1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_gt_tlb_invalidation.h" 7 8 #include "abi/guc_actions_abi.h" 9 #include "xe_device.h" 10 #include "xe_gt.h" 11 #include "xe_gt_printk.h" 12 #include "xe_guc.h" 13 #include "xe_guc_ct.h" 14 #include "xe_trace.h" 15 16 #define TLB_TIMEOUT (HZ / 4) 17 18 static void xe_gt_tlb_fence_timeout(struct work_struct *work) 19 { 20 struct xe_gt *gt = container_of(work, struct xe_gt, 21 tlb_invalidation.fence_tdr.work); 22 struct xe_gt_tlb_invalidation_fence *fence, *next; 23 24 spin_lock_irq(>->tlb_invalidation.pending_lock); 25 list_for_each_entry_safe(fence, next, 26 >->tlb_invalidation.pending_fences, link) { 27 s64 since_inval_ms = ktime_ms_delta(ktime_get(), 28 fence->invalidation_time); 29 30 if (msecs_to_jiffies(since_inval_ms) < TLB_TIMEOUT) 31 break; 32 33 trace_xe_gt_tlb_invalidation_fence_timeout(fence); 34 xe_gt_err(gt, "TLB invalidation fence timeout, seqno=%d recv=%d", 35 fence->seqno, gt->tlb_invalidation.seqno_recv); 36 37 list_del(&fence->link); 38 fence->base.error = -ETIME; 39 dma_fence_signal(&fence->base); 40 dma_fence_put(&fence->base); 41 } 42 if (!list_empty(>->tlb_invalidation.pending_fences)) 43 queue_delayed_work(system_wq, 44 >->tlb_invalidation.fence_tdr, 45 TLB_TIMEOUT); 46 spin_unlock_irq(>->tlb_invalidation.pending_lock); 47 } 48 49 /** 50 * xe_gt_tlb_invalidation_init - Initialize GT TLB invalidation state 51 * @gt: graphics tile 52 * 53 * Initialize GT TLB invalidation state, purely software initialization, should 54 * be called once during driver load. 55 * 56 * Return: 0 on success, negative error code on error. 57 */ 58 int xe_gt_tlb_invalidation_init(struct xe_gt *gt) 59 { 60 gt->tlb_invalidation.seqno = 1; 61 INIT_LIST_HEAD(>->tlb_invalidation.pending_fences); 62 spin_lock_init(>->tlb_invalidation.pending_lock); 63 spin_lock_init(>->tlb_invalidation.lock); 64 INIT_DELAYED_WORK(>->tlb_invalidation.fence_tdr, 65 xe_gt_tlb_fence_timeout); 66 67 return 0; 68 } 69 70 static void 71 __invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence) 72 { 73 trace_xe_gt_tlb_invalidation_fence_signal(fence); 74 dma_fence_signal(&fence->base); 75 dma_fence_put(&fence->base); 76 } 77 78 static void 79 invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence) 80 { 81 list_del(&fence->link); 82 __invalidation_fence_signal(fence); 83 } 84 85 /** 86 * xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset 87 * @gt: graphics tile 88 * 89 * Signal any pending invalidation fences, should be called during a GT reset 90 */ 91 void xe_gt_tlb_invalidation_reset(struct xe_gt *gt) 92 { 93 struct xe_gt_tlb_invalidation_fence *fence, *next; 94 struct xe_guc *guc = >->uc.guc; 95 int pending_seqno; 96 97 /* 98 * CT channel is already disabled at this point. No new TLB requests can 99 * appear. 100 */ 101 102 mutex_lock(>->uc.guc.ct.lock); 103 spin_lock_irq(>->tlb_invalidation.pending_lock); 104 cancel_delayed_work(>->tlb_invalidation.fence_tdr); 105 /* 106 * We might have various kworkers waiting for TLB flushes to complete 107 * which are not tracked with an explicit TLB fence, however at this 108 * stage that will never happen since the CT is already disabled, so 109 * make sure we signal them here under the assumption that we have 110 * completed a full GT reset. 111 */ 112 if (gt->tlb_invalidation.seqno == 1) 113 pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1; 114 else 115 pending_seqno = gt->tlb_invalidation.seqno - 1; 116 WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno); 117 wake_up_all(&guc->ct.wq); 118 119 list_for_each_entry_safe(fence, next, 120 >->tlb_invalidation.pending_fences, link) 121 invalidation_fence_signal(fence); 122 spin_unlock_irq(>->tlb_invalidation.pending_lock); 123 mutex_unlock(>->uc.guc.ct.lock); 124 } 125 126 static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno) 127 { 128 int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv); 129 130 if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2)) 131 return false; 132 133 if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2)) 134 return true; 135 136 return seqno_recv >= seqno; 137 } 138 139 static int send_tlb_invalidation(struct xe_guc *guc, 140 struct xe_gt_tlb_invalidation_fence *fence, 141 u32 *action, int len) 142 { 143 struct xe_gt *gt = guc_to_gt(guc); 144 int seqno; 145 int ret; 146 147 /* 148 * XXX: The seqno algorithm relies on TLB invalidation being processed 149 * in order which they currently are, if that changes the algorithm will 150 * need to be updated. 151 */ 152 153 mutex_lock(&guc->ct.lock); 154 seqno = gt->tlb_invalidation.seqno; 155 if (fence) { 156 fence->seqno = seqno; 157 trace_xe_gt_tlb_invalidation_fence_send(fence); 158 } 159 action[1] = seqno; 160 ret = xe_guc_ct_send_locked(&guc->ct, action, len, 161 G2H_LEN_DW_TLB_INVALIDATE, 1); 162 if (!ret && fence) { 163 spin_lock_irq(>->tlb_invalidation.pending_lock); 164 /* 165 * We haven't actually published the TLB fence as per 166 * pending_fences, but in theory our seqno could have already 167 * been written as we acquired the pending_lock. In such a case 168 * we can just go ahead and signal the fence here. 169 */ 170 if (tlb_invalidation_seqno_past(gt, seqno)) { 171 __invalidation_fence_signal(fence); 172 } else { 173 fence->invalidation_time = ktime_get(); 174 list_add_tail(&fence->link, 175 >->tlb_invalidation.pending_fences); 176 177 if (list_is_singular(>->tlb_invalidation.pending_fences)) 178 queue_delayed_work(system_wq, 179 >->tlb_invalidation.fence_tdr, 180 TLB_TIMEOUT); 181 } 182 spin_unlock_irq(>->tlb_invalidation.pending_lock); 183 } else if (ret < 0 && fence) { 184 __invalidation_fence_signal(fence); 185 } 186 if (!ret) { 187 gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) % 188 TLB_INVALIDATION_SEQNO_MAX; 189 if (!gt->tlb_invalidation.seqno) 190 gt->tlb_invalidation.seqno = 1; 191 ret = seqno; 192 } 193 mutex_unlock(&guc->ct.lock); 194 195 return ret; 196 } 197 198 #define MAKE_INVAL_OP(type) ((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \ 199 XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \ 200 XE_GUC_TLB_INVAL_FLUSH_CACHE) 201 202 /** 203 * xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC 204 * @gt: graphics tile 205 * 206 * Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and 207 * caller can use seqno + xe_gt_tlb_invalidation_wait to wait for completion. 208 * 209 * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success, 210 * negative error code on error. 211 */ 212 int xe_gt_tlb_invalidation_guc(struct xe_gt *gt) 213 { 214 u32 action[] = { 215 XE_GUC_ACTION_TLB_INVALIDATION, 216 0, /* seqno, replaced in send_tlb_invalidation */ 217 MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC), 218 }; 219 220 return send_tlb_invalidation(>->uc.guc, NULL, action, 221 ARRAY_SIZE(action)); 222 } 223 224 /** 225 * xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA 226 * @gt: graphics tile 227 * @fence: invalidation fence which will be signal on TLB invalidation 228 * completion, can be NULL 229 * @vma: VMA to invalidate 230 * 231 * Issue a range based TLB invalidation if supported, if not fallback to a full 232 * TLB invalidation. Completion of TLB is asynchronous and caller can either use 233 * the invalidation fence or seqno + xe_gt_tlb_invalidation_wait to wait for 234 * completion. 235 * 236 * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success, 237 * negative error code on error. 238 */ 239 int xe_gt_tlb_invalidation_vma(struct xe_gt *gt, 240 struct xe_gt_tlb_invalidation_fence *fence, 241 struct xe_vma *vma) 242 { 243 struct xe_device *xe = gt_to_xe(gt); 244 #define MAX_TLB_INVALIDATION_LEN 7 245 u32 action[MAX_TLB_INVALIDATION_LEN]; 246 int len = 0; 247 248 xe_gt_assert(gt, vma); 249 250 /* Execlists not supported */ 251 if (gt_to_xe(gt)->info.force_execlist) { 252 if (fence) 253 __invalidation_fence_signal(fence); 254 255 return 0; 256 } 257 258 action[len++] = XE_GUC_ACTION_TLB_INVALIDATION; 259 action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */ 260 if (!xe->info.has_range_tlb_invalidation) { 261 action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL); 262 } else { 263 u64 start = xe_vma_start(vma); 264 u64 length = xe_vma_size(vma); 265 u64 align, end; 266 267 if (length < SZ_4K) 268 length = SZ_4K; 269 270 /* 271 * We need to invalidate a higher granularity if start address 272 * is not aligned to length. When start is not aligned with 273 * length we need to find the length large enough to create an 274 * address mask covering the required range. 275 */ 276 align = roundup_pow_of_two(length); 277 start = ALIGN_DOWN(xe_vma_start(vma), align); 278 end = ALIGN(xe_vma_end(vma), align); 279 length = align; 280 while (start + length < end) { 281 length <<= 1; 282 start = ALIGN_DOWN(xe_vma_start(vma), length); 283 } 284 285 /* 286 * Minimum invalidation size for a 2MB page that the hardware 287 * expects is 16MB 288 */ 289 if (length >= SZ_2M) { 290 length = max_t(u64, SZ_16M, length); 291 start = ALIGN_DOWN(xe_vma_start(vma), length); 292 } 293 294 xe_gt_assert(gt, length >= SZ_4K); 295 xe_gt_assert(gt, is_power_of_2(length)); 296 xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1, ilog2(SZ_2M) + 1))); 297 xe_gt_assert(gt, IS_ALIGNED(start, length)); 298 299 action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE); 300 action[len++] = xe_vma_vm(vma)->usm.asid; 301 action[len++] = lower_32_bits(start); 302 action[len++] = upper_32_bits(start); 303 action[len++] = ilog2(length) - ilog2(SZ_4K); 304 } 305 306 xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN); 307 308 return send_tlb_invalidation(>->uc.guc, fence, action, len); 309 } 310 311 /** 312 * xe_gt_tlb_invalidation_wait - Wait for TLB to complete 313 * @gt: graphics tile 314 * @seqno: seqno to wait which was returned from xe_gt_tlb_invalidation 315 * 316 * Wait for 200ms for a TLB invalidation to complete, in practice we always 317 * should receive the TLB invalidation within 200ms. 318 * 319 * Return: 0 on success, -ETIME on TLB invalidation timeout 320 */ 321 int xe_gt_tlb_invalidation_wait(struct xe_gt *gt, int seqno) 322 { 323 struct xe_guc *guc = >->uc.guc; 324 int ret; 325 326 /* Execlists not supported */ 327 if (gt_to_xe(gt)->info.force_execlist) 328 return 0; 329 330 /* 331 * XXX: See above, this algorithm only works if seqno are always in 332 * order 333 */ 334 ret = wait_event_timeout(guc->ct.wq, 335 tlb_invalidation_seqno_past(gt, seqno), 336 TLB_TIMEOUT); 337 if (!ret) { 338 struct drm_printer p = xe_gt_err_printer(gt); 339 340 xe_gt_err(gt, "TLB invalidation time'd out, seqno=%d, recv=%d\n", 341 seqno, gt->tlb_invalidation.seqno_recv); 342 xe_guc_ct_print(&guc->ct, &p, true); 343 return -ETIME; 344 } 345 346 return 0; 347 } 348 349 /** 350 * xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler 351 * @guc: guc 352 * @msg: message indicating TLB invalidation done 353 * @len: length of message 354 * 355 * Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any 356 * invalidation fences for seqno. Algorithm for this depends on seqno being 357 * received in-order and asserts this assumption. 358 * 359 * Return: 0 on success, -EPROTO for malformed messages. 360 */ 361 int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 362 { 363 struct xe_gt *gt = guc_to_gt(guc); 364 struct xe_gt_tlb_invalidation_fence *fence, *next; 365 unsigned long flags; 366 367 if (unlikely(len != 1)) 368 return -EPROTO; 369 370 /* 371 * This can also be run both directly from the IRQ handler and also in 372 * process_g2h_msg(). Only one may process any individual CT message, 373 * however the order they are processed here could result in skipping a 374 * seqno. To handle that we just process all the seqnos from the last 375 * seqno_recv up to and including the one in msg[0]. The delta should be 376 * very small so there shouldn't be much of pending_fences we actually 377 * need to iterate over here. 378 * 379 * From GuC POV we expect the seqnos to always appear in-order, so if we 380 * see something later in the timeline we can be sure that anything 381 * appearing earlier has already signalled, just that we have yet to 382 * officially process the CT message like if racing against 383 * process_g2h_msg(). 384 */ 385 spin_lock_irqsave(>->tlb_invalidation.pending_lock, flags); 386 if (tlb_invalidation_seqno_past(gt, msg[0])) { 387 spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); 388 return 0; 389 } 390 391 /* 392 * wake_up_all() and wait_event_timeout() already have the correct 393 * barriers. 394 */ 395 WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]); 396 wake_up_all(&guc->ct.wq); 397 398 list_for_each_entry_safe(fence, next, 399 >->tlb_invalidation.pending_fences, link) { 400 trace_xe_gt_tlb_invalidation_fence_recv(fence); 401 402 if (!tlb_invalidation_seqno_past(gt, fence->seqno)) 403 break; 404 405 invalidation_fence_signal(fence); 406 } 407 408 if (!list_empty(>->tlb_invalidation.pending_fences)) 409 mod_delayed_work(system_wq, 410 >->tlb_invalidation.fence_tdr, 411 TLB_TIMEOUT); 412 else 413 cancel_delayed_work(>->tlb_invalidation.fence_tdr); 414 415 spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); 416 417 return 0; 418 } 419