xref: /linux/drivers/gpu/drm/xe/xe_gt_sriov_pf_config.c (revision face6a3615a649456eb4549f6d474221d877d604)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023-2024 Intel Corporation
4  */
5 
6 #include <linux/string_choices.h>
7 #include <linux/wordpart.h>
8 
9 #include "abi/guc_actions_sriov_abi.h"
10 #include "abi/guc_klvs_abi.h"
11 
12 #include "regs/xe_guc_regs.h"
13 
14 #include "xe_bo.h"
15 #include "xe_device.h"
16 #include "xe_ggtt.h"
17 #include "xe_gt.h"
18 #include "xe_gt_sriov_pf_config.h"
19 #include "xe_gt_sriov_pf_helpers.h"
20 #include "xe_gt_sriov_pf_policy.h"
21 #include "xe_gt_sriov_printk.h"
22 #include "xe_guc.h"
23 #include "xe_guc_buf.h"
24 #include "xe_guc_ct.h"
25 #include "xe_guc_db_mgr.h"
26 #include "xe_guc_fwif.h"
27 #include "xe_guc_id_mgr.h"
28 #include "xe_guc_klv_helpers.h"
29 #include "xe_guc_klv_thresholds_set.h"
30 #include "xe_guc_submit.h"
31 #include "xe_lmtt.h"
32 #include "xe_map.h"
33 #include "xe_migrate.h"
34 #include "xe_sriov.h"
35 #include "xe_ttm_vram_mgr.h"
36 #include "xe_vram_types.h"
37 #include "xe_wopcm.h"
38 
39 #define make_u64_from_u32(hi, lo) ((u64)((u64)(u32)(hi) << 32 | (u32)(lo)))
40 
41 /*
42  * Return: number of KLVs that were successfully parsed and saved,
43  *         negative error code on failure.
44  */
45 static int guc_action_update_vf_cfg(struct xe_guc *guc, u32 vfid,
46 				    u64 addr, u32 size)
47 {
48 	u32 request[] = {
49 		GUC_ACTION_PF2GUC_UPDATE_VF_CFG,
50 		vfid,
51 		lower_32_bits(addr),
52 		upper_32_bits(addr),
53 		size,
54 	};
55 
56 	return xe_guc_ct_send_block(&guc->ct, request, ARRAY_SIZE(request));
57 }
58 
59 /*
60  * Return: 0 on success, negative error code on failure.
61  */
62 static int pf_send_vf_cfg_reset(struct xe_gt *gt, u32 vfid)
63 {
64 	struct xe_guc *guc = &gt->uc.guc;
65 	int ret;
66 
67 	ret = guc_action_update_vf_cfg(guc, vfid, 0, 0);
68 
69 	return ret <= 0 ? ret : -EPROTO;
70 }
71 
72 /*
73  * Return: number of KLVs that were successfully parsed and saved,
74  *         negative error code on failure.
75  */
76 static int pf_send_vf_buf_klvs(struct xe_gt *gt, u32 vfid, struct xe_guc_buf buf, u32 num_dwords)
77 {
78 	struct xe_guc *guc = &gt->uc.guc;
79 
80 	return guc_action_update_vf_cfg(guc, vfid, xe_guc_buf_flush(buf), num_dwords);
81 }
82 
83 /*
84  * Return: 0 on success, -ENOKEY if some KLVs were not updated, -EPROTO if reply was malformed,
85  *         negative error code on failure.
86  */
87 static int pf_push_vf_buf_klvs(struct xe_gt *gt, unsigned int vfid, u32 num_klvs,
88 			       struct xe_guc_buf buf, u32 num_dwords)
89 {
90 	int ret;
91 
92 	ret = pf_send_vf_buf_klvs(gt, vfid, buf, num_dwords);
93 
94 	if (ret != num_klvs) {
95 		int err = ret < 0 ? ret : ret < num_klvs ? -ENOKEY : -EPROTO;
96 		void *klvs = xe_guc_buf_cpu_ptr(buf);
97 		struct drm_printer p = xe_gt_info_printer(gt);
98 		char name[8];
99 
100 		xe_gt_sriov_notice(gt, "Failed to push %s %u config KLV%s (%pe)\n",
101 				   xe_sriov_function_name(vfid, name, sizeof(name)),
102 				   num_klvs, str_plural(num_klvs), ERR_PTR(err));
103 		xe_guc_klv_print(klvs, num_dwords, &p);
104 		return err;
105 	}
106 
107 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV)) {
108 		struct drm_printer p = xe_gt_dbg_printer(gt);
109 		void *klvs = xe_guc_buf_cpu_ptr(buf);
110 		char name[8];
111 
112 		xe_gt_sriov_dbg(gt, "pushed %s config with %u KLV%s:\n",
113 				xe_sriov_function_name(vfid, name, sizeof(name)),
114 				num_klvs, str_plural(num_klvs));
115 		xe_guc_klv_print(klvs, num_dwords, &p);
116 	}
117 
118 	return 0;
119 }
120 
121 /*
122  * Return: 0 on success, -ENOBUFS if no free buffer for the indirect data,
123  *         negative error code on failure.
124  */
125 static int pf_push_vf_cfg_klvs(struct xe_gt *gt, unsigned int vfid, u32 num_klvs,
126 			       const u32 *klvs, u32 num_dwords)
127 {
128 	CLASS(xe_guc_buf_from_data, buf)(&gt->uc.guc.buf, klvs, num_dwords * sizeof(u32));
129 
130 	xe_gt_assert(gt, num_klvs == xe_guc_klv_count(klvs, num_dwords));
131 
132 	if (!xe_guc_buf_is_valid(buf))
133 		return -ENOBUFS;
134 
135 	return pf_push_vf_buf_klvs(gt, vfid, num_klvs, buf, num_dwords);
136 }
137 
138 static int pf_push_vf_cfg_u32(struct xe_gt *gt, unsigned int vfid, u16 key, u32 value)
139 {
140 	u32 klv[] = {
141 		FIELD_PREP(GUC_KLV_0_KEY, key) | FIELD_PREP(GUC_KLV_0_LEN, 1),
142 		value,
143 	};
144 
145 	return pf_push_vf_cfg_klvs(gt, vfid, 1, klv, ARRAY_SIZE(klv));
146 }
147 
148 static int pf_push_vf_cfg_u64(struct xe_gt *gt, unsigned int vfid, u16 key, u64 value)
149 {
150 	u32 klv[] = {
151 		FIELD_PREP(GUC_KLV_0_KEY, key) | FIELD_PREP(GUC_KLV_0_LEN, 2),
152 		lower_32_bits(value),
153 		upper_32_bits(value),
154 	};
155 
156 	return pf_push_vf_cfg_klvs(gt, vfid, 1, klv, ARRAY_SIZE(klv));
157 }
158 
159 static int pf_push_vf_cfg_ggtt(struct xe_gt *gt, unsigned int vfid, u64 start, u64 size)
160 {
161 	u32 klvs[] = {
162 		PREP_GUC_KLV_TAG(VF_CFG_GGTT_START),
163 		lower_32_bits(start),
164 		upper_32_bits(start),
165 		PREP_GUC_KLV_TAG(VF_CFG_GGTT_SIZE),
166 		lower_32_bits(size),
167 		upper_32_bits(size),
168 	};
169 
170 	return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs));
171 }
172 
173 static int pf_push_vf_cfg_ctxs(struct xe_gt *gt, unsigned int vfid, u32 begin, u32 num)
174 {
175 	u32 klvs[] = {
176 		PREP_GUC_KLV_TAG(VF_CFG_BEGIN_CONTEXT_ID),
177 		begin,
178 		PREP_GUC_KLV_TAG(VF_CFG_NUM_CONTEXTS),
179 		num,
180 	};
181 
182 	return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs));
183 }
184 
185 static int pf_push_vf_cfg_dbs(struct xe_gt *gt, unsigned int vfid, u32 begin, u32 num)
186 {
187 	u32 klvs[] = {
188 		PREP_GUC_KLV_TAG(VF_CFG_BEGIN_DOORBELL_ID),
189 		begin,
190 		PREP_GUC_KLV_TAG(VF_CFG_NUM_DOORBELLS),
191 		num,
192 	};
193 
194 	return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs));
195 }
196 
197 static int pf_push_vf_cfg_exec_quantum(struct xe_gt *gt, unsigned int vfid, u32 *exec_quantum)
198 {
199 	/* GuC will silently clamp values exceeding max */
200 	*exec_quantum = min_t(u32, *exec_quantum, GUC_KLV_VF_CFG_EXEC_QUANTUM_MAX_VALUE);
201 
202 	return pf_push_vf_cfg_u32(gt, vfid, GUC_KLV_VF_CFG_EXEC_QUANTUM_KEY, *exec_quantum);
203 }
204 
205 static int pf_push_vf_cfg_preempt_timeout(struct xe_gt *gt, unsigned int vfid, u32 *preempt_timeout)
206 {
207 	/* GuC will silently clamp values exceeding max */
208 	*preempt_timeout = min_t(u32, *preempt_timeout, GUC_KLV_VF_CFG_PREEMPT_TIMEOUT_MAX_VALUE);
209 
210 	return pf_push_vf_cfg_u32(gt, vfid, GUC_KLV_VF_CFG_PREEMPT_TIMEOUT_KEY, *preempt_timeout);
211 }
212 
213 static int pf_push_vf_cfg_sched_priority(struct xe_gt *gt, unsigned int vfid, u32 priority)
214 {
215 	return pf_push_vf_cfg_u32(gt, vfid, GUC_KLV_VF_CFG_SCHED_PRIORITY_KEY, priority);
216 }
217 
218 static int pf_push_vf_cfg_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
219 {
220 	return pf_push_vf_cfg_u64(gt, vfid, GUC_KLV_VF_CFG_LMEM_SIZE_KEY, size);
221 }
222 
223 static int pf_push_vf_cfg_threshold(struct xe_gt *gt, unsigned int vfid,
224 				    enum xe_guc_klv_threshold_index index, u32 value)
225 {
226 	u32 key = xe_guc_klv_threshold_index_to_key(index);
227 
228 	xe_gt_assert(gt, key);
229 	return pf_push_vf_cfg_u32(gt, vfid, key, value);
230 }
231 
232 static struct xe_gt_sriov_config *pf_pick_vf_config(struct xe_gt *gt, unsigned int vfid)
233 {
234 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
235 	xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt)));
236 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
237 
238 	return &gt->sriov.pf.vfs[vfid].config;
239 }
240 
241 /* Return: number of configuration dwords written */
242 static u32 encode_ggtt(u32 *cfg, u64 start, u64 size, bool details)
243 {
244 	u32 n = 0;
245 
246 	if (details) {
247 		cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_GGTT_START);
248 		cfg[n++] = lower_32_bits(start);
249 		cfg[n++] = upper_32_bits(start);
250 	}
251 
252 	cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_GGTT_SIZE);
253 	cfg[n++] = lower_32_bits(size);
254 	cfg[n++] = upper_32_bits(size);
255 
256 	return n;
257 }
258 
259 /* Return: number of configuration dwords written */
260 static u32 encode_config_ggtt(u32 *cfg, const struct xe_gt_sriov_config *config, bool details)
261 {
262 	struct xe_ggtt_node *node = config->ggtt_region;
263 
264 	if (!xe_ggtt_node_allocated(node))
265 		return 0;
266 
267 	return encode_ggtt(cfg, node->base.start, node->base.size, details);
268 }
269 
270 /* Return: number of configuration dwords written */
271 static u32 encode_config(u32 *cfg, const struct xe_gt_sriov_config *config, bool details)
272 {
273 	u32 n = 0;
274 
275 	n += encode_config_ggtt(cfg, config, details);
276 
277 	if (details && config->num_ctxs) {
278 		cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_BEGIN_CONTEXT_ID);
279 		cfg[n++] = config->begin_ctx;
280 	}
281 
282 	cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_NUM_CONTEXTS);
283 	cfg[n++] = config->num_ctxs;
284 
285 	if (details && config->num_dbs) {
286 		cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_BEGIN_DOORBELL_ID);
287 		cfg[n++] = config->begin_db;
288 	}
289 
290 	cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_NUM_DOORBELLS);
291 	cfg[n++] = config->num_dbs;
292 
293 	if (config->lmem_obj) {
294 		cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_LMEM_SIZE);
295 		cfg[n++] = lower_32_bits(xe_bo_size(config->lmem_obj));
296 		cfg[n++] = upper_32_bits(xe_bo_size(config->lmem_obj));
297 	}
298 
299 	cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_EXEC_QUANTUM);
300 	cfg[n++] = config->exec_quantum;
301 
302 	cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_PREEMPT_TIMEOUT);
303 	cfg[n++] = config->preempt_timeout;
304 
305 #define encode_threshold_config(TAG, ...) ({					\
306 	cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_THRESHOLD_##TAG);			\
307 	cfg[n++] = config->thresholds[MAKE_XE_GUC_KLV_THRESHOLD_INDEX(TAG)];	\
308 });
309 
310 	MAKE_XE_GUC_KLV_THRESHOLDS_SET(encode_threshold_config);
311 #undef encode_threshold_config
312 
313 	return n;
314 }
315 
316 static int pf_push_full_vf_config(struct xe_gt *gt, unsigned int vfid)
317 {
318 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
319 	u32 max_cfg_dwords = xe_guc_buf_cache_dwords(&gt->uc.guc.buf);
320 	CLASS(xe_guc_buf, buf)(&gt->uc.guc.buf, max_cfg_dwords);
321 	u32 num_dwords;
322 	int num_klvs;
323 	u32 *cfg;
324 	int err;
325 
326 	if (!xe_guc_buf_is_valid(buf))
327 		return -ENOBUFS;
328 
329 	cfg = xe_guc_buf_cpu_ptr(buf);
330 	num_dwords = encode_config(cfg, config, true);
331 	xe_gt_assert(gt, num_dwords <= max_cfg_dwords);
332 
333 	if (xe_gt_is_media_type(gt)) {
334 		struct xe_gt *primary = gt->tile->primary_gt;
335 		struct xe_gt_sriov_config *other = pf_pick_vf_config(primary, vfid);
336 
337 		/* media-GT will never include a GGTT config */
338 		xe_gt_assert(gt, !encode_config_ggtt(cfg + num_dwords, config, true));
339 
340 		/* the GGTT config must be taken from the primary-GT instead */
341 		num_dwords += encode_config_ggtt(cfg + num_dwords, other, true);
342 	}
343 	xe_gt_assert(gt, num_dwords <= max_cfg_dwords);
344 
345 	if (vfid == PFID) {
346 		u64 ggtt_start = xe_wopcm_size(gt_to_xe(gt));
347 		u64 ggtt_size = gt_to_tile(gt)->mem.ggtt->size - ggtt_start;
348 
349 		/* plain PF config data will never include a real GGTT region */
350 		xe_gt_assert(gt, !encode_config_ggtt(cfg + num_dwords, config, true));
351 
352 		/* fake PF GGTT config covers full GGTT range except reserved WOPCM */
353 		num_dwords += encode_ggtt(cfg + num_dwords, ggtt_start, ggtt_size, true);
354 	}
355 
356 	num_klvs = xe_guc_klv_count(cfg, num_dwords);
357 	err = pf_push_vf_buf_klvs(gt, vfid, num_klvs, buf, num_dwords);
358 
359 	return err;
360 }
361 
362 static int pf_push_vf_cfg(struct xe_gt *gt, unsigned int vfid, bool reset)
363 {
364 	int err = 0;
365 
366 	xe_gt_assert(gt, vfid);
367 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
368 
369 	if (reset)
370 		err = pf_send_vf_cfg_reset(gt, vfid);
371 	if (!err)
372 		err = pf_push_full_vf_config(gt, vfid);
373 
374 	return err;
375 }
376 
377 static int pf_refresh_vf_cfg(struct xe_gt *gt, unsigned int vfid)
378 {
379 	return pf_push_vf_cfg(gt, vfid, true);
380 }
381 
382 static u64 pf_get_ggtt_alignment(struct xe_gt *gt)
383 {
384 	struct xe_device *xe = gt_to_xe(gt);
385 
386 	return IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K;
387 }
388 
389 static u64 pf_get_min_spare_ggtt(struct xe_gt *gt)
390 {
391 	/* XXX: preliminary */
392 	return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ?
393 		pf_get_ggtt_alignment(gt) : SZ_64M;
394 }
395 
396 static u64 pf_get_spare_ggtt(struct xe_gt *gt)
397 {
398 	u64 spare;
399 
400 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
401 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
402 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
403 
404 	spare = gt->sriov.pf.spare.ggtt_size;
405 	spare = max_t(u64, spare, pf_get_min_spare_ggtt(gt));
406 
407 	return spare;
408 }
409 
410 static int pf_set_spare_ggtt(struct xe_gt *gt, u64 size)
411 {
412 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
413 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
414 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
415 
416 	if (size && size < pf_get_min_spare_ggtt(gt))
417 		return -EINVAL;
418 
419 	size = round_up(size, pf_get_ggtt_alignment(gt));
420 	gt->sriov.pf.spare.ggtt_size = size;
421 
422 	return 0;
423 }
424 
425 static int pf_distribute_config_ggtt(struct xe_tile *tile, unsigned int vfid, u64 start, u64 size)
426 {
427 	int err, err2 = 0;
428 
429 	err = pf_push_vf_cfg_ggtt(tile->primary_gt, vfid, start, size);
430 
431 	if (tile->media_gt && !err)
432 		err2 = pf_push_vf_cfg_ggtt(tile->media_gt, vfid, start, size);
433 
434 	return err ?: err2;
435 }
436 
437 static void pf_release_ggtt(struct xe_tile *tile, struct xe_ggtt_node *node)
438 {
439 	if (xe_ggtt_node_allocated(node)) {
440 		/*
441 		 * explicit GGTT PTE assignment to the PF using xe_ggtt_assign()
442 		 * is redundant, as PTE will be implicitly re-assigned to PF by
443 		 * the xe_ggtt_clear() called by below xe_ggtt_remove_node().
444 		 */
445 		xe_ggtt_node_remove(node, false);
446 	} else {
447 		xe_ggtt_node_fini(node);
448 	}
449 }
450 
451 static void pf_release_vf_config_ggtt(struct xe_gt *gt, struct xe_gt_sriov_config *config)
452 {
453 	pf_release_ggtt(gt_to_tile(gt), config->ggtt_region);
454 	config->ggtt_region = NULL;
455 }
456 
457 static int pf_provision_vf_ggtt(struct xe_gt *gt, unsigned int vfid, u64 size)
458 {
459 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
460 	struct xe_ggtt_node *node;
461 	struct xe_tile *tile = gt_to_tile(gt);
462 	struct xe_ggtt *ggtt = tile->mem.ggtt;
463 	u64 alignment = pf_get_ggtt_alignment(gt);
464 	int err;
465 
466 	xe_gt_assert(gt, vfid);
467 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
468 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
469 
470 	size = round_up(size, alignment);
471 
472 	if (xe_ggtt_node_allocated(config->ggtt_region)) {
473 		err = pf_distribute_config_ggtt(tile, vfid, 0, 0);
474 		if (unlikely(err))
475 			return err;
476 
477 		pf_release_vf_config_ggtt(gt, config);
478 
479 		err = pf_refresh_vf_cfg(gt, vfid);
480 		if (unlikely(err))
481 			return err;
482 	}
483 	xe_gt_assert(gt, !xe_ggtt_node_allocated(config->ggtt_region));
484 
485 	if (!size)
486 		return 0;
487 
488 	node = xe_ggtt_node_init(ggtt);
489 	if (IS_ERR(node))
490 		return PTR_ERR(node);
491 
492 	err = xe_ggtt_node_insert(node, size, alignment);
493 	if (unlikely(err))
494 		goto err;
495 
496 	xe_ggtt_assign(node, vfid);
497 	xe_gt_sriov_dbg_verbose(gt, "VF%u assigned GGTT %llx-%llx\n",
498 				vfid, node->base.start, node->base.start + node->base.size - 1);
499 
500 	err = pf_distribute_config_ggtt(gt->tile, vfid, node->base.start, node->base.size);
501 	if (unlikely(err))
502 		goto err;
503 
504 	config->ggtt_region = node;
505 	return 0;
506 err:
507 	pf_release_ggtt(tile, node);
508 	return err;
509 }
510 
511 static u64 pf_get_vf_config_ggtt(struct xe_gt *gt, unsigned int vfid)
512 {
513 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
514 	struct xe_ggtt_node *node = config->ggtt_region;
515 
516 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
517 	return xe_ggtt_node_allocated(node) ? node->base.size : 0;
518 }
519 
520 /**
521  * xe_gt_sriov_pf_config_get_ggtt - Query size of GGTT address space of the VF.
522  * @gt: the &xe_gt
523  * @vfid: the VF identifier
524  *
525  * This function can only be called on PF.
526  *
527  * Return: size of the VF's assigned (or PF's spare) GGTT address space.
528  */
529 u64 xe_gt_sriov_pf_config_get_ggtt(struct xe_gt *gt, unsigned int vfid)
530 {
531 	u64 size;
532 
533 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
534 	if (vfid)
535 		size = pf_get_vf_config_ggtt(gt_to_tile(gt)->primary_gt, vfid);
536 	else
537 		size = pf_get_spare_ggtt(gt_to_tile(gt)->primary_gt);
538 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
539 
540 	return size;
541 }
542 
543 static int pf_config_set_u64_done(struct xe_gt *gt, unsigned int vfid, u64 value,
544 				  u64 actual, const char *what, int err)
545 {
546 	char size[10];
547 	char name[8];
548 
549 	xe_sriov_function_name(vfid, name, sizeof(name));
550 
551 	if (unlikely(err)) {
552 		string_get_size(value, 1, STRING_UNITS_2, size, sizeof(size));
553 		xe_gt_sriov_notice(gt, "Failed to provision %s with %llu (%s) %s (%pe)\n",
554 				   name, value, size, what, ERR_PTR(err));
555 		string_get_size(actual, 1, STRING_UNITS_2, size, sizeof(size));
556 		xe_gt_sriov_info(gt, "%s provisioning remains at %llu (%s) %s\n",
557 				 name, actual, size, what);
558 		return err;
559 	}
560 
561 	/* the actual value may have changed during provisioning */
562 	string_get_size(actual, 1, STRING_UNITS_2, size, sizeof(size));
563 	xe_gt_sriov_info(gt, "%s provisioned with %llu (%s) %s\n",
564 			 name, actual, size, what);
565 	return 0;
566 }
567 
568 /**
569  * xe_gt_sriov_pf_config_set_ggtt - Provision VF with GGTT space.
570  * @gt: the &xe_gt (can't be media)
571  * @vfid: the VF identifier
572  * @size: requested GGTT size
573  *
574  * If &vfid represents PF, then function will change PF's spare GGTT config.
575  *
576  * This function can only be called on PF.
577  *
578  * Return: 0 on success or a negative error code on failure.
579  */
580 int xe_gt_sriov_pf_config_set_ggtt(struct xe_gt *gt, unsigned int vfid, u64 size)
581 {
582 	int err;
583 
584 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
585 
586 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
587 	if (vfid)
588 		err = pf_provision_vf_ggtt(gt, vfid, size);
589 	else
590 		err = pf_set_spare_ggtt(gt, size);
591 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
592 
593 	return pf_config_set_u64_done(gt, vfid, size,
594 				      xe_gt_sriov_pf_config_get_ggtt(gt, vfid),
595 				      vfid ? "GGTT" : "spare GGTT", err);
596 }
597 
598 static int pf_config_bulk_set_u64_done(struct xe_gt *gt, unsigned int first, unsigned int num_vfs,
599 				       u64 value, u64 (*get)(struct xe_gt*, unsigned int),
600 				       const char *what, unsigned int last, int err)
601 {
602 	char size[10];
603 
604 	xe_gt_assert(gt, first);
605 	xe_gt_assert(gt, num_vfs);
606 	xe_gt_assert(gt, first <= last);
607 
608 	if (num_vfs == 1)
609 		return pf_config_set_u64_done(gt, first, value, get(gt, first), what, err);
610 
611 	if (unlikely(err)) {
612 		xe_gt_sriov_notice(gt, "Failed to bulk provision VF%u..VF%u with %s\n",
613 				   first, first + num_vfs - 1, what);
614 		if (last > first)
615 			pf_config_bulk_set_u64_done(gt, first, last - first, value,
616 						    get, what, last, 0);
617 		return pf_config_set_u64_done(gt, last, value, get(gt, last), what, err);
618 	}
619 
620 	/* pick actual value from first VF - bulk provisioning shall be equal across all VFs */
621 	value = get(gt, first);
622 	string_get_size(value, 1, STRING_UNITS_2, size, sizeof(size));
623 	xe_gt_sriov_info(gt, "VF%u..VF%u provisioned with %llu (%s) %s\n",
624 			 first, first + num_vfs - 1, value, size, what);
625 	return 0;
626 }
627 
628 /**
629  * xe_gt_sriov_pf_config_bulk_set_ggtt - Provision many VFs with GGTT.
630  * @gt: the &xe_gt (can't be media)
631  * @vfid: starting VF identifier (can't be 0)
632  * @num_vfs: number of VFs to provision
633  * @size: requested GGTT size
634  *
635  * This function can only be called on PF.
636  *
637  * Return: 0 on success or a negative error code on failure.
638  */
639 int xe_gt_sriov_pf_config_bulk_set_ggtt(struct xe_gt *gt, unsigned int vfid,
640 					unsigned int num_vfs, u64 size)
641 {
642 	unsigned int n;
643 	int err = 0;
644 
645 	xe_gt_assert(gt, vfid);
646 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
647 
648 	if (!num_vfs)
649 		return 0;
650 
651 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
652 	for (n = vfid; n < vfid + num_vfs; n++) {
653 		err = pf_provision_vf_ggtt(gt, n, size);
654 		if (err)
655 			break;
656 	}
657 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
658 
659 	return pf_config_bulk_set_u64_done(gt, vfid, num_vfs, size,
660 					   xe_gt_sriov_pf_config_get_ggtt,
661 					   "GGTT", n, err);
662 }
663 
664 /* Return: size of the largest continuous GGTT region */
665 static u64 pf_get_max_ggtt(struct xe_gt *gt)
666 {
667 	struct xe_ggtt *ggtt = gt_to_tile(gt)->mem.ggtt;
668 	u64 alignment = pf_get_ggtt_alignment(gt);
669 	u64 spare = pf_get_spare_ggtt(gt);
670 	u64 max_hole;
671 
672 	max_hole = xe_ggtt_largest_hole(ggtt, alignment, &spare);
673 
674 	xe_gt_sriov_dbg_verbose(gt, "HOLE max %lluK reserved %lluK\n",
675 				max_hole / SZ_1K, spare / SZ_1K);
676 	return max_hole > spare ? max_hole - spare : 0;
677 }
678 
679 static u64 pf_estimate_fair_ggtt(struct xe_gt *gt, unsigned int num_vfs)
680 {
681 	u64 available = pf_get_max_ggtt(gt);
682 	u64 alignment = pf_get_ggtt_alignment(gt);
683 	u64 fair;
684 
685 	/*
686 	 * To simplify the logic we only look at single largest GGTT region
687 	 * as that will be always the best fit for 1 VF case, and most likely
688 	 * will also nicely cover other cases where VFs are provisioned on the
689 	 * fresh and idle PF driver, without any stale GGTT allocations spread
690 	 * in the middle of the full GGTT range.
691 	 */
692 
693 	fair = div_u64(available, num_vfs);
694 	fair = ALIGN_DOWN(fair, alignment);
695 	xe_gt_sriov_dbg_verbose(gt, "GGTT available(%lluK) fair(%u x %lluK)\n",
696 				available / SZ_1K, num_vfs, fair / SZ_1K);
697 	return fair;
698 }
699 
700 /**
701  * xe_gt_sriov_pf_config_set_fair_ggtt - Provision many VFs with fair GGTT.
702  * @gt: the &xe_gt (can't be media)
703  * @vfid: starting VF identifier (can't be 0)
704  * @num_vfs: number of VFs to provision
705  *
706  * This function can only be called on PF.
707  *
708  * Return: 0 on success or a negative error code on failure.
709  */
710 int xe_gt_sriov_pf_config_set_fair_ggtt(struct xe_gt *gt, unsigned int vfid,
711 					unsigned int num_vfs)
712 {
713 	u64 fair;
714 
715 	xe_gt_assert(gt, vfid);
716 	xe_gt_assert(gt, num_vfs);
717 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
718 
719 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
720 	fair = pf_estimate_fair_ggtt(gt, num_vfs);
721 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
722 
723 	if (!fair)
724 		return -ENOSPC;
725 
726 	return xe_gt_sriov_pf_config_bulk_set_ggtt(gt, vfid, num_vfs, fair);
727 }
728 
729 static u32 pf_get_min_spare_ctxs(struct xe_gt *gt)
730 {
731 	/* XXX: preliminary */
732 	return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ?
733 		hweight64(gt->info.engine_mask) : SZ_256;
734 }
735 
736 static u32 pf_get_spare_ctxs(struct xe_gt *gt)
737 {
738 	u32 spare;
739 
740 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
741 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
742 
743 	spare = gt->sriov.pf.spare.num_ctxs;
744 	spare = max_t(u32, spare, pf_get_min_spare_ctxs(gt));
745 
746 	return spare;
747 }
748 
749 static int pf_set_spare_ctxs(struct xe_gt *gt, u32 spare)
750 {
751 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
752 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
753 
754 	if (spare > GUC_ID_MAX)
755 		return -EINVAL;
756 
757 	if (spare && spare < pf_get_min_spare_ctxs(gt))
758 		return -EINVAL;
759 
760 	gt->sriov.pf.spare.num_ctxs = spare;
761 
762 	return 0;
763 }
764 
765 /* Return: start ID or negative error code on failure */
766 static int pf_reserve_ctxs(struct xe_gt *gt, u32 num)
767 {
768 	struct xe_guc_id_mgr *idm = &gt->uc.guc.submission_state.idm;
769 	unsigned int spare = pf_get_spare_ctxs(gt);
770 
771 	return xe_guc_id_mgr_reserve(idm, num, spare);
772 }
773 
774 static void pf_release_ctxs(struct xe_gt *gt, u32 start, u32 num)
775 {
776 	struct xe_guc_id_mgr *idm = &gt->uc.guc.submission_state.idm;
777 
778 	if (num)
779 		xe_guc_id_mgr_release(idm, start, num);
780 }
781 
782 static void pf_release_config_ctxs(struct xe_gt *gt, struct xe_gt_sriov_config *config)
783 {
784 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
785 
786 	pf_release_ctxs(gt, config->begin_ctx, config->num_ctxs);
787 	config->begin_ctx = 0;
788 	config->num_ctxs = 0;
789 }
790 
791 static int pf_provision_vf_ctxs(struct xe_gt *gt, unsigned int vfid, u32 num_ctxs)
792 {
793 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
794 	int ret;
795 
796 	xe_gt_assert(gt, vfid);
797 
798 	if (num_ctxs > GUC_ID_MAX)
799 		return -EINVAL;
800 
801 	if (config->num_ctxs) {
802 		ret = pf_push_vf_cfg_ctxs(gt, vfid, 0, 0);
803 		if (unlikely(ret))
804 			return ret;
805 
806 		pf_release_config_ctxs(gt, config);
807 
808 		ret = pf_refresh_vf_cfg(gt, vfid);
809 		if (unlikely(ret))
810 			return ret;
811 	}
812 
813 	if (!num_ctxs)
814 		return 0;
815 
816 	ret = pf_reserve_ctxs(gt, num_ctxs);
817 	if (unlikely(ret < 0))
818 		return ret;
819 
820 	config->begin_ctx = ret;
821 	config->num_ctxs = num_ctxs;
822 
823 	ret = pf_push_vf_cfg_ctxs(gt, vfid, config->begin_ctx, config->num_ctxs);
824 	if (unlikely(ret)) {
825 		pf_release_config_ctxs(gt, config);
826 		return ret;
827 	}
828 
829 	xe_gt_sriov_dbg_verbose(gt, "VF%u contexts %u-%u\n",
830 				vfid, config->begin_ctx, config->begin_ctx + config->num_ctxs - 1);
831 	return 0;
832 }
833 
834 static u32 pf_get_vf_config_ctxs(struct xe_gt *gt, unsigned int vfid)
835 {
836 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
837 
838 	return config->num_ctxs;
839 }
840 
841 /**
842  * xe_gt_sriov_pf_config_get_ctxs - Get VF's GuC contexts IDs quota.
843  * @gt: the &xe_gt
844  * @vfid: the VF identifier
845  *
846  * This function can only be called on PF.
847  * If &vfid represents a PF then number of PF's spare GuC context IDs is returned.
848  *
849  * Return: VF's quota (or PF's spare).
850  */
851 u32 xe_gt_sriov_pf_config_get_ctxs(struct xe_gt *gt, unsigned int vfid)
852 {
853 	u32 num_ctxs;
854 
855 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
856 	if (vfid)
857 		num_ctxs = pf_get_vf_config_ctxs(gt, vfid);
858 	else
859 		num_ctxs = pf_get_spare_ctxs(gt);
860 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
861 
862 	return num_ctxs;
863 }
864 
865 static const char *no_unit(u32 unused)
866 {
867 	return "";
868 }
869 
870 static const char *spare_unit(u32 unused)
871 {
872 	return " spare";
873 }
874 
875 static int pf_config_set_u32_done(struct xe_gt *gt, unsigned int vfid, u32 value, u32 actual,
876 				  const char *what, const char *(*unit)(u32), int err)
877 {
878 	char name[8];
879 
880 	xe_sriov_function_name(vfid, name, sizeof(name));
881 
882 	if (unlikely(err)) {
883 		xe_gt_sriov_notice(gt, "Failed to provision %s with %u%s %s (%pe)\n",
884 				   name, value, unit(value), what, ERR_PTR(err));
885 		xe_gt_sriov_info(gt, "%s provisioning remains at %u%s %s\n",
886 				 name, actual, unit(actual), what);
887 		return err;
888 	}
889 
890 	/* the actual value may have changed during provisioning */
891 	xe_gt_sriov_info(gt, "%s provisioned with %u%s %s\n",
892 			 name, actual, unit(actual), what);
893 	return 0;
894 }
895 
896 /**
897  * xe_gt_sriov_pf_config_set_ctxs - Configure GuC contexts IDs quota for the VF.
898  * @gt: the &xe_gt
899  * @vfid: the VF identifier
900  * @num_ctxs: requested number of GuC contexts IDs (0 to release)
901  *
902  * This function can only be called on PF.
903  *
904  * Return: 0 on success or a negative error code on failure.
905  */
906 int xe_gt_sriov_pf_config_set_ctxs(struct xe_gt *gt, unsigned int vfid, u32 num_ctxs)
907 {
908 	int err;
909 
910 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
911 	if (vfid)
912 		err = pf_provision_vf_ctxs(gt, vfid, num_ctxs);
913 	else
914 		err = pf_set_spare_ctxs(gt, num_ctxs);
915 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
916 
917 	return pf_config_set_u32_done(gt, vfid, num_ctxs,
918 				      xe_gt_sriov_pf_config_get_ctxs(gt, vfid),
919 				      "GuC context IDs", vfid ? no_unit : spare_unit, err);
920 }
921 
922 static int pf_config_bulk_set_u32_done(struct xe_gt *gt, unsigned int first, unsigned int num_vfs,
923 				       u32 value, u32 (*get)(struct xe_gt*, unsigned int),
924 				       const char *what, const char *(*unit)(u32),
925 				       unsigned int last, int err)
926 {
927 	xe_gt_assert(gt, first);
928 	xe_gt_assert(gt, num_vfs);
929 	xe_gt_assert(gt, first <= last);
930 
931 	if (num_vfs == 1)
932 		return pf_config_set_u32_done(gt, first, value, get(gt, first), what, unit, err);
933 
934 	if (unlikely(err)) {
935 		xe_gt_sriov_notice(gt, "Failed to bulk provision VF%u..VF%u with %s\n",
936 				   first, first + num_vfs - 1, what);
937 		if (last > first)
938 			pf_config_bulk_set_u32_done(gt, first, last - first, value,
939 						    get, what, unit, last, 0);
940 		return pf_config_set_u32_done(gt, last, value, get(gt, last), what, unit, err);
941 	}
942 
943 	/* pick actual value from first VF - bulk provisioning shall be equal across all VFs */
944 	value = get(gt, first);
945 	xe_gt_sriov_info(gt, "VF%u..VF%u provisioned with %u%s %s\n",
946 			 first, first + num_vfs - 1, value, unit(value), what);
947 	return 0;
948 }
949 
950 /**
951  * xe_gt_sriov_pf_config_bulk_set_ctxs - Provision many VFs with GuC context IDs.
952  * @gt: the &xe_gt
953  * @vfid: starting VF identifier
954  * @num_vfs: number of VFs to provision
955  * @num_ctxs: requested number of GuC contexts IDs (0 to release)
956  *
957  * This function can only be called on PF.
958  *
959  * Return: 0 on success or a negative error code on failure.
960  */
961 int xe_gt_sriov_pf_config_bulk_set_ctxs(struct xe_gt *gt, unsigned int vfid,
962 					unsigned int num_vfs, u32 num_ctxs)
963 {
964 	unsigned int n;
965 	int err = 0;
966 
967 	xe_gt_assert(gt, vfid);
968 
969 	if (!num_vfs)
970 		return 0;
971 
972 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
973 	for (n = vfid; n < vfid + num_vfs; n++) {
974 		err = pf_provision_vf_ctxs(gt, n, num_ctxs);
975 		if (err)
976 			break;
977 	}
978 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
979 
980 	return pf_config_bulk_set_u32_done(gt, vfid, num_vfs, num_ctxs,
981 					   xe_gt_sriov_pf_config_get_ctxs,
982 					   "GuC context IDs", no_unit, n, err);
983 }
984 
985 static u32 pf_estimate_fair_ctxs(struct xe_gt *gt, unsigned int num_vfs)
986 {
987 	struct xe_guc_id_mgr *idm = &gt->uc.guc.submission_state.idm;
988 	u32 spare = pf_get_spare_ctxs(gt);
989 	u32 fair = (idm->total - spare) / num_vfs;
990 	int ret;
991 
992 	for (; fair; --fair) {
993 		ret = xe_guc_id_mgr_reserve(idm, fair * num_vfs, spare);
994 		if (ret < 0)
995 			continue;
996 		xe_guc_id_mgr_release(idm, ret, fair * num_vfs);
997 		break;
998 	}
999 
1000 	xe_gt_sriov_dbg_verbose(gt, "contexts fair(%u x %u)\n", num_vfs, fair);
1001 	return fair;
1002 }
1003 
1004 /**
1005  * xe_gt_sriov_pf_config_set_fair_ctxs - Provision many VFs with fair GuC context IDs.
1006  * @gt: the &xe_gt
1007  * @vfid: starting VF identifier (can't be 0)
1008  * @num_vfs: number of VFs to provision (can't be 0)
1009  *
1010  * This function can only be called on PF.
1011  *
1012  * Return: 0 on success or a negative error code on failure.
1013  */
1014 int xe_gt_sriov_pf_config_set_fair_ctxs(struct xe_gt *gt, unsigned int vfid,
1015 					unsigned int num_vfs)
1016 {
1017 	u32 fair;
1018 
1019 	xe_gt_assert(gt, vfid);
1020 	xe_gt_assert(gt, num_vfs);
1021 
1022 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1023 	fair = pf_estimate_fair_ctxs(gt, num_vfs);
1024 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1025 
1026 	if (!fair)
1027 		return -ENOSPC;
1028 
1029 	return xe_gt_sriov_pf_config_bulk_set_ctxs(gt, vfid, num_vfs, fair);
1030 }
1031 
1032 static u32 pf_get_min_spare_dbs(struct xe_gt *gt)
1033 {
1034 	/* XXX: preliminary, we don't use doorbells yet! */
1035 	return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ? 1 : 0;
1036 }
1037 
1038 static u32 pf_get_spare_dbs(struct xe_gt *gt)
1039 {
1040 	u32 spare;
1041 
1042 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
1043 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
1044 
1045 	spare = gt->sriov.pf.spare.num_dbs;
1046 	spare = max_t(u32, spare, pf_get_min_spare_dbs(gt));
1047 
1048 	return spare;
1049 }
1050 
1051 static int pf_set_spare_dbs(struct xe_gt *gt, u32 spare)
1052 {
1053 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
1054 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
1055 
1056 	if (spare > GUC_NUM_DOORBELLS)
1057 		return -EINVAL;
1058 
1059 	if (spare && spare < pf_get_min_spare_dbs(gt))
1060 		return -EINVAL;
1061 
1062 	gt->sriov.pf.spare.num_dbs = spare;
1063 	return 0;
1064 }
1065 
1066 /* Return: start ID or negative error code on failure */
1067 static int pf_reserve_dbs(struct xe_gt *gt, u32 num)
1068 {
1069 	struct xe_guc_db_mgr *dbm = &gt->uc.guc.dbm;
1070 	unsigned int spare = pf_get_spare_dbs(gt);
1071 
1072 	return xe_guc_db_mgr_reserve_range(dbm, num, spare);
1073 }
1074 
1075 static void pf_release_dbs(struct xe_gt *gt, u32 start, u32 num)
1076 {
1077 	struct xe_guc_db_mgr *dbm = &gt->uc.guc.dbm;
1078 
1079 	if (num)
1080 		xe_guc_db_mgr_release_range(dbm, start, num);
1081 }
1082 
1083 static void pf_release_config_dbs(struct xe_gt *gt, struct xe_gt_sriov_config *config)
1084 {
1085 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
1086 
1087 	pf_release_dbs(gt, config->begin_db, config->num_dbs);
1088 	config->begin_db = 0;
1089 	config->num_dbs = 0;
1090 }
1091 
1092 static int pf_provision_vf_dbs(struct xe_gt *gt, unsigned int vfid, u32 num_dbs)
1093 {
1094 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1095 	int ret;
1096 
1097 	xe_gt_assert(gt, vfid);
1098 
1099 	if (num_dbs > GUC_NUM_DOORBELLS)
1100 		return -EINVAL;
1101 
1102 	if (config->num_dbs) {
1103 		ret = pf_push_vf_cfg_dbs(gt, vfid, 0, 0);
1104 		if (unlikely(ret))
1105 			return ret;
1106 
1107 		pf_release_config_dbs(gt, config);
1108 
1109 		ret = pf_refresh_vf_cfg(gt, vfid);
1110 		if (unlikely(ret))
1111 			return ret;
1112 	}
1113 
1114 	if (!num_dbs)
1115 		return 0;
1116 
1117 	ret = pf_reserve_dbs(gt, num_dbs);
1118 	if (unlikely(ret < 0))
1119 		return ret;
1120 
1121 	config->begin_db = ret;
1122 	config->num_dbs = num_dbs;
1123 
1124 	ret = pf_push_vf_cfg_dbs(gt, vfid, config->begin_db, config->num_dbs);
1125 	if (unlikely(ret)) {
1126 		pf_release_config_dbs(gt, config);
1127 		return ret;
1128 	}
1129 
1130 	xe_gt_sriov_dbg_verbose(gt, "VF%u doorbells %u-%u\n",
1131 				vfid, config->begin_db, config->begin_db + config->num_dbs - 1);
1132 	return 0;
1133 }
1134 
1135 static u32 pf_get_vf_config_dbs(struct xe_gt *gt, unsigned int vfid)
1136 {
1137 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1138 
1139 	return config->num_dbs;
1140 }
1141 
1142 /**
1143  * xe_gt_sriov_pf_config_get_dbs - Get VF's GuC doorbells IDs quota.
1144  * @gt: the &xe_gt
1145  * @vfid: the VF identifier
1146  *
1147  * This function can only be called on PF.
1148  * If &vfid represents a PF then number of PF's spare GuC doorbells IDs is returned.
1149  *
1150  * Return: VF's quota (or PF's spare).
1151  */
1152 u32 xe_gt_sriov_pf_config_get_dbs(struct xe_gt *gt, unsigned int vfid)
1153 {
1154 	u32 num_dbs;
1155 
1156 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
1157 	xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt)));
1158 
1159 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1160 	if (vfid)
1161 		num_dbs = pf_get_vf_config_dbs(gt, vfid);
1162 	else
1163 		num_dbs = pf_get_spare_dbs(gt);
1164 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1165 
1166 	return num_dbs;
1167 }
1168 
1169 /**
1170  * xe_gt_sriov_pf_config_set_dbs - Configure GuC doorbells IDs quota for the VF.
1171  * @gt: the &xe_gt
1172  * @vfid: the VF identifier
1173  * @num_dbs: requested number of GuC doorbells IDs (0 to release)
1174  *
1175  * This function can only be called on PF.
1176  *
1177  * Return: 0 on success or a negative error code on failure.
1178  */
1179 int xe_gt_sriov_pf_config_set_dbs(struct xe_gt *gt, unsigned int vfid, u32 num_dbs)
1180 {
1181 	int err;
1182 
1183 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
1184 	xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt)));
1185 
1186 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1187 	if (vfid)
1188 		err = pf_provision_vf_dbs(gt, vfid, num_dbs);
1189 	else
1190 		err = pf_set_spare_dbs(gt, num_dbs);
1191 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1192 
1193 	return pf_config_set_u32_done(gt, vfid, num_dbs,
1194 				      xe_gt_sriov_pf_config_get_dbs(gt, vfid),
1195 				      "GuC doorbell IDs", vfid ? no_unit : spare_unit, err);
1196 }
1197 
1198 /**
1199  * xe_gt_sriov_pf_config_bulk_set_dbs - Provision many VFs with GuC context IDs.
1200  * @gt: the &xe_gt
1201  * @vfid: starting VF identifier (can't be 0)
1202  * @num_vfs: number of VFs to provision
1203  * @num_dbs: requested number of GuC doorbell IDs (0 to release)
1204  *
1205  * This function can only be called on PF.
1206  *
1207  * Return: 0 on success or a negative error code on failure.
1208  */
1209 int xe_gt_sriov_pf_config_bulk_set_dbs(struct xe_gt *gt, unsigned int vfid,
1210 				       unsigned int num_vfs, u32 num_dbs)
1211 {
1212 	unsigned int n;
1213 	int err = 0;
1214 
1215 	xe_gt_assert(gt, vfid);
1216 
1217 	if (!num_vfs)
1218 		return 0;
1219 
1220 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1221 	for (n = vfid; n < vfid + num_vfs; n++) {
1222 		err = pf_provision_vf_dbs(gt, n, num_dbs);
1223 		if (err)
1224 			break;
1225 	}
1226 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1227 
1228 	return pf_config_bulk_set_u32_done(gt, vfid, num_vfs, num_dbs,
1229 					   xe_gt_sriov_pf_config_get_dbs,
1230 					   "GuC doorbell IDs", no_unit, n, err);
1231 }
1232 
1233 static u32 pf_estimate_fair_dbs(struct xe_gt *gt, unsigned int num_vfs)
1234 {
1235 	struct xe_guc_db_mgr *dbm = &gt->uc.guc.dbm;
1236 	u32 spare = pf_get_spare_dbs(gt);
1237 	u32 fair = (GUC_NUM_DOORBELLS - spare) / num_vfs;
1238 	int ret;
1239 
1240 	for (; fair; --fair) {
1241 		ret = xe_guc_db_mgr_reserve_range(dbm, fair * num_vfs, spare);
1242 		if (ret < 0)
1243 			continue;
1244 		xe_guc_db_mgr_release_range(dbm, ret, fair * num_vfs);
1245 		break;
1246 	}
1247 
1248 	xe_gt_sriov_dbg_verbose(gt, "doorbells fair(%u x %u)\n", num_vfs, fair);
1249 	return fair;
1250 }
1251 
1252 /**
1253  * xe_gt_sriov_pf_config_set_fair_dbs - Provision many VFs with fair GuC doorbell  IDs.
1254  * @gt: the &xe_gt
1255  * @vfid: starting VF identifier (can't be 0)
1256  * @num_vfs: number of VFs to provision (can't be 0)
1257  *
1258  * This function can only be called on PF.
1259  *
1260  * Return: 0 on success or a negative error code on failure.
1261  */
1262 int xe_gt_sriov_pf_config_set_fair_dbs(struct xe_gt *gt, unsigned int vfid,
1263 				       unsigned int num_vfs)
1264 {
1265 	u32 fair;
1266 
1267 	xe_gt_assert(gt, vfid);
1268 	xe_gt_assert(gt, num_vfs);
1269 
1270 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1271 	fair = pf_estimate_fair_dbs(gt, num_vfs);
1272 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1273 
1274 	if (!fair)
1275 		return -ENOSPC;
1276 
1277 	return xe_gt_sriov_pf_config_bulk_set_dbs(gt, vfid, num_vfs, fair);
1278 }
1279 
1280 static u64 pf_get_lmem_alignment(struct xe_gt *gt)
1281 {
1282 	/* this might be platform dependent */
1283 	return SZ_2M;
1284 }
1285 
1286 static u64 pf_get_min_spare_lmem(struct xe_gt *gt)
1287 {
1288 	/* this might be platform dependent */
1289 	return SZ_128M; /* XXX: preliminary */
1290 }
1291 
1292 static u64 pf_get_spare_lmem(struct xe_gt *gt)
1293 {
1294 	u64 spare;
1295 
1296 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
1297 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
1298 
1299 	spare = gt->sriov.pf.spare.lmem_size;
1300 	spare = max_t(u64, spare, pf_get_min_spare_lmem(gt));
1301 
1302 	return spare;
1303 }
1304 
1305 static int pf_set_spare_lmem(struct xe_gt *gt, u64 size)
1306 {
1307 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
1308 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
1309 
1310 	if (size && size < pf_get_min_spare_lmem(gt))
1311 		return -EINVAL;
1312 
1313 	gt->sriov.pf.spare.lmem_size = size;
1314 	return 0;
1315 }
1316 
1317 static u64 pf_get_vf_config_lmem(struct xe_gt *gt, unsigned int vfid)
1318 {
1319 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1320 	struct xe_bo *bo;
1321 
1322 	bo = config->lmem_obj;
1323 	return bo ? xe_bo_size(bo) : 0;
1324 }
1325 
1326 static int pf_distribute_config_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
1327 {
1328 	struct xe_device *xe = gt_to_xe(gt);
1329 	struct xe_tile *tile;
1330 	unsigned int tid;
1331 	int err;
1332 
1333 	for_each_tile(tile, xe, tid) {
1334 		if (tile->primary_gt == gt) {
1335 			err = pf_push_vf_cfg_lmem(gt, vfid, size);
1336 		} else {
1337 			u64 lmem = pf_get_vf_config_lmem(tile->primary_gt, vfid);
1338 
1339 			if (!lmem)
1340 				continue;
1341 			err = pf_push_vf_cfg_lmem(gt, vfid, lmem);
1342 		}
1343 		if (unlikely(err))
1344 			return err;
1345 	}
1346 	return 0;
1347 }
1348 
1349 static void pf_force_lmtt_invalidate(struct xe_device *xe)
1350 {
1351 	struct xe_lmtt *lmtt;
1352 	struct xe_tile *tile;
1353 	unsigned int tid;
1354 
1355 	xe_assert(xe, xe_device_has_lmtt(xe));
1356 	xe_assert(xe, IS_SRIOV_PF(xe));
1357 
1358 	for_each_tile(tile, xe, tid) {
1359 		lmtt = &tile->sriov.pf.lmtt;
1360 		xe_lmtt_invalidate_hw(lmtt);
1361 	}
1362 }
1363 
1364 static void pf_reset_vf_lmtt(struct xe_device *xe, unsigned int vfid)
1365 {
1366 	struct xe_lmtt *lmtt;
1367 	struct xe_tile *tile;
1368 	unsigned int tid;
1369 
1370 	xe_assert(xe, xe_device_has_lmtt(xe));
1371 	xe_assert(xe, IS_SRIOV_PF(xe));
1372 
1373 	for_each_tile(tile, xe, tid) {
1374 		lmtt = &tile->sriov.pf.lmtt;
1375 		xe_lmtt_drop_pages(lmtt, vfid);
1376 	}
1377 }
1378 
1379 static int pf_update_vf_lmtt(struct xe_device *xe, unsigned int vfid)
1380 {
1381 	struct xe_gt_sriov_config *config;
1382 	struct xe_tile *tile;
1383 	struct xe_lmtt *lmtt;
1384 	struct xe_bo *bo;
1385 	struct xe_gt *gt;
1386 	u64 total, offset;
1387 	unsigned int gtid;
1388 	unsigned int tid;
1389 	int err;
1390 
1391 	xe_assert(xe, xe_device_has_lmtt(xe));
1392 	xe_assert(xe, IS_SRIOV_PF(xe));
1393 
1394 	total = 0;
1395 	for_each_tile(tile, xe, tid)
1396 		total += pf_get_vf_config_lmem(tile->primary_gt, vfid);
1397 
1398 	for_each_tile(tile, xe, tid) {
1399 		lmtt = &tile->sriov.pf.lmtt;
1400 
1401 		xe_lmtt_drop_pages(lmtt, vfid);
1402 		if (!total)
1403 			continue;
1404 
1405 		err  = xe_lmtt_prepare_pages(lmtt, vfid, total);
1406 		if (err)
1407 			goto fail;
1408 
1409 		offset = 0;
1410 		for_each_gt(gt, xe, gtid) {
1411 			if (xe_gt_is_media_type(gt))
1412 				continue;
1413 
1414 			config = pf_pick_vf_config(gt, vfid);
1415 			bo = config->lmem_obj;
1416 			if (!bo)
1417 				continue;
1418 
1419 			err = xe_lmtt_populate_pages(lmtt, vfid, bo, offset);
1420 			if (err)
1421 				goto fail;
1422 			offset += xe_bo_size(bo);
1423 		}
1424 	}
1425 
1426 	pf_force_lmtt_invalidate(xe);
1427 	return 0;
1428 
1429 fail:
1430 	for_each_tile(tile, xe, tid) {
1431 		lmtt = &tile->sriov.pf.lmtt;
1432 		xe_lmtt_drop_pages(lmtt, vfid);
1433 	}
1434 	return err;
1435 }
1436 
1437 /* Return: %true if there was an LMEM provisioned, %false otherwise */
1438 static bool pf_release_vf_config_lmem(struct xe_gt *gt, struct xe_gt_sriov_config *config)
1439 {
1440 	xe_gt_assert(gt, IS_DGFX(gt_to_xe(gt)));
1441 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
1442 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
1443 
1444 	if (config->lmem_obj) {
1445 		xe_bo_unpin_map_no_vm(config->lmem_obj);
1446 		config->lmem_obj = NULL;
1447 		return true;
1448 	}
1449 	return false;
1450 }
1451 
1452 static int pf_provision_vf_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
1453 {
1454 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1455 	struct xe_device *xe = gt_to_xe(gt);
1456 	struct xe_tile *tile = gt_to_tile(gt);
1457 	struct xe_bo *bo;
1458 	int err;
1459 
1460 	xe_gt_assert(gt, vfid);
1461 	xe_gt_assert(gt, IS_DGFX(xe));
1462 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
1463 
1464 	size = round_up(size, pf_get_lmem_alignment(gt));
1465 
1466 	if (config->lmem_obj) {
1467 		err = pf_distribute_config_lmem(gt, vfid, 0);
1468 		if (unlikely(err))
1469 			return err;
1470 
1471 		if (xe_device_has_lmtt(xe))
1472 			pf_reset_vf_lmtt(xe, vfid);
1473 		pf_release_vf_config_lmem(gt, config);
1474 	}
1475 	xe_gt_assert(gt, !config->lmem_obj);
1476 
1477 	if (!size)
1478 		return 0;
1479 
1480 	xe_gt_assert(gt, pf_get_lmem_alignment(gt) == SZ_2M);
1481 	bo = xe_bo_create_pin_range_novm(xe, tile,
1482 					 ALIGN(size, PAGE_SIZE), 0, ~0ull,
1483 					 ttm_bo_type_kernel,
1484 					 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
1485 					 XE_BO_FLAG_NEEDS_2M |
1486 					 XE_BO_FLAG_PINNED |
1487 					 XE_BO_FLAG_PINNED_LATE_RESTORE |
1488 					 XE_BO_FLAG_FORCE_USER_VRAM);
1489 	if (IS_ERR(bo))
1490 		return PTR_ERR(bo);
1491 
1492 	config->lmem_obj = bo;
1493 
1494 	if (xe_device_has_lmtt(xe)) {
1495 		err = pf_update_vf_lmtt(xe, vfid);
1496 		if (unlikely(err))
1497 			goto release;
1498 	}
1499 
1500 	err = pf_push_vf_cfg_lmem(gt, vfid, xe_bo_size(bo));
1501 	if (unlikely(err))
1502 		goto reset_lmtt;
1503 
1504 	xe_gt_sriov_dbg_verbose(gt, "VF%u LMEM %zu (%zuM)\n",
1505 				vfid, xe_bo_size(bo), xe_bo_size(bo) / SZ_1M);
1506 	return 0;
1507 
1508 reset_lmtt:
1509 	if (xe_device_has_lmtt(xe))
1510 		pf_reset_vf_lmtt(xe, vfid);
1511 release:
1512 	pf_release_vf_config_lmem(gt, config);
1513 	return err;
1514 }
1515 
1516 /**
1517  * xe_gt_sriov_pf_config_get_lmem - Get VF's LMEM quota.
1518  * @gt: the &xe_gt
1519  * @vfid: the VF identifier
1520  *
1521  * This function can only be called on PF.
1522  *
1523  * Return: VF's (or PF's spare) LMEM quota.
1524  */
1525 u64 xe_gt_sriov_pf_config_get_lmem(struct xe_gt *gt, unsigned int vfid)
1526 {
1527 	u64 size;
1528 
1529 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1530 	if (vfid)
1531 		size = pf_get_vf_config_lmem(gt, vfid);
1532 	else
1533 		size = pf_get_spare_lmem(gt);
1534 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1535 
1536 	return size;
1537 }
1538 
1539 /**
1540  * xe_gt_sriov_pf_config_set_lmem - Provision VF with LMEM.
1541  * @gt: the &xe_gt (can't be media)
1542  * @vfid: the VF identifier
1543  * @size: requested LMEM size
1544  *
1545  * This function can only be called on PF.
1546  */
1547 int xe_gt_sriov_pf_config_set_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
1548 {
1549 	int err;
1550 
1551 	if (!xe_device_has_lmtt(gt_to_xe(gt)))
1552 		return -EPERM;
1553 
1554 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1555 	if (vfid)
1556 		err = pf_provision_vf_lmem(gt, vfid, size);
1557 	else
1558 		err = pf_set_spare_lmem(gt, size);
1559 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1560 
1561 	return pf_config_set_u64_done(gt, vfid, size,
1562 				      xe_gt_sriov_pf_config_get_lmem(gt, vfid),
1563 				      vfid ? "LMEM" : "spare LMEM", err);
1564 }
1565 
1566 /**
1567  * xe_gt_sriov_pf_config_bulk_set_lmem - Provision many VFs with LMEM.
1568  * @gt: the &xe_gt (can't be media)
1569  * @vfid: starting VF identifier (can't be 0)
1570  * @num_vfs: number of VFs to provision
1571  * @size: requested LMEM size
1572  *
1573  * This function can only be called on PF.
1574  *
1575  * Return: 0 on success or a negative error code on failure.
1576  */
1577 int xe_gt_sriov_pf_config_bulk_set_lmem(struct xe_gt *gt, unsigned int vfid,
1578 					unsigned int num_vfs, u64 size)
1579 {
1580 	unsigned int n;
1581 	int err = 0;
1582 
1583 	xe_gt_assert(gt, vfid);
1584 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
1585 
1586 	if (!num_vfs)
1587 		return 0;
1588 
1589 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1590 	for (n = vfid; n < vfid + num_vfs; n++) {
1591 		err = pf_provision_vf_lmem(gt, n, size);
1592 		if (err)
1593 			break;
1594 	}
1595 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1596 
1597 	return pf_config_bulk_set_u64_done(gt, vfid, num_vfs, size,
1598 					   xe_gt_sriov_pf_config_get_lmem,
1599 					   "LMEM", n, err);
1600 }
1601 
1602 static u64 pf_query_free_lmem(struct xe_gt *gt)
1603 {
1604 	struct xe_tile *tile = gt->tile;
1605 
1606 	return xe_ttm_vram_get_avail(&tile->mem.vram->ttm.manager);
1607 }
1608 
1609 static u64 pf_query_max_lmem(struct xe_gt *gt)
1610 {
1611 	u64 alignment = pf_get_lmem_alignment(gt);
1612 	u64 spare = pf_get_spare_lmem(gt);
1613 	u64 free = pf_query_free_lmem(gt);
1614 	u64 avail;
1615 
1616 	/* XXX: need to account for 2MB blocks only */
1617 	avail = free > spare ? free - spare : 0;
1618 	avail = round_down(avail, alignment);
1619 
1620 	return avail;
1621 }
1622 
1623 #ifdef CONFIG_DRM_XE_DEBUG_SRIOV
1624 #define MAX_FAIR_LMEM	SZ_128M	/* XXX: make it small for the driver bringup */
1625 #endif
1626 
1627 static u64 pf_estimate_fair_lmem(struct xe_gt *gt, unsigned int num_vfs)
1628 {
1629 	u64 available = pf_query_max_lmem(gt);
1630 	u64 alignment = pf_get_lmem_alignment(gt);
1631 	u64 fair;
1632 
1633 	fair = div_u64(available, num_vfs);
1634 	fair = ALIGN_DOWN(fair, alignment);
1635 #ifdef MAX_FAIR_LMEM
1636 	fair = min_t(u64, MAX_FAIR_LMEM, fair);
1637 #endif
1638 	xe_gt_sriov_dbg_verbose(gt, "LMEM available(%lluM) fair(%u x %lluM)\n",
1639 				available / SZ_1M, num_vfs, fair / SZ_1M);
1640 	return fair;
1641 }
1642 
1643 /**
1644  * xe_gt_sriov_pf_config_set_fair_lmem - Provision many VFs with fair LMEM.
1645  * @gt: the &xe_gt (can't be media)
1646  * @vfid: starting VF identifier (can't be 0)
1647  * @num_vfs: number of VFs to provision (can't be 0)
1648  *
1649  * This function can only be called on PF.
1650  *
1651  * Return: 0 on success or a negative error code on failure.
1652  */
1653 int xe_gt_sriov_pf_config_set_fair_lmem(struct xe_gt *gt, unsigned int vfid,
1654 					unsigned int num_vfs)
1655 {
1656 	u64 fair;
1657 
1658 	xe_gt_assert(gt, vfid);
1659 	xe_gt_assert(gt, num_vfs);
1660 	xe_gt_assert(gt, xe_gt_is_main_type(gt));
1661 
1662 	if (!xe_device_has_lmtt(gt_to_xe(gt)))
1663 		return 0;
1664 
1665 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1666 	fair = pf_estimate_fair_lmem(gt, num_vfs);
1667 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1668 
1669 	if (!fair)
1670 		return -ENOSPC;
1671 
1672 	return xe_gt_sriov_pf_config_bulk_set_lmem(gt, vfid, num_vfs, fair);
1673 }
1674 
1675 /**
1676  * xe_gt_sriov_pf_config_set_fair - Provision many VFs with fair resources.
1677  * @gt: the &xe_gt
1678  * @vfid: starting VF identifier (can't be 0)
1679  * @num_vfs: number of VFs to provision (can't be 0)
1680  *
1681  * This function can only be called on PF.
1682  *
1683  * Return: 0 on success or a negative error code on failure.
1684  */
1685 int xe_gt_sriov_pf_config_set_fair(struct xe_gt *gt, unsigned int vfid,
1686 				   unsigned int num_vfs)
1687 {
1688 	int result = 0;
1689 	int err;
1690 
1691 	xe_gt_assert(gt, vfid);
1692 	xe_gt_assert(gt, num_vfs);
1693 
1694 	if (xe_gt_is_main_type(gt)) {
1695 		err = xe_gt_sriov_pf_config_set_fair_ggtt(gt, vfid, num_vfs);
1696 		result = result ?: err;
1697 		err = xe_gt_sriov_pf_config_set_fair_lmem(gt, vfid, num_vfs);
1698 		result = result ?: err;
1699 	}
1700 	err = xe_gt_sriov_pf_config_set_fair_ctxs(gt, vfid, num_vfs);
1701 	result = result ?: err;
1702 	err = xe_gt_sriov_pf_config_set_fair_dbs(gt, vfid, num_vfs);
1703 	result = result ?: err;
1704 
1705 	return result;
1706 }
1707 
1708 static const char *exec_quantum_unit(u32 exec_quantum)
1709 {
1710 	return exec_quantum ? "ms" : "(infinity)";
1711 }
1712 
1713 static int pf_provision_exec_quantum(struct xe_gt *gt, unsigned int vfid,
1714 				     u32 exec_quantum)
1715 {
1716 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1717 	int err;
1718 
1719 	err = pf_push_vf_cfg_exec_quantum(gt, vfid, &exec_quantum);
1720 	if (unlikely(err))
1721 		return err;
1722 
1723 	config->exec_quantum = exec_quantum;
1724 	return 0;
1725 }
1726 
1727 static int pf_get_exec_quantum(struct xe_gt *gt, unsigned int vfid)
1728 {
1729 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1730 
1731 	return config->exec_quantum;
1732 }
1733 
1734 /**
1735  * xe_gt_sriov_pf_config_set_exec_quantum - Configure execution quantum for the VF.
1736  * @gt: the &xe_gt
1737  * @vfid: the VF identifier
1738  * @exec_quantum: requested execution quantum in milliseconds (0 is infinity)
1739  *
1740  * This function can only be called on PF.
1741  *
1742  * Return: 0 on success or a negative error code on failure.
1743  */
1744 int xe_gt_sriov_pf_config_set_exec_quantum(struct xe_gt *gt, unsigned int vfid,
1745 					   u32 exec_quantum)
1746 {
1747 	int err;
1748 
1749 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1750 	err = pf_provision_exec_quantum(gt, vfid, exec_quantum);
1751 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1752 
1753 	return pf_config_set_u32_done(gt, vfid, exec_quantum,
1754 				      xe_gt_sriov_pf_config_get_exec_quantum(gt, vfid),
1755 				      "execution quantum", exec_quantum_unit, err);
1756 }
1757 
1758 /**
1759  * xe_gt_sriov_pf_config_get_exec_quantum - Get VF's execution quantum.
1760  * @gt: the &xe_gt
1761  * @vfid: the VF identifier
1762  *
1763  * This function can only be called on PF.
1764  *
1765  * Return: VF's (or PF's) execution quantum in milliseconds.
1766  */
1767 u32 xe_gt_sriov_pf_config_get_exec_quantum(struct xe_gt *gt, unsigned int vfid)
1768 {
1769 	u32 exec_quantum;
1770 
1771 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1772 	exec_quantum = pf_get_exec_quantum(gt, vfid);
1773 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1774 
1775 	return exec_quantum;
1776 }
1777 
1778 static const char *preempt_timeout_unit(u32 preempt_timeout)
1779 {
1780 	return preempt_timeout ? "us" : "(infinity)";
1781 }
1782 
1783 static int pf_provision_preempt_timeout(struct xe_gt *gt, unsigned int vfid,
1784 					u32 preempt_timeout)
1785 {
1786 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1787 	int err;
1788 
1789 	err = pf_push_vf_cfg_preempt_timeout(gt, vfid, &preempt_timeout);
1790 	if (unlikely(err))
1791 		return err;
1792 
1793 	config->preempt_timeout = preempt_timeout;
1794 
1795 	return 0;
1796 }
1797 
1798 static int pf_get_preempt_timeout(struct xe_gt *gt, unsigned int vfid)
1799 {
1800 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1801 
1802 	return config->preempt_timeout;
1803 }
1804 
1805 /**
1806  * xe_gt_sriov_pf_config_set_preempt_timeout - Configure preemption timeout for the VF.
1807  * @gt: the &xe_gt
1808  * @vfid: the VF identifier
1809  * @preempt_timeout: requested preemption timeout in microseconds (0 is infinity)
1810  *
1811  * This function can only be called on PF.
1812  *
1813  * Return: 0 on success or a negative error code on failure.
1814  */
1815 int xe_gt_sriov_pf_config_set_preempt_timeout(struct xe_gt *gt, unsigned int vfid,
1816 					      u32 preempt_timeout)
1817 {
1818 	int err;
1819 
1820 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1821 	err = pf_provision_preempt_timeout(gt, vfid, preempt_timeout);
1822 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1823 
1824 	return pf_config_set_u32_done(gt, vfid, preempt_timeout,
1825 				      xe_gt_sriov_pf_config_get_preempt_timeout(gt, vfid),
1826 				      "preemption timeout", preempt_timeout_unit, err);
1827 }
1828 
1829 /**
1830  * xe_gt_sriov_pf_config_get_preempt_timeout - Get VF's preemption timeout.
1831  * @gt: the &xe_gt
1832  * @vfid: the VF identifier
1833  *
1834  * This function can only be called on PF.
1835  *
1836  * Return: VF's (or PF's) preemption timeout in microseconds.
1837  */
1838 u32 xe_gt_sriov_pf_config_get_preempt_timeout(struct xe_gt *gt, unsigned int vfid)
1839 {
1840 	u32 preempt_timeout;
1841 
1842 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1843 	preempt_timeout = pf_get_preempt_timeout(gt, vfid);
1844 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1845 
1846 	return preempt_timeout;
1847 }
1848 
1849 static const char *sched_priority_unit(u32 priority)
1850 {
1851 	return priority == GUC_SCHED_PRIORITY_LOW ? "(low)" :
1852 		priority == GUC_SCHED_PRIORITY_NORMAL ? "(normal)" :
1853 		priority == GUC_SCHED_PRIORITY_HIGH ? "(high)" :
1854 		"(?)";
1855 }
1856 
1857 static int pf_provision_sched_priority(struct xe_gt *gt, unsigned int vfid, u32 priority)
1858 {
1859 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1860 	int err;
1861 
1862 	err = pf_push_vf_cfg_sched_priority(gt, vfid, priority);
1863 	if (unlikely(err))
1864 		return err;
1865 
1866 	config->sched_priority = priority;
1867 	return 0;
1868 }
1869 
1870 static int pf_get_sched_priority(struct xe_gt *gt, unsigned int vfid)
1871 {
1872 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1873 
1874 	return config->sched_priority;
1875 }
1876 
1877 /**
1878  * xe_gt_sriov_pf_config_set_sched_priority() - Configure scheduling priority.
1879  * @gt: the &xe_gt
1880  * @vfid: the VF identifier
1881  * @priority: requested scheduling priority
1882  *
1883  * This function can only be called on PF.
1884  *
1885  * Return: 0 on success or a negative error code on failure.
1886  */
1887 int xe_gt_sriov_pf_config_set_sched_priority(struct xe_gt *gt, unsigned int vfid, u32 priority)
1888 {
1889 	int err;
1890 
1891 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1892 	err = pf_provision_sched_priority(gt, vfid, priority);
1893 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1894 
1895 	return pf_config_set_u32_done(gt, vfid, priority,
1896 				      xe_gt_sriov_pf_config_get_sched_priority(gt, vfid),
1897 				      "scheduling priority", sched_priority_unit, err);
1898 }
1899 
1900 /**
1901  * xe_gt_sriov_pf_config_get_sched_priority - Get VF's scheduling priority.
1902  * @gt: the &xe_gt
1903  * @vfid: the VF identifier
1904  *
1905  * This function can only be called on PF.
1906  *
1907  * Return: VF's (or PF's) scheduling priority.
1908  */
1909 u32 xe_gt_sriov_pf_config_get_sched_priority(struct xe_gt *gt, unsigned int vfid)
1910 {
1911 	u32 priority;
1912 
1913 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1914 	priority = pf_get_sched_priority(gt, vfid);
1915 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1916 
1917 	return priority;
1918 }
1919 
1920 static void pf_reset_config_sched(struct xe_gt *gt, struct xe_gt_sriov_config *config)
1921 {
1922 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
1923 
1924 	config->exec_quantum = 0;
1925 	config->preempt_timeout = 0;
1926 }
1927 
1928 static int pf_provision_threshold(struct xe_gt *gt, unsigned int vfid,
1929 				  enum xe_guc_klv_threshold_index index, u32 value)
1930 {
1931 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1932 	int err;
1933 
1934 	err = pf_push_vf_cfg_threshold(gt, vfid, index, value);
1935 	if (unlikely(err))
1936 		return err;
1937 
1938 	config->thresholds[index] = value;
1939 
1940 	return 0;
1941 }
1942 
1943 static int pf_get_threshold(struct xe_gt *gt, unsigned int vfid,
1944 			    enum xe_guc_klv_threshold_index index)
1945 {
1946 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
1947 
1948 	return config->thresholds[index];
1949 }
1950 
1951 static const char *threshold_unit(u32 threshold)
1952 {
1953 	return threshold ? "" : "(disabled)";
1954 }
1955 
1956 /**
1957  * xe_gt_sriov_pf_config_set_threshold - Configure threshold for the VF.
1958  * @gt: the &xe_gt
1959  * @vfid: the VF identifier
1960  * @index: the threshold index
1961  * @value: requested value (0 means disabled)
1962  *
1963  * This function can only be called on PF.
1964  *
1965  * Return: 0 on success or a negative error code on failure.
1966  */
1967 int xe_gt_sriov_pf_config_set_threshold(struct xe_gt *gt, unsigned int vfid,
1968 					enum xe_guc_klv_threshold_index index, u32 value)
1969 {
1970 	u32 key = xe_guc_klv_threshold_index_to_key(index);
1971 	const char *name = xe_guc_klv_key_to_string(key);
1972 	int err;
1973 
1974 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1975 	err = pf_provision_threshold(gt, vfid, index, value);
1976 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
1977 
1978 	return pf_config_set_u32_done(gt, vfid, value,
1979 				      xe_gt_sriov_pf_config_get_threshold(gt, vfid, index),
1980 				      name, threshold_unit, err);
1981 }
1982 
1983 /**
1984  * xe_gt_sriov_pf_config_get_threshold - Get VF's threshold.
1985  * @gt: the &xe_gt
1986  * @vfid: the VF identifier
1987  * @index: the threshold index
1988  *
1989  * This function can only be called on PF.
1990  *
1991  * Return: value of VF's (or PF's) threshold.
1992  */
1993 u32 xe_gt_sriov_pf_config_get_threshold(struct xe_gt *gt, unsigned int vfid,
1994 					enum xe_guc_klv_threshold_index index)
1995 {
1996 	u32 value;
1997 
1998 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
1999 	value = pf_get_threshold(gt, vfid, index);
2000 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2001 
2002 	return value;
2003 }
2004 
2005 static void pf_reset_config_thresholds(struct xe_gt *gt, struct xe_gt_sriov_config *config)
2006 {
2007 	lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
2008 
2009 #define reset_threshold_config(TAG, ...) ({				\
2010 	config->thresholds[MAKE_XE_GUC_KLV_THRESHOLD_INDEX(TAG)] = 0;	\
2011 });
2012 
2013 	MAKE_XE_GUC_KLV_THRESHOLDS_SET(reset_threshold_config);
2014 #undef reset_threshold_config
2015 }
2016 
2017 static void pf_release_vf_config(struct xe_gt *gt, unsigned int vfid)
2018 {
2019 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
2020 	struct xe_device *xe = gt_to_xe(gt);
2021 	bool released;
2022 
2023 	if (xe_gt_is_main_type(gt)) {
2024 		pf_release_vf_config_ggtt(gt, config);
2025 		if (IS_DGFX(xe)) {
2026 			released = pf_release_vf_config_lmem(gt, config);
2027 			if (released && xe_device_has_lmtt(xe))
2028 				pf_update_vf_lmtt(xe, vfid);
2029 		}
2030 	}
2031 	pf_release_config_ctxs(gt, config);
2032 	pf_release_config_dbs(gt, config);
2033 	pf_reset_config_sched(gt, config);
2034 	pf_reset_config_thresholds(gt, config);
2035 }
2036 
2037 /**
2038  * xe_gt_sriov_pf_config_release - Release and reset VF configuration.
2039  * @gt: the &xe_gt
2040  * @vfid: the VF identifier (can't be PF)
2041  * @force: force configuration release
2042  *
2043  * This function can only be called on PF.
2044  *
2045  * Return: 0 on success or a negative error code on failure.
2046  */
2047 int xe_gt_sriov_pf_config_release(struct xe_gt *gt, unsigned int vfid, bool force)
2048 {
2049 	int err;
2050 
2051 	xe_gt_assert(gt, vfid);
2052 
2053 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2054 	err = pf_send_vf_cfg_reset(gt, vfid);
2055 	if (!err || force)
2056 		pf_release_vf_config(gt, vfid);
2057 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2058 
2059 	if (unlikely(err)) {
2060 		xe_gt_sriov_notice(gt, "VF%u unprovisioning failed with error (%pe)%s\n",
2061 				   vfid, ERR_PTR(err),
2062 				   force ? " but all resources were released anyway!" : "");
2063 	}
2064 
2065 	return force ? 0 : err;
2066 }
2067 
2068 static void pf_sanitize_ggtt(struct xe_ggtt_node *ggtt_region, unsigned int vfid)
2069 {
2070 	if (xe_ggtt_node_allocated(ggtt_region))
2071 		xe_ggtt_assign(ggtt_region, vfid);
2072 }
2073 
2074 static int pf_sanitize_lmem(struct xe_tile *tile, struct xe_bo *bo, long timeout)
2075 {
2076 	struct xe_migrate *m = tile->migrate;
2077 	struct dma_fence *fence;
2078 	int err;
2079 
2080 	if (!bo)
2081 		return 0;
2082 
2083 	xe_bo_lock(bo, false);
2084 	fence = xe_migrate_clear(m, bo, bo->ttm.resource, XE_MIGRATE_CLEAR_FLAG_FULL);
2085 	if (IS_ERR(fence)) {
2086 		err = PTR_ERR(fence);
2087 	} else if (!fence) {
2088 		err = -ENOMEM;
2089 	} else {
2090 		long ret = dma_fence_wait_timeout(fence, false, timeout);
2091 
2092 		err = ret > 0 ? 0 : ret < 0 ? ret : -ETIMEDOUT;
2093 		dma_fence_put(fence);
2094 		if (!err)
2095 			xe_gt_sriov_dbg_verbose(tile->primary_gt, "LMEM cleared in %dms\n",
2096 						jiffies_to_msecs(timeout - ret));
2097 	}
2098 	xe_bo_unlock(bo);
2099 
2100 	return err;
2101 }
2102 
2103 static int pf_sanitize_vf_resources(struct xe_gt *gt, u32 vfid, long timeout)
2104 {
2105 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
2106 	struct xe_tile *tile = gt_to_tile(gt);
2107 	struct xe_device *xe = gt_to_xe(gt);
2108 	int err = 0;
2109 
2110 	/*
2111 	 * Only GGTT and LMEM requires to be cleared by the PF.
2112 	 * GuC doorbell IDs and context IDs do not need any clearing.
2113 	 */
2114 	if (xe_gt_is_main_type(gt)) {
2115 		pf_sanitize_ggtt(config->ggtt_region, vfid);
2116 		if (IS_DGFX(xe))
2117 			err = pf_sanitize_lmem(tile, config->lmem_obj, timeout);
2118 	}
2119 
2120 	return err;
2121 }
2122 
2123 /**
2124  * xe_gt_sriov_pf_config_sanitize() - Sanitize VF's resources.
2125  * @gt: the &xe_gt
2126  * @vfid: the VF identifier (can't be PF)
2127  * @timeout: maximum timeout to wait for completion in jiffies
2128  *
2129  * This function can only be called on PF.
2130  *
2131  * Return: 0 on success or a negative error code on failure.
2132  */
2133 int xe_gt_sriov_pf_config_sanitize(struct xe_gt *gt, unsigned int vfid, long timeout)
2134 {
2135 	int err;
2136 
2137 	xe_gt_assert(gt, vfid != PFID);
2138 
2139 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2140 	err = pf_sanitize_vf_resources(gt, vfid, timeout);
2141 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2142 
2143 	if (unlikely(err))
2144 		xe_gt_sriov_notice(gt, "VF%u resource sanitizing failed (%pe)\n",
2145 				   vfid, ERR_PTR(err));
2146 	return err;
2147 }
2148 
2149 /**
2150  * xe_gt_sriov_pf_config_push - Reprovision VF's configuration.
2151  * @gt: the &xe_gt
2152  * @vfid: the VF identifier (can't be PF)
2153  * @refresh: explicit refresh
2154  *
2155  * This function can only be called on PF.
2156  *
2157  * Return: 0 on success or a negative error code on failure.
2158  */
2159 int xe_gt_sriov_pf_config_push(struct xe_gt *gt, unsigned int vfid, bool refresh)
2160 {
2161 	int err = 0;
2162 
2163 	xe_gt_assert(gt, vfid);
2164 
2165 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2166 	err = pf_push_vf_cfg(gt, vfid, refresh);
2167 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2168 
2169 	if (unlikely(err)) {
2170 		xe_gt_sriov_notice(gt, "Failed to %s VF%u configuration (%pe)\n",
2171 				   refresh ? "refresh" : "push", vfid, ERR_PTR(err));
2172 	}
2173 
2174 	return err;
2175 }
2176 
2177 static int pf_validate_vf_config(struct xe_gt *gt, unsigned int vfid)
2178 {
2179 	struct xe_gt *primary_gt = gt_to_tile(gt)->primary_gt;
2180 	struct xe_device *xe = gt_to_xe(gt);
2181 	bool is_primary = xe_gt_is_main_type(gt);
2182 	bool valid_ggtt, valid_ctxs, valid_dbs;
2183 	bool valid_any, valid_all;
2184 
2185 	valid_ggtt = pf_get_vf_config_ggtt(primary_gt, vfid);
2186 	valid_ctxs = pf_get_vf_config_ctxs(gt, vfid);
2187 	valid_dbs = pf_get_vf_config_dbs(gt, vfid);
2188 
2189 	/* note that GuC doorbells are optional */
2190 	valid_any = valid_ctxs || valid_dbs;
2191 	valid_all = valid_ctxs;
2192 
2193 	/* and GGTT/LMEM is configured on primary GT only */
2194 	valid_all = valid_all && valid_ggtt;
2195 	valid_any = valid_any || (valid_ggtt && is_primary);
2196 
2197 	if (xe_device_has_lmtt(xe)) {
2198 		bool valid_lmem = pf_get_vf_config_lmem(primary_gt, vfid);
2199 
2200 		valid_any = valid_any || (valid_lmem && is_primary);
2201 		valid_all = valid_all && valid_lmem;
2202 	}
2203 
2204 	return valid_all ? 0 : valid_any ? -ENOKEY : -ENODATA;
2205 }
2206 
2207 /**
2208  * xe_gt_sriov_pf_config_is_empty - Check VF's configuration.
2209  * @gt: the &xe_gt
2210  * @vfid: the VF identifier (can't be PF)
2211  *
2212  * This function can only be called on PF.
2213  *
2214  * Return: true if VF mandatory configuration (GGTT, LMEM, ...) is empty.
2215  */
2216 bool xe_gt_sriov_pf_config_is_empty(struct xe_gt *gt, unsigned int vfid)
2217 {
2218 	bool empty;
2219 
2220 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
2221 	xe_gt_assert(gt, vfid);
2222 
2223 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2224 	empty = pf_validate_vf_config(gt, vfid) == -ENODATA;
2225 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2226 
2227 	return empty;
2228 }
2229 
2230 /**
2231  * xe_gt_sriov_pf_config_save - Save a VF provisioning config as binary blob.
2232  * @gt: the &xe_gt
2233  * @vfid: the VF identifier (can't be PF)
2234  * @buf: the buffer to save a config to (or NULL if query the buf size)
2235  * @size: the size of the buffer (or 0 if query the buf size)
2236  *
2237  * This function can only be called on PF.
2238  *
2239  * Return: minimum size of the buffer or the number of bytes saved,
2240  *         or a negative error code on failure.
2241  */
2242 ssize_t xe_gt_sriov_pf_config_save(struct xe_gt *gt, unsigned int vfid, void *buf, size_t size)
2243 {
2244 	struct xe_gt_sriov_config *config;
2245 	ssize_t ret;
2246 
2247 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
2248 	xe_gt_assert(gt, vfid);
2249 	xe_gt_assert(gt, !(!buf ^ !size));
2250 
2251 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2252 	ret = pf_validate_vf_config(gt, vfid);
2253 	if (!size) {
2254 		ret = ret ? 0 : SZ_4K;
2255 	} else if (!ret) {
2256 		if (size < SZ_4K) {
2257 			ret = -ENOBUFS;
2258 		} else {
2259 			config = pf_pick_vf_config(gt, vfid);
2260 			ret = encode_config(buf, config, false) * sizeof(u32);
2261 		}
2262 	}
2263 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2264 
2265 	return ret;
2266 }
2267 
2268 static int pf_restore_vf_config_klv(struct xe_gt *gt, unsigned int vfid,
2269 				    u32 key, u32 len, const u32 *value)
2270 {
2271 	switch (key) {
2272 	case GUC_KLV_VF_CFG_NUM_CONTEXTS_KEY:
2273 		if (len != GUC_KLV_VF_CFG_NUM_CONTEXTS_LEN)
2274 			return -EBADMSG;
2275 		return pf_provision_vf_ctxs(gt, vfid, value[0]);
2276 
2277 	case GUC_KLV_VF_CFG_NUM_DOORBELLS_KEY:
2278 		if (len != GUC_KLV_VF_CFG_NUM_DOORBELLS_LEN)
2279 			return -EBADMSG;
2280 		return pf_provision_vf_dbs(gt, vfid, value[0]);
2281 
2282 	case GUC_KLV_VF_CFG_EXEC_QUANTUM_KEY:
2283 		if (len != GUC_KLV_VF_CFG_EXEC_QUANTUM_LEN)
2284 			return -EBADMSG;
2285 		return pf_provision_exec_quantum(gt, vfid, value[0]);
2286 
2287 	case GUC_KLV_VF_CFG_PREEMPT_TIMEOUT_KEY:
2288 		if (len != GUC_KLV_VF_CFG_PREEMPT_TIMEOUT_LEN)
2289 			return -EBADMSG;
2290 		return pf_provision_preempt_timeout(gt, vfid, value[0]);
2291 
2292 	/* auto-generate case statements */
2293 #define define_threshold_key_to_provision_case(TAG, ...)				\
2294 	case MAKE_GUC_KLV_VF_CFG_THRESHOLD_KEY(TAG):					\
2295 		BUILD_BUG_ON(MAKE_GUC_KLV_VF_CFG_THRESHOLD_LEN(TAG) != 1u);		\
2296 		if (len != MAKE_GUC_KLV_VF_CFG_THRESHOLD_LEN(TAG))			\
2297 			return -EBADMSG;						\
2298 		return pf_provision_threshold(gt, vfid,					\
2299 					      MAKE_XE_GUC_KLV_THRESHOLD_INDEX(TAG),	\
2300 					      value[0]);
2301 
2302 	MAKE_XE_GUC_KLV_THRESHOLDS_SET(define_threshold_key_to_provision_case)
2303 #undef define_threshold_key_to_provision_case
2304 	}
2305 
2306 	if (xe_gt_is_media_type(gt))
2307 		return -EKEYREJECTED;
2308 
2309 	switch (key) {
2310 	case GUC_KLV_VF_CFG_GGTT_SIZE_KEY:
2311 		if (len != GUC_KLV_VF_CFG_GGTT_SIZE_LEN)
2312 			return -EBADMSG;
2313 		return pf_provision_vf_ggtt(gt, vfid, make_u64_from_u32(value[1], value[0]));
2314 
2315 	case GUC_KLV_VF_CFG_LMEM_SIZE_KEY:
2316 		if (!IS_DGFX(gt_to_xe(gt)))
2317 			return -EKEYREJECTED;
2318 		if (len != GUC_KLV_VF_CFG_LMEM_SIZE_LEN)
2319 			return -EBADMSG;
2320 		return pf_provision_vf_lmem(gt, vfid, make_u64_from_u32(value[1], value[0]));
2321 	}
2322 
2323 	return -EKEYREJECTED;
2324 }
2325 
2326 static int pf_restore_vf_config(struct xe_gt *gt, unsigned int vfid,
2327 				const u32 *klvs, size_t num_dwords)
2328 {
2329 	int err;
2330 
2331 	while (num_dwords >= GUC_KLV_LEN_MIN) {
2332 		u32 key = FIELD_GET(GUC_KLV_0_KEY, klvs[0]);
2333 		u32 len = FIELD_GET(GUC_KLV_0_LEN, klvs[0]);
2334 
2335 		klvs += GUC_KLV_LEN_MIN;
2336 		num_dwords -= GUC_KLV_LEN_MIN;
2337 
2338 		if (num_dwords < len)
2339 			err = -EBADMSG;
2340 		else
2341 			err = pf_restore_vf_config_klv(gt, vfid, key, len, klvs);
2342 
2343 		if (err) {
2344 			xe_gt_sriov_dbg(gt, "restore failed on key %#x (%pe)\n", key, ERR_PTR(err));
2345 			return err;
2346 		}
2347 
2348 		klvs += len;
2349 		num_dwords -= len;
2350 	}
2351 
2352 	return pf_validate_vf_config(gt, vfid);
2353 }
2354 
2355 /**
2356  * xe_gt_sriov_pf_config_restore - Restore a VF provisioning config from binary blob.
2357  * @gt: the &xe_gt
2358  * @vfid: the VF identifier (can't be PF)
2359  * @buf: the buffer with config data
2360  * @size: the size of the config data
2361  *
2362  * This function can only be called on PF.
2363  *
2364  * Return: 0 on success or a negative error code on failure.
2365  */
2366 int xe_gt_sriov_pf_config_restore(struct xe_gt *gt, unsigned int vfid,
2367 				  const void *buf, size_t size)
2368 {
2369 	int err;
2370 
2371 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
2372 	xe_gt_assert(gt, vfid);
2373 
2374 	if (!size)
2375 		return -ENODATA;
2376 
2377 	if (size % sizeof(u32))
2378 		return -EINVAL;
2379 
2380 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV)) {
2381 		struct drm_printer p = xe_gt_dbg_printer(gt);
2382 
2383 		drm_printf(&p, "restoring VF%u config:\n", vfid);
2384 		xe_guc_klv_print(buf, size / sizeof(u32), &p);
2385 	}
2386 
2387 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2388 	err = pf_send_vf_cfg_reset(gt, vfid);
2389 	if (!err) {
2390 		pf_release_vf_config(gt, vfid);
2391 		err = pf_restore_vf_config(gt, vfid, buf, size / sizeof(u32));
2392 	}
2393 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2394 
2395 	return err;
2396 }
2397 
2398 static void pf_prepare_self_config(struct xe_gt *gt)
2399 {
2400 	struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, PFID);
2401 
2402 	/*
2403 	 * We want PF to be allowed to use all of context ID, doorbells IDs
2404 	 * and whole usable GGTT area. While we can store ctxs/dbs numbers
2405 	 * directly in the config structure, can't do the same with the GGTT
2406 	 * configuration, so let it be prepared on demand while pushing KLVs.
2407 	 */
2408 	config->num_ctxs = GUC_ID_MAX;
2409 	config->num_dbs = GUC_NUM_DOORBELLS;
2410 }
2411 
2412 static int pf_push_self_config(struct xe_gt *gt)
2413 {
2414 	int err;
2415 
2416 	err = pf_push_full_vf_config(gt, PFID);
2417 	if (err) {
2418 		xe_gt_sriov_err(gt, "Failed to push self configuration (%pe)\n",
2419 				ERR_PTR(err));
2420 		return err;
2421 	}
2422 
2423 	xe_gt_sriov_dbg_verbose(gt, "self configuration completed\n");
2424 	return 0;
2425 }
2426 
2427 static void fini_config(void *arg)
2428 {
2429 	struct xe_gt *gt = arg;
2430 	struct xe_device *xe = gt_to_xe(gt);
2431 	unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(xe);
2432 
2433 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2434 	for (n = 1; n <= total_vfs; n++)
2435 		pf_release_vf_config(gt, n);
2436 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2437 }
2438 
2439 /**
2440  * xe_gt_sriov_pf_config_init - Initialize SR-IOV configuration data.
2441  * @gt: the &xe_gt
2442  *
2443  * This function can only be called on PF.
2444  *
2445  * Return: 0 on success or a negative error code on failure.
2446  */
2447 int xe_gt_sriov_pf_config_init(struct xe_gt *gt)
2448 {
2449 	struct xe_device *xe = gt_to_xe(gt);
2450 	int err;
2451 
2452 	xe_gt_assert(gt, IS_SRIOV_PF(xe));
2453 
2454 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2455 	pf_prepare_self_config(gt);
2456 	err = pf_push_self_config(gt);
2457 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2458 
2459 	if (err)
2460 		return err;
2461 
2462 	return devm_add_action_or_reset(xe->drm.dev, fini_config, gt);
2463 }
2464 
2465 /**
2466  * xe_gt_sriov_pf_config_restart - Restart SR-IOV configurations after a GT reset.
2467  * @gt: the &xe_gt
2468  *
2469  * Any prior configurations pushed to GuC are lost when the GT is reset.
2470  * Push again all non-empty VF configurations to the GuC.
2471  *
2472  * This function can only be called on PF.
2473  */
2474 void xe_gt_sriov_pf_config_restart(struct xe_gt *gt)
2475 {
2476 	unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
2477 	unsigned int fail = 0, skip = 0;
2478 
2479 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2480 	pf_push_self_config(gt);
2481 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2482 
2483 	for (n = 1; n <= total_vfs; n++) {
2484 		if (xe_gt_sriov_pf_config_is_empty(gt, n))
2485 			skip++;
2486 		else if (xe_gt_sriov_pf_config_push(gt, n, false))
2487 			fail++;
2488 	}
2489 
2490 	if (fail)
2491 		xe_gt_sriov_notice(gt, "Failed to push %u of %u VF%s configurations\n",
2492 				   fail, total_vfs - skip, str_plural(total_vfs));
2493 
2494 	if (fail != total_vfs)
2495 		xe_gt_sriov_dbg(gt, "pushed %u skip %u of %u VF%s configurations\n",
2496 				total_vfs - skip - fail, skip, total_vfs, str_plural(total_vfs));
2497 }
2498 
2499 /**
2500  * xe_gt_sriov_pf_config_print_ggtt - Print GGTT configurations.
2501  * @gt: the &xe_gt
2502  * @p: the &drm_printer
2503  *
2504  * Print GGTT configuration data for all VFs.
2505  * VFs without provisioned GGTT are ignored.
2506  *
2507  * This function can only be called on PF.
2508  */
2509 int xe_gt_sriov_pf_config_print_ggtt(struct xe_gt *gt, struct drm_printer *p)
2510 {
2511 	unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
2512 	const struct xe_gt_sriov_config *config;
2513 	char buf[10];
2514 
2515 	for (n = 1; n <= total_vfs; n++) {
2516 		config = &gt->sriov.pf.vfs[n].config;
2517 		if (!xe_ggtt_node_allocated(config->ggtt_region))
2518 			continue;
2519 
2520 		string_get_size(config->ggtt_region->base.size, 1, STRING_UNITS_2,
2521 				buf, sizeof(buf));
2522 		drm_printf(p, "VF%u:\t%#0llx-%#llx\t(%s)\n",
2523 			   n, config->ggtt_region->base.start,
2524 			   config->ggtt_region->base.start + config->ggtt_region->base.size - 1,
2525 			   buf);
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 /**
2532  * xe_gt_sriov_pf_config_print_ctxs - Print GuC context IDs configurations.
2533  * @gt: the &xe_gt
2534  * @p: the &drm_printer
2535  *
2536  * Print GuC context ID allocations across all VFs.
2537  * VFs without GuC context IDs are skipped.
2538  *
2539  * This function can only be called on PF.
2540  * Return: 0 on success or a negative error code on failure.
2541  */
2542 int xe_gt_sriov_pf_config_print_ctxs(struct xe_gt *gt, struct drm_printer *p)
2543 {
2544 	unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
2545 	const struct xe_gt_sriov_config *config;
2546 
2547 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
2548 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2549 
2550 	for (n = 1; n <= total_vfs; n++) {
2551 		config = &gt->sriov.pf.vfs[n].config;
2552 		if (!config->num_ctxs)
2553 			continue;
2554 
2555 		drm_printf(p, "VF%u:\t%u-%u\t(%u)\n",
2556 			   n,
2557 			   config->begin_ctx,
2558 			   config->begin_ctx + config->num_ctxs - 1,
2559 			   config->num_ctxs);
2560 	}
2561 
2562 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2563 	return 0;
2564 }
2565 
2566 /**
2567  * xe_gt_sriov_pf_config_print_dbs - Print GuC doorbell ID configurations.
2568  * @gt: the &xe_gt
2569  * @p: the &drm_printer
2570  *
2571  * Print GuC doorbell IDs allocations across all VFs.
2572  * VFs without GuC doorbell IDs are skipped.
2573  *
2574  * This function can only be called on PF.
2575  * Return: 0 on success or a negative error code on failure.
2576  */
2577 int xe_gt_sriov_pf_config_print_dbs(struct xe_gt *gt, struct drm_printer *p)
2578 {
2579 	unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
2580 	const struct xe_gt_sriov_config *config;
2581 
2582 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
2583 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2584 
2585 	for (n = 1; n <= total_vfs; n++) {
2586 		config = &gt->sriov.pf.vfs[n].config;
2587 		if (!config->num_dbs)
2588 			continue;
2589 
2590 		drm_printf(p, "VF%u:\t%u-%u\t(%u)\n",
2591 			   n,
2592 			   config->begin_db,
2593 			   config->begin_db + config->num_dbs - 1,
2594 			   config->num_dbs);
2595 	}
2596 
2597 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2598 	return 0;
2599 }
2600 
2601 /**
2602  * xe_gt_sriov_pf_config_print_lmem - Print LMEM configurations.
2603  * @gt: the &xe_gt
2604  * @p: the &drm_printer
2605  *
2606  * Print LMEM allocations across all VFs.
2607  * VFs without LMEM allocation are skipped.
2608  *
2609  * This function can only be called on PF.
2610  * Return: 0 on success or a negative error code on failure.
2611  */
2612 int xe_gt_sriov_pf_config_print_lmem(struct xe_gt *gt, struct drm_printer *p)
2613 {
2614 	unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
2615 	const struct xe_gt_sriov_config *config;
2616 	char buf[10];
2617 
2618 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
2619 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2620 
2621 	for (n = 1; n <= total_vfs; n++) {
2622 		config = &gt->sriov.pf.vfs[n].config;
2623 		if (!config->lmem_obj)
2624 			continue;
2625 
2626 		string_get_size(xe_bo_size(config->lmem_obj), 1, STRING_UNITS_2,
2627 				buf, sizeof(buf));
2628 		drm_printf(p, "VF%u:\t%zu\t(%s)\n",
2629 			   n, xe_bo_size(config->lmem_obj), buf);
2630 	}
2631 
2632 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2633 	return 0;
2634 }
2635 
2636 /**
2637  * xe_gt_sriov_pf_config_print_available_ggtt - Print available GGTT ranges.
2638  * @gt: the &xe_gt
2639  * @p: the &drm_printer
2640  *
2641  * Print GGTT ranges that are available for the provisioning.
2642  *
2643  * This function can only be called on PF.
2644  */
2645 int xe_gt_sriov_pf_config_print_available_ggtt(struct xe_gt *gt, struct drm_printer *p)
2646 {
2647 	struct xe_ggtt *ggtt = gt_to_tile(gt)->mem.ggtt;
2648 	u64 alignment = pf_get_ggtt_alignment(gt);
2649 	u64 spare, avail, total;
2650 	char buf[10];
2651 
2652 	xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
2653 
2654 	mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
2655 
2656 	spare = pf_get_spare_ggtt(gt);
2657 	total = xe_ggtt_print_holes(ggtt, alignment, p);
2658 
2659 	mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
2660 
2661 	string_get_size(total, 1, STRING_UNITS_2, buf, sizeof(buf));
2662 	drm_printf(p, "total:\t%llu\t(%s)\n", total, buf);
2663 
2664 	string_get_size(spare, 1, STRING_UNITS_2, buf, sizeof(buf));
2665 	drm_printf(p, "spare:\t%llu\t(%s)\n", spare, buf);
2666 
2667 	avail = total > spare ? total - spare : 0;
2668 
2669 	string_get_size(avail, 1, STRING_UNITS_2, buf, sizeof(buf));
2670 	drm_printf(p, "avail:\t%llu\t(%s)\n", avail, buf);
2671 
2672 	return 0;
2673 }
2674