xref: /linux/drivers/gpu/drm/xe/xe_gt_tlb_invalidation.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "xe_gt_tlb_invalidation.h"
7 
8 #include "abi/guc_actions_abi.h"
9 #include "xe_device.h"
10 #include "xe_gt.h"
11 #include "xe_guc.h"
12 #include "xe_guc_ct.h"
13 #include "xe_trace.h"
14 
15 #define TLB_TIMEOUT	(HZ / 4)
16 
17 static void xe_gt_tlb_fence_timeout(struct work_struct *work)
18 {
19 	struct xe_gt *gt = container_of(work, struct xe_gt,
20 					tlb_invalidation.fence_tdr.work);
21 	struct xe_gt_tlb_invalidation_fence *fence, *next;
22 
23 	spin_lock_irq(&gt->tlb_invalidation.pending_lock);
24 	list_for_each_entry_safe(fence, next,
25 				 &gt->tlb_invalidation.pending_fences, link) {
26 		s64 since_inval_ms = ktime_ms_delta(ktime_get(),
27 						    fence->invalidation_time);
28 
29 		if (msecs_to_jiffies(since_inval_ms) < TLB_TIMEOUT)
30 			break;
31 
32 		trace_xe_gt_tlb_invalidation_fence_timeout(fence);
33 		drm_err(&gt_to_xe(gt)->drm, "gt%d: TLB invalidation fence timeout, seqno=%d recv=%d",
34 			gt->info.id, fence->seqno, gt->tlb_invalidation.seqno_recv);
35 
36 		list_del(&fence->link);
37 		fence->base.error = -ETIME;
38 		dma_fence_signal(&fence->base);
39 		dma_fence_put(&fence->base);
40 	}
41 	if (!list_empty(&gt->tlb_invalidation.pending_fences))
42 		queue_delayed_work(system_wq,
43 				   &gt->tlb_invalidation.fence_tdr,
44 				   TLB_TIMEOUT);
45 	spin_unlock_irq(&gt->tlb_invalidation.pending_lock);
46 }
47 
48 /**
49  * xe_gt_tlb_invalidation_init - Initialize GT TLB invalidation state
50  * @gt: graphics tile
51  *
52  * Initialize GT TLB invalidation state, purely software initialization, should
53  * be called once during driver load.
54  *
55  * Return: 0 on success, negative error code on error.
56  */
57 int xe_gt_tlb_invalidation_init(struct xe_gt *gt)
58 {
59 	gt->tlb_invalidation.seqno = 1;
60 	INIT_LIST_HEAD(&gt->tlb_invalidation.pending_fences);
61 	spin_lock_init(&gt->tlb_invalidation.pending_lock);
62 	spin_lock_init(&gt->tlb_invalidation.lock);
63 	gt->tlb_invalidation.fence_context = dma_fence_context_alloc(1);
64 	INIT_DELAYED_WORK(&gt->tlb_invalidation.fence_tdr,
65 			  xe_gt_tlb_fence_timeout);
66 
67 	return 0;
68 }
69 
70 static void
71 __invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence)
72 {
73 	trace_xe_gt_tlb_invalidation_fence_signal(fence);
74 	dma_fence_signal(&fence->base);
75 	dma_fence_put(&fence->base);
76 }
77 
78 static void
79 invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence)
80 {
81 	list_del(&fence->link);
82 	__invalidation_fence_signal(fence);
83 }
84 
85 /**
86  * xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset
87  * @gt: graphics tile
88  *
89  * Signal any pending invalidation fences, should be called during a GT reset
90  */
91 void xe_gt_tlb_invalidation_reset(struct xe_gt *gt)
92 {
93 	struct xe_gt_tlb_invalidation_fence *fence, *next;
94 	struct xe_guc *guc = &gt->uc.guc;
95 	int pending_seqno;
96 
97 	/*
98 	 * CT channel is already disabled at this point. No new TLB requests can
99 	 * appear.
100 	 */
101 
102 	mutex_lock(&gt->uc.guc.ct.lock);
103 	spin_lock_irq(&gt->tlb_invalidation.pending_lock);
104 	cancel_delayed_work(&gt->tlb_invalidation.fence_tdr);
105 	/*
106 	 * We might have various kworkers waiting for TLB flushes to complete
107 	 * which are not tracked with an explicit TLB fence, however at this
108 	 * stage that will never happen since the CT is already disabled, so
109 	 * make sure we signal them here under the assumption that we have
110 	 * completed a full GT reset.
111 	 */
112 	if (gt->tlb_invalidation.seqno == 1)
113 		pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1;
114 	else
115 		pending_seqno = gt->tlb_invalidation.seqno - 1;
116 	WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno);
117 	wake_up_all(&guc->ct.wq);
118 
119 	list_for_each_entry_safe(fence, next,
120 				 &gt->tlb_invalidation.pending_fences, link)
121 		invalidation_fence_signal(fence);
122 	spin_unlock_irq(&gt->tlb_invalidation.pending_lock);
123 	mutex_unlock(&gt->uc.guc.ct.lock);
124 }
125 
126 static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno)
127 {
128 	int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv);
129 
130 	if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2))
131 		return false;
132 
133 	if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2))
134 		return true;
135 
136 	return seqno_recv >= seqno;
137 }
138 
139 static int send_tlb_invalidation(struct xe_guc *guc,
140 				 struct xe_gt_tlb_invalidation_fence *fence,
141 				 u32 *action, int len)
142 {
143 	struct xe_gt *gt = guc_to_gt(guc);
144 	int seqno;
145 	int ret;
146 
147 	/*
148 	 * XXX: The seqno algorithm relies on TLB invalidation being processed
149 	 * in order which they currently are, if that changes the algorithm will
150 	 * need to be updated.
151 	 */
152 
153 	mutex_lock(&guc->ct.lock);
154 	seqno = gt->tlb_invalidation.seqno;
155 	if (fence) {
156 		fence->seqno = seqno;
157 		trace_xe_gt_tlb_invalidation_fence_send(fence);
158 	}
159 	action[1] = seqno;
160 	ret = xe_guc_ct_send_locked(&guc->ct, action, len,
161 				    G2H_LEN_DW_TLB_INVALIDATE, 1);
162 	if (!ret && fence) {
163 		spin_lock_irq(&gt->tlb_invalidation.pending_lock);
164 		/*
165 		 * We haven't actually published the TLB fence as per
166 		 * pending_fences, but in theory our seqno could have already
167 		 * been written as we acquired the pending_lock. In such a case
168 		 * we can just go ahead and signal the fence here.
169 		 */
170 		if (tlb_invalidation_seqno_past(gt, seqno)) {
171 			__invalidation_fence_signal(fence);
172 		} else {
173 			fence->invalidation_time = ktime_get();
174 			list_add_tail(&fence->link,
175 				      &gt->tlb_invalidation.pending_fences);
176 
177 			if (list_is_singular(&gt->tlb_invalidation.pending_fences))
178 				queue_delayed_work(system_wq,
179 						   &gt->tlb_invalidation.fence_tdr,
180 						   TLB_TIMEOUT);
181 		}
182 		spin_unlock_irq(&gt->tlb_invalidation.pending_lock);
183 	} else if (ret < 0 && fence) {
184 		__invalidation_fence_signal(fence);
185 	}
186 	if (!ret) {
187 		gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) %
188 			TLB_INVALIDATION_SEQNO_MAX;
189 		if (!gt->tlb_invalidation.seqno)
190 			gt->tlb_invalidation.seqno = 1;
191 		ret = seqno;
192 	}
193 	mutex_unlock(&guc->ct.lock);
194 
195 	return ret;
196 }
197 
198 #define MAKE_INVAL_OP(type)	((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \
199 		XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \
200 		XE_GUC_TLB_INVAL_FLUSH_CACHE)
201 
202 /**
203  * xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC
204  * @gt: graphics tile
205  *
206  * Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and
207  * caller can use seqno + xe_gt_tlb_invalidation_wait to wait for completion.
208  *
209  * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success,
210  * negative error code on error.
211  */
212 int xe_gt_tlb_invalidation_guc(struct xe_gt *gt)
213 {
214 	u32 action[] = {
215 		XE_GUC_ACTION_TLB_INVALIDATION,
216 		0,  /* seqno, replaced in send_tlb_invalidation */
217 		MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC),
218 	};
219 
220 	return send_tlb_invalidation(&gt->uc.guc, NULL, action,
221 				     ARRAY_SIZE(action));
222 }
223 
224 /**
225  * xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA
226  * @gt: graphics tile
227  * @fence: invalidation fence which will be signal on TLB invalidation
228  * completion, can be NULL
229  * @vma: VMA to invalidate
230  *
231  * Issue a range based TLB invalidation if supported, if not fallback to a full
232  * TLB invalidation. Completion of TLB is asynchronous and caller can either use
233  * the invalidation fence or seqno + xe_gt_tlb_invalidation_wait to wait for
234  * completion.
235  *
236  * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success,
237  * negative error code on error.
238  */
239 int xe_gt_tlb_invalidation_vma(struct xe_gt *gt,
240 			       struct xe_gt_tlb_invalidation_fence *fence,
241 			       struct xe_vma *vma)
242 {
243 	struct xe_device *xe = gt_to_xe(gt);
244 #define MAX_TLB_INVALIDATION_LEN	7
245 	u32 action[MAX_TLB_INVALIDATION_LEN];
246 	int len = 0;
247 
248 	xe_gt_assert(gt, vma);
249 
250 	action[len++] = XE_GUC_ACTION_TLB_INVALIDATION;
251 	action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */
252 	if (!xe->info.has_range_tlb_invalidation) {
253 		action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL);
254 	} else {
255 		u64 start = xe_vma_start(vma);
256 		u64 length = xe_vma_size(vma);
257 		u64 align, end;
258 
259 		if (length < SZ_4K)
260 			length = SZ_4K;
261 
262 		/*
263 		 * We need to invalidate a higher granularity if start address
264 		 * is not aligned to length. When start is not aligned with
265 		 * length we need to find the length large enough to create an
266 		 * address mask covering the required range.
267 		 */
268 		align = roundup_pow_of_two(length);
269 		start = ALIGN_DOWN(xe_vma_start(vma), align);
270 		end = ALIGN(xe_vma_end(vma), align);
271 		length = align;
272 		while (start + length < end) {
273 			length <<= 1;
274 			start = ALIGN_DOWN(xe_vma_start(vma), length);
275 		}
276 
277 		/*
278 		 * Minimum invalidation size for a 2MB page that the hardware
279 		 * expects is 16MB
280 		 */
281 		if (length >= SZ_2M) {
282 			length = max_t(u64, SZ_16M, length);
283 			start = ALIGN_DOWN(xe_vma_start(vma), length);
284 		}
285 
286 		xe_gt_assert(gt, length >= SZ_4K);
287 		xe_gt_assert(gt, is_power_of_2(length));
288 		xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1, ilog2(SZ_2M) + 1)));
289 		xe_gt_assert(gt, IS_ALIGNED(start, length));
290 
291 		action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE);
292 		action[len++] = xe_vma_vm(vma)->usm.asid;
293 		action[len++] = lower_32_bits(start);
294 		action[len++] = upper_32_bits(start);
295 		action[len++] = ilog2(length) - ilog2(SZ_4K);
296 	}
297 
298 	xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN);
299 
300 	return send_tlb_invalidation(&gt->uc.guc, fence, action, len);
301 }
302 
303 /**
304  * xe_gt_tlb_invalidation_wait - Wait for TLB to complete
305  * @gt: graphics tile
306  * @seqno: seqno to wait which was returned from xe_gt_tlb_invalidation
307  *
308  * Wait for 200ms for a TLB invalidation to complete, in practice we always
309  * should receive the TLB invalidation within 200ms.
310  *
311  * Return: 0 on success, -ETIME on TLB invalidation timeout
312  */
313 int xe_gt_tlb_invalidation_wait(struct xe_gt *gt, int seqno)
314 {
315 	struct xe_device *xe = gt_to_xe(gt);
316 	struct xe_guc *guc = &gt->uc.guc;
317 	struct drm_printer p = drm_err_printer(__func__);
318 	int ret;
319 
320 	/*
321 	 * XXX: See above, this algorithm only works if seqno are always in
322 	 * order
323 	 */
324 	ret = wait_event_timeout(guc->ct.wq,
325 				 tlb_invalidation_seqno_past(gt, seqno),
326 				 TLB_TIMEOUT);
327 	if (!ret) {
328 		drm_err(&xe->drm, "gt%d: TLB invalidation time'd out, seqno=%d, recv=%d\n",
329 			gt->info.id, seqno, gt->tlb_invalidation.seqno_recv);
330 		xe_guc_ct_print(&guc->ct, &p, true);
331 		return -ETIME;
332 	}
333 
334 	return 0;
335 }
336 
337 /**
338  * xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler
339  * @guc: guc
340  * @msg: message indicating TLB invalidation done
341  * @len: length of message
342  *
343  * Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any
344  * invalidation fences for seqno. Algorithm for this depends on seqno being
345  * received in-order and asserts this assumption.
346  *
347  * Return: 0 on success, -EPROTO for malformed messages.
348  */
349 int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
350 {
351 	struct xe_gt *gt = guc_to_gt(guc);
352 	struct xe_gt_tlb_invalidation_fence *fence, *next;
353 	unsigned long flags;
354 
355 	if (unlikely(len != 1))
356 		return -EPROTO;
357 
358 	/*
359 	 * This can also be run both directly from the IRQ handler and also in
360 	 * process_g2h_msg(). Only one may process any individual CT message,
361 	 * however the order they are processed here could result in skipping a
362 	 * seqno. To handle that we just process all the seqnos from the last
363 	 * seqno_recv up to and including the one in msg[0]. The delta should be
364 	 * very small so there shouldn't be much of pending_fences we actually
365 	 * need to iterate over here.
366 	 *
367 	 * From GuC POV we expect the seqnos to always appear in-order, so if we
368 	 * see something later in the timeline we can be sure that anything
369 	 * appearing earlier has already signalled, just that we have yet to
370 	 * officially process the CT message like if racing against
371 	 * process_g2h_msg().
372 	 */
373 	spin_lock_irqsave(&gt->tlb_invalidation.pending_lock, flags);
374 	if (tlb_invalidation_seqno_past(gt, msg[0])) {
375 		spin_unlock_irqrestore(&gt->tlb_invalidation.pending_lock, flags);
376 		return 0;
377 	}
378 
379 	/*
380 	 * wake_up_all() and wait_event_timeout() already have the correct
381 	 * barriers.
382 	 */
383 	WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]);
384 	wake_up_all(&guc->ct.wq);
385 
386 	list_for_each_entry_safe(fence, next,
387 				 &gt->tlb_invalidation.pending_fences, link) {
388 		trace_xe_gt_tlb_invalidation_fence_recv(fence);
389 
390 		if (!tlb_invalidation_seqno_past(gt, fence->seqno))
391 			break;
392 
393 		invalidation_fence_signal(fence);
394 	}
395 
396 	if (!list_empty(&gt->tlb_invalidation.pending_fences))
397 		mod_delayed_work(system_wq,
398 				 &gt->tlb_invalidation.fence_tdr,
399 				 TLB_TIMEOUT);
400 	else
401 		cancel_delayed_work(&gt->tlb_invalidation.fence_tdr);
402 
403 	spin_unlock_irqrestore(&gt->tlb_invalidation.pending_lock, flags);
404 
405 	return 0;
406 }
407