1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_gt_tlb_invalidation.h" 7 8 #include "abi/guc_actions_abi.h" 9 #include "xe_device.h" 10 #include "xe_force_wake.h" 11 #include "xe_gt.h" 12 #include "xe_gt_printk.h" 13 #include "xe_guc.h" 14 #include "xe_guc_ct.h" 15 #include "xe_gt_stats.h" 16 #include "xe_mmio.h" 17 #include "xe_pm.h" 18 #include "xe_sriov.h" 19 #include "xe_trace.h" 20 #include "regs/xe_guc_regs.h" 21 22 #define FENCE_STACK_BIT DMA_FENCE_FLAG_USER_BITS 23 24 /* 25 * TLB inval depends on pending commands in the CT queue and then the real 26 * invalidation time. Double up the time to process full CT queue 27 * just to be on the safe side. 28 */ 29 static long tlb_timeout_jiffies(struct xe_gt *gt) 30 { 31 /* this reflects what HW/GuC needs to process TLB inv request */ 32 const long hw_tlb_timeout = HZ / 4; 33 34 /* this estimates actual delay caused by the CTB transport */ 35 long delay = xe_guc_ct_queue_proc_time_jiffies(>->uc.guc.ct); 36 37 return hw_tlb_timeout + 2 * delay; 38 } 39 40 static void xe_gt_tlb_invalidation_fence_fini(struct xe_gt_tlb_invalidation_fence *fence) 41 { 42 if (WARN_ON_ONCE(!fence->gt)) 43 return; 44 45 xe_pm_runtime_put(gt_to_xe(fence->gt)); 46 fence->gt = NULL; /* fini() should be called once */ 47 } 48 49 static void 50 __invalidation_fence_signal(struct xe_device *xe, struct xe_gt_tlb_invalidation_fence *fence) 51 { 52 bool stack = test_bit(FENCE_STACK_BIT, &fence->base.flags); 53 54 trace_xe_gt_tlb_invalidation_fence_signal(xe, fence); 55 xe_gt_tlb_invalidation_fence_fini(fence); 56 dma_fence_signal(&fence->base); 57 if (!stack) 58 dma_fence_put(&fence->base); 59 } 60 61 static void 62 invalidation_fence_signal(struct xe_device *xe, struct xe_gt_tlb_invalidation_fence *fence) 63 { 64 list_del(&fence->link); 65 __invalidation_fence_signal(xe, fence); 66 } 67 68 static void xe_gt_tlb_fence_timeout(struct work_struct *work) 69 { 70 struct xe_gt *gt = container_of(work, struct xe_gt, 71 tlb_invalidation.fence_tdr.work); 72 struct xe_device *xe = gt_to_xe(gt); 73 struct xe_gt_tlb_invalidation_fence *fence, *next; 74 75 LNL_FLUSH_WORK(>->uc.guc.ct.g2h_worker); 76 77 spin_lock_irq(>->tlb_invalidation.pending_lock); 78 list_for_each_entry_safe(fence, next, 79 >->tlb_invalidation.pending_fences, link) { 80 s64 since_inval_ms = ktime_ms_delta(ktime_get(), 81 fence->invalidation_time); 82 83 if (msecs_to_jiffies(since_inval_ms) < tlb_timeout_jiffies(gt)) 84 break; 85 86 trace_xe_gt_tlb_invalidation_fence_timeout(xe, fence); 87 xe_gt_err(gt, "TLB invalidation fence timeout, seqno=%d recv=%d", 88 fence->seqno, gt->tlb_invalidation.seqno_recv); 89 90 fence->base.error = -ETIME; 91 invalidation_fence_signal(xe, fence); 92 } 93 if (!list_empty(>->tlb_invalidation.pending_fences)) 94 queue_delayed_work(system_wq, 95 >->tlb_invalidation.fence_tdr, 96 tlb_timeout_jiffies(gt)); 97 spin_unlock_irq(>->tlb_invalidation.pending_lock); 98 } 99 100 /** 101 * xe_gt_tlb_invalidation_init - Initialize GT TLB invalidation state 102 * @gt: graphics tile 103 * 104 * Initialize GT TLB invalidation state, purely software initialization, should 105 * be called once during driver load. 106 * 107 * Return: 0 on success, negative error code on error. 108 */ 109 int xe_gt_tlb_invalidation_init(struct xe_gt *gt) 110 { 111 gt->tlb_invalidation.seqno = 1; 112 INIT_LIST_HEAD(>->tlb_invalidation.pending_fences); 113 spin_lock_init(>->tlb_invalidation.pending_lock); 114 spin_lock_init(>->tlb_invalidation.lock); 115 INIT_DELAYED_WORK(>->tlb_invalidation.fence_tdr, 116 xe_gt_tlb_fence_timeout); 117 118 return 0; 119 } 120 121 /** 122 * xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset 123 * @gt: graphics tile 124 * 125 * Signal any pending invalidation fences, should be called during a GT reset 126 */ 127 void xe_gt_tlb_invalidation_reset(struct xe_gt *gt) 128 { 129 struct xe_gt_tlb_invalidation_fence *fence, *next; 130 int pending_seqno; 131 132 /* 133 * CT channel is already disabled at this point. No new TLB requests can 134 * appear. 135 */ 136 137 mutex_lock(>->uc.guc.ct.lock); 138 spin_lock_irq(>->tlb_invalidation.pending_lock); 139 cancel_delayed_work(>->tlb_invalidation.fence_tdr); 140 /* 141 * We might have various kworkers waiting for TLB flushes to complete 142 * which are not tracked with an explicit TLB fence, however at this 143 * stage that will never happen since the CT is already disabled, so 144 * make sure we signal them here under the assumption that we have 145 * completed a full GT reset. 146 */ 147 if (gt->tlb_invalidation.seqno == 1) 148 pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1; 149 else 150 pending_seqno = gt->tlb_invalidation.seqno - 1; 151 WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno); 152 153 list_for_each_entry_safe(fence, next, 154 >->tlb_invalidation.pending_fences, link) 155 invalidation_fence_signal(gt_to_xe(gt), fence); 156 spin_unlock_irq(>->tlb_invalidation.pending_lock); 157 mutex_unlock(>->uc.guc.ct.lock); 158 } 159 160 static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno) 161 { 162 int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv); 163 164 if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2)) 165 return false; 166 167 if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2)) 168 return true; 169 170 return seqno_recv >= seqno; 171 } 172 173 static int send_tlb_invalidation(struct xe_guc *guc, 174 struct xe_gt_tlb_invalidation_fence *fence, 175 u32 *action, int len) 176 { 177 struct xe_gt *gt = guc_to_gt(guc); 178 struct xe_device *xe = gt_to_xe(gt); 179 int seqno; 180 int ret; 181 182 xe_gt_assert(gt, fence); 183 184 /* 185 * XXX: The seqno algorithm relies on TLB invalidation being processed 186 * in order which they currently are, if that changes the algorithm will 187 * need to be updated. 188 */ 189 190 mutex_lock(&guc->ct.lock); 191 seqno = gt->tlb_invalidation.seqno; 192 fence->seqno = seqno; 193 trace_xe_gt_tlb_invalidation_fence_send(xe, fence); 194 action[1] = seqno; 195 ret = xe_guc_ct_send_locked(&guc->ct, action, len, 196 G2H_LEN_DW_TLB_INVALIDATE, 1); 197 if (!ret) { 198 spin_lock_irq(>->tlb_invalidation.pending_lock); 199 /* 200 * We haven't actually published the TLB fence as per 201 * pending_fences, but in theory our seqno could have already 202 * been written as we acquired the pending_lock. In such a case 203 * we can just go ahead and signal the fence here. 204 */ 205 if (tlb_invalidation_seqno_past(gt, seqno)) { 206 __invalidation_fence_signal(xe, fence); 207 } else { 208 fence->invalidation_time = ktime_get(); 209 list_add_tail(&fence->link, 210 >->tlb_invalidation.pending_fences); 211 212 if (list_is_singular(>->tlb_invalidation.pending_fences)) 213 queue_delayed_work(system_wq, 214 >->tlb_invalidation.fence_tdr, 215 tlb_timeout_jiffies(gt)); 216 } 217 spin_unlock_irq(>->tlb_invalidation.pending_lock); 218 } else { 219 __invalidation_fence_signal(xe, fence); 220 } 221 if (!ret) { 222 gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) % 223 TLB_INVALIDATION_SEQNO_MAX; 224 if (!gt->tlb_invalidation.seqno) 225 gt->tlb_invalidation.seqno = 1; 226 } 227 mutex_unlock(&guc->ct.lock); 228 xe_gt_stats_incr(gt, XE_GT_STATS_ID_TLB_INVAL, 1); 229 230 return ret; 231 } 232 233 #define MAKE_INVAL_OP(type) ((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \ 234 XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \ 235 XE_GUC_TLB_INVAL_FLUSH_CACHE) 236 237 /** 238 * xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC 239 * @gt: graphics tile 240 * @fence: invalidation fence which will be signal on TLB invalidation 241 * completion 242 * 243 * Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and 244 * caller can use the invalidation fence to wait for completion. 245 * 246 * Return: 0 on success, negative error code on error 247 */ 248 static int xe_gt_tlb_invalidation_guc(struct xe_gt *gt, 249 struct xe_gt_tlb_invalidation_fence *fence) 250 { 251 u32 action[] = { 252 XE_GUC_ACTION_TLB_INVALIDATION, 253 0, /* seqno, replaced in send_tlb_invalidation */ 254 MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC), 255 }; 256 257 return send_tlb_invalidation(>->uc.guc, fence, action, 258 ARRAY_SIZE(action)); 259 } 260 261 /** 262 * xe_gt_tlb_invalidation_ggtt - Issue a TLB invalidation on this GT for the GGTT 263 * @gt: graphics tile 264 * 265 * Issue a TLB invalidation for the GGTT. Completion of TLB invalidation is 266 * synchronous. 267 * 268 * Return: 0 on success, negative error code on error 269 */ 270 int xe_gt_tlb_invalidation_ggtt(struct xe_gt *gt) 271 { 272 struct xe_device *xe = gt_to_xe(gt); 273 unsigned int fw_ref; 274 275 if (xe_guc_ct_enabled(>->uc.guc.ct) && 276 gt->uc.guc.submission_state.enabled) { 277 struct xe_gt_tlb_invalidation_fence fence; 278 int ret; 279 280 xe_gt_tlb_invalidation_fence_init(gt, &fence, true); 281 ret = xe_gt_tlb_invalidation_guc(gt, &fence); 282 if (ret) 283 return ret; 284 285 xe_gt_tlb_invalidation_fence_wait(&fence); 286 } else if (xe_device_uc_enabled(xe) && !xe_device_wedged(xe)) { 287 struct xe_mmio *mmio = >->mmio; 288 289 if (IS_SRIOV_VF(xe)) 290 return 0; 291 292 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 293 if (xe->info.platform == XE_PVC || GRAPHICS_VER(xe) >= 20) { 294 xe_mmio_write32(mmio, PVC_GUC_TLB_INV_DESC1, 295 PVC_GUC_TLB_INV_DESC1_INVALIDATE); 296 xe_mmio_write32(mmio, PVC_GUC_TLB_INV_DESC0, 297 PVC_GUC_TLB_INV_DESC0_VALID); 298 } else { 299 xe_mmio_write32(mmio, GUC_TLB_INV_CR, 300 GUC_TLB_INV_CR_INVALIDATE); 301 } 302 xe_force_wake_put(gt_to_fw(gt), fw_ref); 303 } 304 305 return 0; 306 } 307 308 /** 309 * xe_gt_tlb_invalidation_range - Issue a TLB invalidation on this GT for an 310 * address range 311 * 312 * @gt: graphics tile 313 * @fence: invalidation fence which will be signal on TLB invalidation 314 * completion 315 * @start: start address 316 * @end: end address 317 * @asid: address space id 318 * 319 * Issue a range based TLB invalidation if supported, if not fallback to a full 320 * TLB invalidation. Completion of TLB is asynchronous and caller can use 321 * the invalidation fence to wait for completion. 322 * 323 * Return: Negative error code on error, 0 on success 324 */ 325 int xe_gt_tlb_invalidation_range(struct xe_gt *gt, 326 struct xe_gt_tlb_invalidation_fence *fence, 327 u64 start, u64 end, u32 asid) 328 { 329 struct xe_device *xe = gt_to_xe(gt); 330 #define MAX_TLB_INVALIDATION_LEN 7 331 u32 action[MAX_TLB_INVALIDATION_LEN]; 332 int len = 0; 333 334 xe_gt_assert(gt, fence); 335 336 /* Execlists not supported */ 337 if (gt_to_xe(gt)->info.force_execlist) { 338 __invalidation_fence_signal(xe, fence); 339 return 0; 340 } 341 342 action[len++] = XE_GUC_ACTION_TLB_INVALIDATION; 343 action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */ 344 if (!xe->info.has_range_tlb_invalidation) { 345 action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL); 346 } else { 347 u64 orig_start = start; 348 u64 length = end - start; 349 u64 align; 350 351 if (length < SZ_4K) 352 length = SZ_4K; 353 354 /* 355 * We need to invalidate a higher granularity if start address 356 * is not aligned to length. When start is not aligned with 357 * length we need to find the length large enough to create an 358 * address mask covering the required range. 359 */ 360 align = roundup_pow_of_two(length); 361 start = ALIGN_DOWN(start, align); 362 end = ALIGN(end, align); 363 length = align; 364 while (start + length < end) { 365 length <<= 1; 366 start = ALIGN_DOWN(orig_start, length); 367 } 368 369 /* 370 * Minimum invalidation size for a 2MB page that the hardware 371 * expects is 16MB 372 */ 373 if (length >= SZ_2M) { 374 length = max_t(u64, SZ_16M, length); 375 start = ALIGN_DOWN(orig_start, length); 376 } 377 378 xe_gt_assert(gt, length >= SZ_4K); 379 xe_gt_assert(gt, is_power_of_2(length)); 380 xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1, 381 ilog2(SZ_2M) + 1))); 382 xe_gt_assert(gt, IS_ALIGNED(start, length)); 383 384 action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE); 385 action[len++] = asid; 386 action[len++] = lower_32_bits(start); 387 action[len++] = upper_32_bits(start); 388 action[len++] = ilog2(length) - ilog2(SZ_4K); 389 } 390 391 xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN); 392 393 return send_tlb_invalidation(>->uc.guc, fence, action, len); 394 } 395 396 /** 397 * xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA 398 * @gt: graphics tile 399 * @fence: invalidation fence which will be signal on TLB invalidation 400 * completion, can be NULL 401 * @vma: VMA to invalidate 402 * 403 * Issue a range based TLB invalidation if supported, if not fallback to a full 404 * TLB invalidation. Completion of TLB is asynchronous and caller can use 405 * the invalidation fence to wait for completion. 406 * 407 * Return: Negative error code on error, 0 on success 408 */ 409 int xe_gt_tlb_invalidation_vma(struct xe_gt *gt, 410 struct xe_gt_tlb_invalidation_fence *fence, 411 struct xe_vma *vma) 412 { 413 xe_gt_assert(gt, vma); 414 415 return xe_gt_tlb_invalidation_range(gt, fence, xe_vma_start(vma), 416 xe_vma_end(vma), 417 xe_vma_vm(vma)->usm.asid); 418 } 419 420 /** 421 * xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler 422 * @guc: guc 423 * @msg: message indicating TLB invalidation done 424 * @len: length of message 425 * 426 * Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any 427 * invalidation fences for seqno. Algorithm for this depends on seqno being 428 * received in-order and asserts this assumption. 429 * 430 * Return: 0 on success, -EPROTO for malformed messages. 431 */ 432 int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 433 { 434 struct xe_gt *gt = guc_to_gt(guc); 435 struct xe_device *xe = gt_to_xe(gt); 436 struct xe_gt_tlb_invalidation_fence *fence, *next; 437 unsigned long flags; 438 439 if (unlikely(len != 1)) 440 return -EPROTO; 441 442 /* 443 * This can also be run both directly from the IRQ handler and also in 444 * process_g2h_msg(). Only one may process any individual CT message, 445 * however the order they are processed here could result in skipping a 446 * seqno. To handle that we just process all the seqnos from the last 447 * seqno_recv up to and including the one in msg[0]. The delta should be 448 * very small so there shouldn't be much of pending_fences we actually 449 * need to iterate over here. 450 * 451 * From GuC POV we expect the seqnos to always appear in-order, so if we 452 * see something later in the timeline we can be sure that anything 453 * appearing earlier has already signalled, just that we have yet to 454 * officially process the CT message like if racing against 455 * process_g2h_msg(). 456 */ 457 spin_lock_irqsave(>->tlb_invalidation.pending_lock, flags); 458 if (tlb_invalidation_seqno_past(gt, msg[0])) { 459 spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); 460 return 0; 461 } 462 463 WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]); 464 465 list_for_each_entry_safe(fence, next, 466 >->tlb_invalidation.pending_fences, link) { 467 trace_xe_gt_tlb_invalidation_fence_recv(xe, fence); 468 469 if (!tlb_invalidation_seqno_past(gt, fence->seqno)) 470 break; 471 472 invalidation_fence_signal(xe, fence); 473 } 474 475 if (!list_empty(>->tlb_invalidation.pending_fences)) 476 mod_delayed_work(system_wq, 477 >->tlb_invalidation.fence_tdr, 478 tlb_timeout_jiffies(gt)); 479 else 480 cancel_delayed_work(>->tlb_invalidation.fence_tdr); 481 482 spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); 483 484 return 0; 485 } 486 487 static const char * 488 invalidation_fence_get_driver_name(struct dma_fence *dma_fence) 489 { 490 return "xe"; 491 } 492 493 static const char * 494 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence) 495 { 496 return "invalidation_fence"; 497 } 498 499 static const struct dma_fence_ops invalidation_fence_ops = { 500 .get_driver_name = invalidation_fence_get_driver_name, 501 .get_timeline_name = invalidation_fence_get_timeline_name, 502 }; 503 504 /** 505 * xe_gt_tlb_invalidation_fence_init - Initialize TLB invalidation fence 506 * @gt: GT 507 * @fence: TLB invalidation fence to initialize 508 * @stack: fence is stack variable 509 * 510 * Initialize TLB invalidation fence for use. xe_gt_tlb_invalidation_fence_fini 511 * will be automatically called when fence is signalled (all fences must signal), 512 * even on error. 513 */ 514 void xe_gt_tlb_invalidation_fence_init(struct xe_gt *gt, 515 struct xe_gt_tlb_invalidation_fence *fence, 516 bool stack) 517 { 518 xe_pm_runtime_get_noresume(gt_to_xe(gt)); 519 520 spin_lock_irq(>->tlb_invalidation.lock); 521 dma_fence_init(&fence->base, &invalidation_fence_ops, 522 >->tlb_invalidation.lock, 523 dma_fence_context_alloc(1), 1); 524 spin_unlock_irq(>->tlb_invalidation.lock); 525 INIT_LIST_HEAD(&fence->link); 526 if (stack) 527 set_bit(FENCE_STACK_BIT, &fence->base.flags); 528 else 529 dma_fence_get(&fence->base); 530 fence->gt = gt; 531 } 532