker. 1199 */ 1200 void xe_guc_ct_fast_path(struct xe_guc_ct *ct) 1201 { 1202 struct xe_device *xe = ct_to_xe(ct); 1203 bool ongoing; 1204 int len; 1205 1206 ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct)); 1207 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) 1208 return; 1209 1210 spin_lock(&ct->fast_lock); 1211 do { 1212 len = g2h_read(ct, ct->fast_msg, true); 1213 if (len > 0) 1214 g2h_fast_path(ct, ct->fast_msg, len); 1215 } while (len > 0); 1216 spin_unlock(&ct->fast_lock); 1217 1218 if (ongoing) 1219 xe_device_mem_access_put(xe); 1220 } 1221 1222 /* Returns less than zero on error, 0 on done, 1 on more available */ 1223 static int dequeue_one_g2h(struct xe_guc_ct *ct) 1224 { 1225 int len; 1226 int ret; 1227 1228 lockdep_assert_held(&ct->lock); 1229 1230 spin_lock_irq(&ct->fast_lock); 1231 len = g2h_read(ct, ct->msg, false); 1232 spin_unlock_irq(&ct->fast_lock); 1233 if (len <= 0) 1234 return len; 1235 1236 ret = parse_g2h_msg(ct, ct->msg, len); 1237 if (unlikely(ret < 0)) 1238 return ret; 1239 1240 ret = process_g2h_msg(ct, ct->msg, len); 1241 if (unlikely(ret < 0)) 1242 return ret; 1243 1244 return 1; 1245 } 1246 1247 static void g2h_worker_func(struct work_struct *w) 1248 { 1249 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); 1250 bool ongoing; 1251 int ret; 1252 1253 /* 1254 * Normal users must always hold mem_access.ref around CT calls. However 1255 * during the runtime pm callbacks we rely on CT to talk to the GuC, but 1256 * at this stage we can't rely on mem_access.ref and even the 1257 * callback_task will be different than current. For such cases we just 1258 * need to ensure we always process the responses from any blocking 1259 * ct_send requests or where we otherwise expect some response when 1260 * initiated from those callbacks (which will need to wait for the below 1261 * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if 1262 * the device has suspended to the point that the CT communication has 1263 * been disabled. 1264 * 1265 * If we are inside the runtime pm callback, we can be the only task 1266 * still issuing CT requests (since that requires having the 1267 * mem_access.ref). It seems like it might in theory be possible to 1268 * receive unsolicited events from the GuC just as we are 1269 * suspending-resuming, but those will currently anyway be lost when 1270 * eventually exiting from suspend, hence no need to wake up the device 1271 * here. If we ever need something stronger than get_if_ongoing() then 1272 * we need to be careful with blocking the pm callbacks from getting CT 1273 * responses, if the worker here is blocked on those callbacks 1274 * completing, creating a deadlock. 1275 */ 1276 ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct)); 1277 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) 1278 return; 1279 1280 do { 1281 mutex_lock(&ct->lock); 1282 ret = dequeue_one_g2h(ct); 1283 mutex_unlock(&ct->lock); 1284 1285 if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { 1286 struct drm_device *drm = &ct_to_xe(ct)->drm; 1287 struct drm_printer p = drm_info_printer(drm->dev); 1288 1289 xe_guc_ct_print(ct, &p, false); 1290 kick_reset(ct); 1291 } 1292 } while (ret == 1); 1293 1294 if (ongoing) 1295 xe_device_mem_access_put(ct_to_xe(ct)); 1296 } 1297 1298 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, 1299 struct guc_ctb_snapshot *snapshot, 1300 bool atomic) 1301 { 1302 u32 head, tail; 1303 1304 xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, 1305 sizeof(struct guc_ct_buffer_desc)); 1306 memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); 1307 1308 snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32), 1309 atomic ? GFP_ATOMIC : GFP_KERNEL); 1310 1311 if (!snapshot->cmds) { 1312 drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n"); 1313 return; 1314 } 1315 1316 head = snapshot->desc.head; 1317 tail = snapshot->desc.tail; 1318 1319 if (head != tail) { 1320 struct iosys_map map = 1321 IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32)); 1322 1323 while (head != tail) { 1324 snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32); 1325 ++head; 1326 if (head == ctb->info.size) { 1327 head = 0; 1328 map = ctb->cmds; 1329 } else { 1330 iosys_map_incr(&map, sizeof(u32)); 1331 } 1332 } 1333 } 1334 } 1335 1336 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, 1337 struct drm_printer *p) 1338 { 1339 u32 head, tail; 1340 1341 drm_printf(p, "\tsize: %d\n", snapshot->info.size); 1342 drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); 1343 drm_printf(p, "\thead: %d\n", snapshot->info.head); 1344 drm_printf(p, "\ttail: %d\n", snapshot->info.tail); 1345 drm_printf(p, "\tspace: %d\n", snapshot->info.space); 1346 drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); 1347 drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); 1348 drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); 1349 drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); 1350 1351 if (!snapshot->cmds) 1352 return; 1353 1354 head = snapshot->desc.head; 1355 tail = snapshot->desc.tail; 1356 1357 while (head != tail) { 1358 drm_printf(p, "\tcmd[%d]: 0x%08x\n", head, 1359 snapshot->cmds[head]); 1360 ++head; 1361 if (head == snapshot->info.size) 1362 head = 0; 1363 } 1364 } 1365 1366 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot) 1367 { 1368 kfree(snapshot->cmds); 1369 } 1370 1371 /** 1372 * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. 1373 * @ct: GuC CT object. 1374 * @atomic: Boolean to indicate if this is called from atomic context like 1375 * reset or CTB handler or from some regular path like debugfs. 1376 * 1377 * This can be printed out in a later stage like during dev_coredump 1378 * analysis. 1379 * 1380 * Returns: a GuC CT snapshot object that must be freed by the caller 1381 * by using `xe_guc_ct_snapshot_free`. 1382 */ 1383 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct, 1384 bool atomic) 1385 { 1386 struct xe_device *xe = ct_to_xe(ct); 1387 struct xe_guc_ct_snapshot *snapshot; 1388 1389 snapshot = kzalloc(sizeof(*snapshot), 1390 atomic ? GFP_ATOMIC : GFP_KERNEL); 1391 1392 if (!snapshot) { 1393 drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n"); 1394 return NULL; 1395 } 1396 1397 if (xe_guc_ct_enabled(ct)) { 1398 snapshot->ct_enabled = true; 1399 snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); 1400 guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, 1401 &snapshot->h2g, atomic); 1402 guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, 1403 &snapshot->g2h, atomic); 1404 } 1405 1406 return snapshot; 1407 } 1408 1409 /** 1410 * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. 1411 * @snapshot: GuC CT snapshot object. 1412 * @p: drm_printer where it will be printed out. 1413 * 1414 * This function prints out a given GuC CT snapshot object. 1415 */ 1416 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, 1417 struct drm_printer *p) 1418 { 1419 if (!snapshot) 1420 return; 1421 1422 if (snapshot->ct_enabled) { 1423 drm_puts(p, "H2G CTB (all sizes in DW):\n"); 1424 guc_ctb_snapshot_print(&snapshot->h2g, p); 1425 1426 drm_puts(p, "\nG2H CTB (all sizes in DW):\n"); 1427 guc_ctb_snapshot_print(&snapshot->g2h, p); 1428 1429 drm_printf(p, "\tg2h outstanding: %d\n", 1430 snapshot->g2h_outstanding); 1431 } else { 1432 drm_puts(p, "CT disabled\n"); 1433 } 1434 } 1435 1436 /** 1437 * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. 1438 * @snapshot: GuC CT snapshot object. 1439 * 1440 * This function free all the memory that needed to be allocated at capture 1441 * time. 1442 */ 1443 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) 1444 { 1445 if (!snapshot) 1446 return; 1447 1448 guc_ctb_snapshot_free(&snapshot->h2g); 1449 guc_ctb_snapshot_free(&snapshot->g2h); 1450 kfree(snapshot); 1451 } 1452 1453 /** 1454 * xe_guc_ct_print - GuC CT Print. 1455 * @ct: GuC CT. 1456 * @p: drm_printer where it will be printed out. 1457 * @atomic: Boolean to indicate if this is called from atomic context like 1458 * reset or CTB handler or from some regular path like debugfs. 1459 * 1460 * This function quickly capture a snapshot and immediately print it out. 1461 */ 1462 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic) 1463 { 1464 struct xe_guc_ct_snapshot *snapshot; 1465 1466 snapshot = xe_guc_ct_snapshot_capture(ct, atomic); 1467 xe_guc_ct_snapshot_print(snapshot, p); 1468 xe_guc_ct_snapshot_free(snapshot); 1469 } 1470