1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_gt_tlb_invalidation.h" 7 8 #include "abi/guc_actions_abi.h" 9 #include "xe_device.h" 10 #include "xe_force_wake.h" 11 #include "xe_gt.h" 12 #include "xe_gt_printk.h" 13 #include "xe_guc.h" 14 #include "xe_guc_ct.h" 15 #include "xe_gt_stats.h" 16 #include "xe_mmio.h" 17 #include "xe_pm.h" 18 #include "xe_sriov.h" 19 #include "xe_trace.h" 20 #include "regs/xe_guc_regs.h" 21 22 #define FENCE_STACK_BIT DMA_FENCE_FLAG_USER_BITS 23 24 /* 25 * TLB inval depends on pending commands in the CT queue and then the real 26 * invalidation time. Double up the time to process full CT queue 27 * just to be on the safe side. 28 */ 29 static long tlb_timeout_jiffies(struct xe_gt *gt) 30 { 31 /* this reflects what HW/GuC needs to process TLB inv request */ 32 const long hw_tlb_timeout = HZ / 4; 33 34 /* this estimates actual delay caused by the CTB transport */ 35 long delay = xe_guc_ct_queue_proc_time_jiffies(>->uc.guc.ct); 36 37 return hw_tlb_timeout + 2 * delay; 38 } 39 40 static void xe_gt_tlb_invalidation_fence_fini(struct xe_gt_tlb_invalidation_fence *fence) 41 { 42 if (WARN_ON_ONCE(!fence->gt)) 43 return; 44 45 xe_pm_runtime_put(gt_to_xe(fence->gt)); 46 fence->gt = NULL; /* fini() should be called once */ 47 } 48 49 static void 50 __invalidation_fence_signal(struct xe_device *xe, struct xe_gt_tlb_invalidation_fence *fence) 51 { 52 bool stack = test_bit(FENCE_STACK_BIT, &fence->base.flags); 53 54 trace_xe_gt_tlb_invalidation_fence_signal(xe, fence); 55 xe_gt_tlb_invalidation_fence_fini(fence); 56 dma_fence_signal(&fence->base); 57 if (!stack) 58 dma_fence_put(&fence->base); 59 } 60 61 static void 62 invalidation_fence_signal(struct xe_device *xe, struct xe_gt_tlb_invalidation_fence *fence) 63 { 64 list_del(&fence->link); 65 __invalidation_fence_signal(xe, fence); 66 } 67 68 void xe_gt_tlb_invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence) 69 { 70 if (WARN_ON_ONCE(!fence->gt)) 71 return; 72 73 __invalidation_fence_signal(gt_to_xe(fence->gt), fence); 74 } 75 76 static void xe_gt_tlb_fence_timeout(struct work_struct *work) 77 { 78 struct xe_gt *gt = container_of(work, struct xe_gt, 79 tlb_invalidation.fence_tdr.work); 80 struct xe_device *xe = gt_to_xe(gt); 81 struct xe_gt_tlb_invalidation_fence *fence, *next; 82 83 LNL_FLUSH_WORK(>->uc.guc.ct.g2h_worker); 84 85 spin_lock_irq(>->tlb_invalidation.pending_lock); 86 list_for_each_entry_safe(fence, next, 87 >->tlb_invalidation.pending_fences, link) { 88 s64 since_inval_ms = ktime_ms_delta(ktime_get(), 89 fence->invalidation_time); 90 91 if (msecs_to_jiffies(since_inval_ms) < tlb_timeout_jiffies(gt)) 92 break; 93 94 trace_xe_gt_tlb_invalidation_fence_timeout(xe, fence); 95 xe_gt_err(gt, "TLB invalidation fence timeout, seqno=%d recv=%d", 96 fence->seqno, gt->tlb_invalidation.seqno_recv); 97 98 fence->base.error = -ETIME; 99 invalidation_fence_signal(xe, fence); 100 } 101 if (!list_empty(>->tlb_invalidation.pending_fences)) 102 queue_delayed_work(system_wq, 103 >->tlb_invalidation.fence_tdr, 104 tlb_timeout_jiffies(gt)); 105 spin_unlock_irq(>->tlb_invalidation.pending_lock); 106 } 107 108 /** 109 * xe_gt_tlb_invalidation_init - Initialize GT TLB invalidation state 110 * @gt: graphics tile 111 * 112 * Initialize GT TLB invalidation state, purely software initialization, should 113 * be called once during driver load. 114 * 115 * Return: 0 on success, negative error code on error. 116 */ 117 int xe_gt_tlb_invalidation_init(struct xe_gt *gt) 118 { 119 gt->tlb_invalidation.seqno = 1; 120 INIT_LIST_HEAD(>->tlb_invalidation.pending_fences); 121 spin_lock_init(>->tlb_invalidation.pending_lock); 122 spin_lock_init(>->tlb_invalidation.lock); 123 INIT_DELAYED_WORK(>->tlb_invalidation.fence_tdr, 124 xe_gt_tlb_fence_timeout); 125 126 return 0; 127 } 128 129 /** 130 * xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset 131 * @gt: graphics tile 132 * 133 * Signal any pending invalidation fences, should be called during a GT reset 134 */ 135 void xe_gt_tlb_invalidation_reset(struct xe_gt *gt) 136 { 137 struct xe_gt_tlb_invalidation_fence *fence, *next; 138 int pending_seqno; 139 140 /* 141 * CT channel is already disabled at this point. No new TLB requests can 142 * appear. 143 */ 144 145 mutex_lock(>->uc.guc.ct.lock); 146 spin_lock_irq(>->tlb_invalidation.pending_lock); 147 cancel_delayed_work(>->tlb_invalidation.fence_tdr); 148 /* 149 * We might have various kworkers waiting for TLB flushes to complete 150 * which are not tracked with an explicit TLB fence, however at this 151 * stage that will never happen since the CT is already disabled, so 152 * make sure we signal them here under the assumption that we have 153 * completed a full GT reset. 154 */ 155 if (gt->tlb_invalidation.seqno == 1) 156 pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1; 157 else 158 pending_seqno = gt->tlb_invalidation.seqno - 1; 159 WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno); 160 161 list_for_each_entry_safe(fence, next, 162 >->tlb_invalidation.pending_fences, link) 163 invalidation_fence_signal(gt_to_xe(gt), fence); 164 spin_unlock_irq(>->tlb_invalidation.pending_lock); 165 mutex_unlock(>->uc.guc.ct.lock); 166 } 167 168 static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno) 169 { 170 int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv); 171 172 if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2)) 173 return false; 174 175 if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2)) 176 return true; 177 178 return seqno_recv >= seqno; 179 } 180 181 static int send_tlb_invalidation(struct xe_guc *guc, 182 struct xe_gt_tlb_invalidation_fence *fence, 183 u32 *action, int len) 184 { 185 struct xe_gt *gt = guc_to_gt(guc); 186 struct xe_device *xe = gt_to_xe(gt); 187 int seqno; 188 int ret; 189 190 xe_gt_assert(gt, fence); 191 192 /* 193 * XXX: The seqno algorithm relies on TLB invalidation being processed 194 * in order which they currently are, if that changes the algorithm will 195 * need to be updated. 196 */ 197 198 mutex_lock(&guc->ct.lock); 199 seqno = gt->tlb_invalidation.seqno; 200 fence->seqno = seqno; 201 trace_xe_gt_tlb_invalidation_fence_send(xe, fence); 202 action[1] = seqno; 203 ret = xe_guc_ct_send_locked(&guc->ct, action, len, 204 G2H_LEN_DW_TLB_INVALIDATE, 1); 205 if (!ret) { 206 spin_lock_irq(>->tlb_invalidation.pending_lock); 207 /* 208 * We haven't actually published the TLB fence as per 209 * pending_fences, but in theory our seqno could have already 210 * been written as we acquired the pending_lock. In such a case 211 * we can just go ahead and signal the fence here. 212 */ 213 if (tlb_invalidation_seqno_past(gt, seqno)) { 214 __invalidation_fence_signal(xe, fence); 215 } else { 216 fence->invalidation_time = ktime_get(); 217 list_add_tail(&fence->link, 218 >->tlb_invalidation.pending_fences); 219 220 if (list_is_singular(>->tlb_invalidation.pending_fences)) 221 queue_delayed_work(system_wq, 222 >->tlb_invalidation.fence_tdr, 223 tlb_timeout_jiffies(gt)); 224 } 225 spin_unlock_irq(>->tlb_invalidation.pending_lock); 226 } else { 227 __invalidation_fence_signal(xe, fence); 228 } 229 if (!ret) { 230 gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) % 231 TLB_INVALIDATION_SEQNO_MAX; 232 if (!gt->tlb_invalidation.seqno) 233 gt->tlb_invalidation.seqno = 1; 234 } 235 mutex_unlock(&guc->ct.lock); 236 xe_gt_stats_incr(gt, XE_GT_STATS_ID_TLB_INVAL, 1); 237 238 return ret; 239 } 240 241 #define MAKE_INVAL_OP(type) ((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \ 242 XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \ 243 XE_GUC_TLB_INVAL_FLUSH_CACHE) 244 245 /** 246 * xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC 247 * @gt: graphics tile 248 * @fence: invalidation fence which will be signal on TLB invalidation 249 * completion 250 * 251 * Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and 252 * caller can use the invalidation fence to wait for completion. 253 * 254 * Return: 0 on success, negative error code on error 255 */ 256 static int xe_gt_tlb_invalidation_guc(struct xe_gt *gt, 257 struct xe_gt_tlb_invalidation_fence *fence) 258 { 259 u32 action[] = { 260 XE_GUC_ACTION_TLB_INVALIDATION, 261 0, /* seqno, replaced in send_tlb_invalidation */ 262 MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC), 263 }; 264 265 return send_tlb_invalidation(>->uc.guc, fence, action, 266 ARRAY_SIZE(action)); 267 } 268 269 /** 270 * xe_gt_tlb_invalidation_ggtt - Issue a TLB invalidation on this GT for the GGTT 271 * @gt: graphics tile 272 * 273 * Issue a TLB invalidation for the GGTT. Completion of TLB invalidation is 274 * synchronous. 275 * 276 * Return: 0 on success, negative error code on error 277 */ 278 int xe_gt_tlb_invalidation_ggtt(struct xe_gt *gt) 279 { 280 struct xe_device *xe = gt_to_xe(gt); 281 unsigned int fw_ref; 282 283 if (xe_guc_ct_enabled(>->uc.guc.ct) && 284 gt->uc.guc.submission_state.enabled) { 285 struct xe_gt_tlb_invalidation_fence fence; 286 int ret; 287 288 xe_gt_tlb_invalidation_fence_init(gt, &fence, true); 289 ret = xe_gt_tlb_invalidation_guc(gt, &fence); 290 if (ret) 291 return ret; 292 293 xe_gt_tlb_invalidation_fence_wait(&fence); 294 } else if (xe_device_uc_enabled(xe) && !xe_device_wedged(xe)) { 295 struct xe_mmio *mmio = >->mmio; 296 297 if (IS_SRIOV_VF(xe)) 298 return 0; 299 300 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 301 if (xe->info.platform == XE_PVC || GRAPHICS_VER(xe) >= 20) { 302 xe_mmio_write32(mmio, PVC_GUC_TLB_INV_DESC1, 303 PVC_GUC_TLB_INV_DESC1_INVALIDATE); 304 xe_mmio_write32(mmio, PVC_GUC_TLB_INV_DESC0, 305 PVC_GUC_TLB_INV_DESC0_VALID); 306 } else { 307 xe_mmio_write32(mmio, GUC_TLB_INV_CR, 308 GUC_TLB_INV_CR_INVALIDATE); 309 } 310 xe_force_wake_put(gt_to_fw(gt), fw_ref); 311 } 312 313 return 0; 314 } 315 316 /** 317 * xe_gt_tlb_invalidation_range - Issue a TLB invalidation on this GT for an 318 * address range 319 * 320 * @gt: graphics tile 321 * @fence: invalidation fence which will be signal on TLB invalidation 322 * completion 323 * @start: start address 324 * @end: end address 325 * @asid: address space id 326 * 327 * Issue a range based TLB invalidation if supported, if not fallback to a full 328 * TLB invalidation. Completion of TLB is asynchronous and caller can use 329 * the invalidation fence to wait for completion. 330 * 331 * Return: Negative error code on error, 0 on success 332 */ 333 int xe_gt_tlb_invalidation_range(struct xe_gt *gt, 334 struct xe_gt_tlb_invalidation_fence *fence, 335 u64 start, u64 end, u32 asid) 336 { 337 struct xe_device *xe = gt_to_xe(gt); 338 #define MAX_TLB_INVALIDATION_LEN 7 339 u32 action[MAX_TLB_INVALIDATION_LEN]; 340 int len = 0; 341 342 xe_gt_assert(gt, fence); 343 344 /* Execlists not supported */ 345 if (gt_to_xe(gt)->info.force_execlist) { 346 __invalidation_fence_signal(xe, fence); 347 return 0; 348 } 349 350 action[len++] = XE_GUC_ACTION_TLB_INVALIDATION; 351 action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */ 352 if (!xe->info.has_range_tlb_invalidation) { 353 action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL); 354 } else { 355 u64 orig_start = start; 356 u64 length = end - start; 357 u64 align; 358 359 if (length < SZ_4K) 360 length = SZ_4K; 361 362 /* 363 * We need to invalidate a higher granularity if start address 364 * is not aligned to length. When start is not aligned with 365 * length we need to find the length large enough to create an 366 * address mask covering the required range. 367 */ 368 align = roundup_pow_of_two(length); 369 start = ALIGN_DOWN(start, align); 370 end = ALIGN(end, align); 371 length = align; 372 while (start + length < end) { 373 length <<= 1; 374 start = ALIGN_DOWN(orig_start, length); 375 } 376 377 /* 378 * Minimum invalidation size for a 2MB page that the hardware 379 * expects is 16MB 380 */ 381 if (length >= SZ_2M) { 382 length = max_t(u64, SZ_16M, length); 383 start = ALIGN_DOWN(orig_start, length); 384 } 385 386 xe_gt_assert(gt, length >= SZ_4K); 387 xe_gt_assert(gt, is_power_of_2(length)); 388 xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1, 389 ilog2(SZ_2M) + 1))); 390 xe_gt_assert(gt, IS_ALIGNED(start, length)); 391 392 action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE); 393 action[len++] = asid; 394 action[len++] = lower_32_bits(start); 395 action[len++] = upper_32_bits(start); 396 action[len++] = ilog2(length) - ilog2(SZ_4K); 397 } 398 399 xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN); 400 401 return send_tlb_invalidation(>->uc.guc, fence, action, len); 402 } 403 404 /** 405 * xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA 406 * @gt: graphics tile 407 * @fence: invalidation fence which will be signal on TLB invalidation 408 * completion, can be NULL 409 * @vma: VMA to invalidate 410 * 411 * Issue a range based TLB invalidation if supported, if not fallback to a full 412 * TLB invalidation. Completion of TLB is asynchronous and caller can use 413 * the invalidation fence to wait for completion. 414 * 415 * Return: Negative error code on error, 0 on success 416 */ 417 int xe_gt_tlb_invalidation_vma(struct xe_gt *gt, 418 struct xe_gt_tlb_invalidation_fence *fence, 419 struct xe_vma *vma) 420 { 421 xe_gt_assert(gt, vma); 422 423 return xe_gt_tlb_invalidation_range(gt, fence, xe_vma_start(vma), 424 xe_vma_end(vma), 425 xe_vma_vm(vma)->usm.asid); 426 } 427 428 /** 429 * xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler 430 * @guc: guc 431 * @msg: message indicating TLB invalidation done 432 * @len: length of message 433 * 434 * Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any 435 * invalidation fences for seqno. Algorithm for this depends on seqno being 436 * received in-order and asserts this assumption. 437 * 438 * Return: 0 on success, -EPROTO for malformed messages. 439 */ 440 int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 441 { 442 struct xe_gt *gt = guc_to_gt(guc); 443 struct xe_device *xe = gt_to_xe(gt); 444 struct xe_gt_tlb_invalidation_fence *fence, *next; 445 unsigned long flags; 446 447 if (unlikely(len != 1)) 448 return -EPROTO; 449 450 /* 451 * This can also be run both directly from the IRQ handler and also in 452 * process_g2h_msg(). Only one may process any individual CT message, 453 * however the order they are processed here could result in skipping a 454 * seqno. To handle that we just process all the seqnos from the last 455 * seqno_recv up to and including the one in msg[0]. The delta should be 456 * very small so there shouldn't be much of pending_fences we actually 457 * need to iterate over here. 458 * 459 * From GuC POV we expect the seqnos to always appear in-order, so if we 460 * see something later in the timeline we can be sure that anything 461 * appearing earlier has already signalled, just that we have yet to 462 * officially process the CT message like if racing against 463 * process_g2h_msg(). 464 */ 465 spin_lock_irqsave(>->tlb_invalidation.pending_lock, flags); 466 if (tlb_invalidation_seqno_past(gt, msg[0])) { 467 spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); 468 return 0; 469 } 470 471 WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]); 472 473 list_for_each_entry_safe(fence, next, 474 >->tlb_invalidation.pending_fences, link) { 475 trace_xe_gt_tlb_invalidation_fence_recv(xe, fence); 476 477 if (!tlb_invalidation_seqno_past(gt, fence->seqno)) 478 break; 479 480 invalidation_fence_signal(xe, fence); 481 } 482 483 if (!list_empty(>->tlb_invalidation.pending_fences)) 484 mod_delayed_work(system_wq, 485 >->tlb_invalidation.fence_tdr, 486 tlb_timeout_jiffies(gt)); 487 else 488 cancel_delayed_work(>->tlb_invalidation.fence_tdr); 489 490 spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); 491 492 return 0; 493 } 494 495 static const char * 496 invalidation_fence_get_driver_name(struct dma_fence *dma_fence) 497 { 498 return "xe"; 499 } 500 501 static const char * 502 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence) 503 { 504 return "invalidation_fence"; 505 } 506 507 static const struct dma_fence_ops invalidation_fence_ops = { 508 .get_driver_name = invalidation_fence_get_driver_name, 509 .get_timeline_name = invalidation_fence_get_timeline_name, 510 }; 511 512 /** 513 * xe_gt_tlb_invalidation_fence_init - Initialize TLB invalidation fence 514 * @gt: GT 515 * @fence: TLB invalidation fence to initialize 516 * @stack: fence is stack variable 517 * 518 * Initialize TLB invalidation fence for use. xe_gt_tlb_invalidation_fence_fini 519 * will be automatically called when fence is signalled (all fences must signal), 520 * even on error. 521 */ 522 void xe_gt_tlb_invalidation_fence_init(struct xe_gt *gt, 523 struct xe_gt_tlb_invalidation_fence *fence, 524 bool stack) 525 { 526 xe_pm_runtime_get_noresume(gt_to_xe(gt)); 527 528 spin_lock_irq(>->tlb_invalidation.lock); 529 dma_fence_init(&fence->base, &invalidation_fence_ops, 530 >->tlb_invalidation.lock, 531 dma_fence_context_alloc(1), 1); 532 spin_unlock_irq(>->tlb_invalidation.lock); 533 INIT_LIST_HEAD(&fence->link); 534 if (stack) 535 set_bit(FENCE_STACK_BIT, &fence->base.flags); 536 else 537 dma_fence_get(&fence->base); 538 fence->gt = gt; 539 } 540