xref: /linux/drivers/gpu/drm/xe/xe_gt_mcr.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_gt_mcr.h"
7 
8 #include "regs/xe_gt_regs.h"
9 #include "xe_gt.h"
10 #include "xe_gt_topology.h"
11 #include "xe_gt_types.h"
12 #include "xe_mmio.h"
13 #include "xe_sriov.h"
14 
15 /**
16  * DOC: GT Multicast/Replicated (MCR) Register Support
17  *
18  * Some GT registers are designed as "multicast" or "replicated" registers:
19  * multiple instances of the same register share a single MMIO offset.  MCR
20  * registers are generally used when the hardware needs to potentially track
21  * independent values of a register per hardware unit (e.g., per-subslice,
22  * per-L3bank, etc.).  The specific types of replication that exist vary
23  * per-platform.
24  *
25  * MMIO accesses to MCR registers are controlled according to the settings
26  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
27  * registers can be done in either multicast (a single write updates all
28  * instances of the register to the same value) or unicast (a write updates only
29  * one specific instance) form.  Reads of MCR registers always operate in a
30  * unicast manner regardless of how the multicast/unicast bit is set in
31  * MCR_SELECTOR.  Selection of a specific MCR instance for unicast operations is
32  * referred to as "steering."
33  *
34  * If MCR register operations are steered toward a hardware unit that is
35  * fused off or currently powered down due to power gating, the MMIO operation
36  * is "terminated" by the hardware.  Terminated read operations will return a
37  * value of zero and terminated unicast write operations will be silently
38  * ignored. During device initialization, the goal of the various
39  * ``init_steering_*()`` functions is to apply the platform-specific rules for
40  * each MCR register type to identify a steering target that will select a
41  * non-terminated instance.
42  *
43  * MCR registers are not available on Virtual Function (VF).
44  */
45 
46 #define STEER_SEMAPHORE		XE_REG(0xFD0)
47 
48 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
49 {
50 	return reg_mcr.__reg;
51 }
52 
53 enum {
54 	MCR_OP_READ,
55 	MCR_OP_WRITE
56 };
57 
58 static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
59 	{ 0x00B100, 0x00B3FF },
60 	{},
61 };
62 
63 static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
64 	{ 0x008C80, 0x008CFF },
65 	{ 0x00B100, 0x00B3FF },
66 	{},
67 };
68 
69 /*
70  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
71  * are of a "GAM" subclass that has special rules and doesn't need to be
72  * included here.
73  */
74 static const struct xe_mmio_range xehp_mslice_steering_table[] = {
75 	{ 0x00DD00, 0x00DDFF },
76 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
77 	{},
78 };
79 
80 static const struct xe_mmio_range xehp_lncf_steering_table[] = {
81 	{ 0x00B000, 0x00B0FF },
82 	{ 0x00D880, 0x00D8FF },
83 	{},
84 };
85 
86 /*
87  * We have several types of MCR registers where steering to (0,0) will always
88  * provide us with a non-terminated value.  We'll stick them all in the same
89  * table for simplicity.
90  */
91 static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
92 	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
93 	{ 0x008800, 0x00887F },		/* CC */
94 	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
95 	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
96 	{ 0x00B100, 0x00B3FF },		/* L3BANK */
97 	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
98 	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
99 	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
100 	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
101 	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
102 	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
103 	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
104 	{},
105 };
106 
107 static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
108 	{ 0x000B00, 0x000BFF },         /* SQIDI */
109 	{ 0x001000, 0x001FFF },         /* SQIDI */
110 	{ 0x004000, 0x0048FF },         /* GAM */
111 	{ 0x008700, 0x0087FF },         /* SQIDI */
112 	{ 0x00B000, 0x00B0FF },         /* NODE */
113 	{ 0x00C800, 0x00CFFF },         /* GAM */
114 	{ 0x00D880, 0x00D8FF },         /* NODE */
115 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
116 	{},
117 };
118 
119 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
120 	{ 0x00B100, 0x00B3FF },
121 	{},
122 };
123 
124 static const struct xe_mmio_range xelp_dss_steering_table[] = {
125 	{ 0x008150, 0x00815F },
126 	{ 0x009520, 0x00955F },
127 	{ 0x00DE80, 0x00E8FF },
128 	{ 0x024A00, 0x024A7F },
129 	{},
130 };
131 
132 /* DSS steering is used for GSLICE ranges as well */
133 static const struct xe_mmio_range xehp_dss_steering_table[] = {
134 	{ 0x005200, 0x0052FF },		/* GSLICE */
135 	{ 0x005400, 0x007FFF },		/* GSLICE */
136 	{ 0x008140, 0x00815F },		/* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
137 	{ 0x008D00, 0x008DFF },		/* DSS */
138 	{ 0x0094D0, 0x00955F },		/* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
139 	{ 0x009680, 0x0096FF },		/* DSS */
140 	{ 0x00D800, 0x00D87F },		/* GSLICE */
141 	{ 0x00DC00, 0x00DCFF },		/* GSLICE */
142 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved ) */
143 	{ 0x017000, 0x017FFF },		/* GSLICE */
144 	{ 0x024A00, 0x024A7F },		/* DSS */
145 	{},
146 };
147 
148 /* DSS steering is used for COMPUTE ranges as well */
149 static const struct xe_mmio_range xehpc_dss_steering_table[] = {
150 	{ 0x008140, 0x00817F },		/* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
151 	{ 0x0094D0, 0x00955F },		/* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
152 	{ 0x009680, 0x0096FF },		/* DSS */
153 	{ 0x00DC00, 0x00DCFF },		/* COMPUTE */
154 	{ 0x00DE80, 0x00E7FF },		/* DSS (0xDF00-0xE1FF reserved ) */
155 	{},
156 };
157 
158 /* DSS steering is used for SLICE ranges as well */
159 static const struct xe_mmio_range xelpg_dss_steering_table[] = {
160 	{ 0x005200, 0x0052FF },		/* SLICE */
161 	{ 0x005500, 0x007FFF },		/* SLICE */
162 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
163 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
164 	{ 0x009680, 0x0096FF },		/* DSS */
165 	{ 0x00D800, 0x00D87F },		/* SLICE */
166 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
167 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
168 	{},
169 };
170 
171 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
172 	{ 0x393200, 0x39323F },
173 	{ 0x393400, 0x3934FF },
174 	{},
175 };
176 
177 static const struct xe_mmio_range dg2_implicit_steering_table[] = {
178 	{ 0x000B00, 0x000BFF },		/* SF (SQIDI replication) */
179 	{ 0x001000, 0x001FFF },		/* SF (SQIDI replication) */
180 	{ 0x004000, 0x004AFF },		/* GAM (MSLICE replication) */
181 	{ 0x008700, 0x0087FF },		/* MCFG (SQIDI replication) */
182 	{ 0x00C800, 0x00CFFF },		/* GAM (MSLICE replication) */
183 	{ 0x00F000, 0x00FFFF },		/* GAM (MSLICE replication) */
184 	{},
185 };
186 
187 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
188 	{ 0x005200, 0x0052FF },         /* SLICE */
189 	{ 0x005500, 0x007FFF },         /* SLICE */
190 	{ 0x008140, 0x00815F },         /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
191 	{ 0x0094D0, 0x00955F },         /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
192 	{ 0x009680, 0x0096FF },         /* DSS */
193 	{ 0x00D800, 0x00D87F },         /* SLICE */
194 	{ 0x00DC00, 0x00DCFF },         /* SLICE */
195 	{ 0x00DE80, 0x00E8FF },         /* DSS (0xE000-0xE0FF reserved) */
196 	{ 0x00E980, 0x00E9FF },         /* SLICE */
197 	{ 0x013000, 0x0133FF },         /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
198 	{},
199 };
200 
201 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
202 	{ 0x000B00, 0x000BFF },
203 	{ 0x001000, 0x001FFF },
204 	{},
205 };
206 
207 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
208 	{ 0x004000, 0x004AFF },         /* GAM, rsvd, GAMWKR */
209 	{ 0x008700, 0x00887F },         /* SQIDI, MEMPIPE */
210 	{ 0x00B000, 0x00B3FF },         /* NODE, L3BANK */
211 	{ 0x00C800, 0x00CFFF },         /* GAM */
212 	{ 0x00D880, 0x00D8FF },         /* NODE */
213 	{ 0x00DD00, 0x00DDFF },         /* MEMPIPE */
214 	{ 0x00E900, 0x00E97F },         /* MEMPIPE */
215 	{ 0x00F000, 0x00FFFF },         /* GAM, GAMWKR */
216 	{ 0x013400, 0x0135FF },         /* MEMPIPE */
217 	{},
218 };
219 
220 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
221 	{ 0x388160, 0x38817F },
222 	{ 0x389480, 0x3894CF },
223 	{},
224 };
225 
226 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
227 	{ 0x384000, 0x3847DF },         /* GAM, rsvd, GAM */
228 	{ 0x384900, 0x384AFF },         /* GAM */
229 	{ 0x389560, 0x3895FF },         /* MEDIAINF */
230 	{ 0x38B600, 0x38B8FF },         /* L3BANK */
231 	{ 0x38C800, 0x38D07F },         /* GAM, MEDIAINF */
232 	{ 0x38F000, 0x38F0FF },         /* GAM */
233 	{ 0x393C00, 0x393C7F },         /* MEDIAINF */
234 	{},
235 };
236 
237 static void init_steering_l3bank(struct xe_gt *gt)
238 {
239 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
240 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
241 						xe_mmio_read32(gt, MIRROR_FUSE3));
242 		u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
243 					      xe_mmio_read32(gt, XEHP_FUSE4));
244 
245 		/*
246 		 * Group selects mslice, instance selects bank within mslice.
247 		 * Bank 0 is always valid _except_ when the bank mask is 010b.
248 		 */
249 		gt->steering[L3BANK].group_target = __ffs(mslice_mask);
250 		gt->steering[L3BANK].instance_target =
251 			bank_mask & BIT(0) ? 0 : 2;
252 	} else if (gt_to_xe(gt)->info.platform == XE_DG2) {
253 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
254 						xe_mmio_read32(gt, MIRROR_FUSE3));
255 		u32 bank = __ffs(mslice_mask) * 8;
256 
257 		/*
258 		 * Like mslice registers, look for a valid mslice and steer to
259 		 * the first L3BANK of that quad. Access to the Nth L3 bank is
260 		 * split between the first bits of group and instance
261 		 */
262 		gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
263 		gt->steering[L3BANK].instance_target = bank & 0x3;
264 	} else {
265 		u32 fuse = REG_FIELD_GET(L3BANK_MASK,
266 					 ~xe_mmio_read32(gt, MIRROR_FUSE3));
267 
268 		gt->steering[L3BANK].group_target = 0;	/* unused */
269 		gt->steering[L3BANK].instance_target = __ffs(fuse);
270 	}
271 }
272 
273 static void init_steering_mslice(struct xe_gt *gt)
274 {
275 	u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
276 				 xe_mmio_read32(gt, MIRROR_FUSE3));
277 
278 	/*
279 	 * mslice registers are valid (not terminated) if either the meml3
280 	 * associated with the mslice is present, or at least one DSS associated
281 	 * with the mslice is present.  There will always be at least one meml3
282 	 * so we can just use that to find a non-terminated mslice and ignore
283 	 * the DSS fusing.
284 	 */
285 	gt->steering[MSLICE].group_target = __ffs(mask);
286 	gt->steering[MSLICE].instance_target = 0;	/* unused */
287 
288 	/*
289 	 * LNCF termination is also based on mslice presence, so we'll set
290 	 * it up here.  Either LNCF within a non-terminated mslice will work,
291 	 * so we just always pick LNCF 0 here.
292 	 */
293 	gt->steering[LNCF].group_target = __ffs(mask) << 1;
294 	gt->steering[LNCF].instance_target = 0;		/* unused */
295 }
296 
297 static void init_steering_dss(struct xe_gt *gt)
298 {
299 	unsigned int dss = min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
300 			       xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0));
301 	unsigned int dss_per_grp = gt_to_xe(gt)->info.platform == XE_PVC ? 8 : 4;
302 
303 	gt->steering[DSS].group_target = dss / dss_per_grp;
304 	gt->steering[DSS].instance_target = dss % dss_per_grp;
305 }
306 
307 static void init_steering_oaddrm(struct xe_gt *gt)
308 {
309 	/*
310 	 * First instance is only terminated if the entire first media slice
311 	 * is absent (i.e., no VCS0 or VECS0).
312 	 */
313 	if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
314 		gt->steering[OADDRM].group_target = 0;
315 	else
316 		gt->steering[OADDRM].group_target = 1;
317 
318 	gt->steering[DSS].instance_target = 0;		/* unused */
319 }
320 
321 static void init_steering_sqidi_psmi(struct xe_gt *gt)
322 {
323 	u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
324 				 xe_mmio_read32(gt, MIRROR_FUSE3));
325 	u32 select = __ffs(mask);
326 
327 	gt->steering[SQIDI_PSMI].group_target = select >> 1;
328 	gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
329 }
330 
331 static void init_steering_inst0(struct xe_gt *gt)
332 {
333 	gt->steering[DSS].group_target = 0;		/* unused */
334 	gt->steering[DSS].instance_target = 0;		/* unused */
335 }
336 
337 static const struct {
338 	const char *name;
339 	void (*init)(struct xe_gt *gt);
340 } xe_steering_types[] = {
341 	[L3BANK] =	{ "L3BANK",	init_steering_l3bank },
342 	[MSLICE] =	{ "MSLICE",	init_steering_mslice },
343 	[LNCF] =	{ "LNCF",	NULL }, /* initialized by mslice init */
344 	[DSS] =		{ "DSS",	init_steering_dss },
345 	[OADDRM] =	{ "OADDRM / GPMXMT", init_steering_oaddrm },
346 	[SQIDI_PSMI] =  { "SQIDI_PSMI", init_steering_sqidi_psmi },
347 	[INSTANCE0] =	{ "INSTANCE 0",	init_steering_inst0 },
348 	[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
349 };
350 
351 void xe_gt_mcr_init(struct xe_gt *gt)
352 {
353 	struct xe_device *xe = gt_to_xe(gt);
354 
355 	BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
356 	BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
357 
358 	if (IS_SRIOV_VF(xe))
359 		return;
360 
361 	spin_lock_init(&gt->mcr_lock);
362 
363 	if (gt->info.type == XE_GT_TYPE_MEDIA) {
364 		drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
365 
366 		if (MEDIA_VER(xe) >= 20) {
367 			gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
368 			gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
369 		} else {
370 			gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
371 		}
372 	} else {
373 		if (GRAPHICS_VER(xe) >= 20) {
374 			gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
375 			gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
376 			gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
377 		} else if (GRAPHICS_VERx100(xe) >= 1270) {
378 			gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
379 			gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
380 			gt->steering[DSS].ranges = xelpg_dss_steering_table;
381 		} else if (xe->info.platform == XE_PVC) {
382 			gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
383 			gt->steering[DSS].ranges = xehpc_dss_steering_table;
384 		} else if (xe->info.platform == XE_DG2) {
385 			gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
386 			gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
387 			gt->steering[LNCF].ranges = xehp_lncf_steering_table;
388 			gt->steering[DSS].ranges = xehp_dss_steering_table;
389 			gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
390 		} else {
391 			gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
392 			gt->steering[DSS].ranges = xelp_dss_steering_table;
393 		}
394 	}
395 
396 	/* Select non-terminated steering target for each type */
397 	for (int i = 0; i < NUM_STEERING_TYPES; i++)
398 		if (gt->steering[i].ranges && xe_steering_types[i].init)
399 			xe_steering_types[i].init(gt);
400 }
401 
402 /**
403  * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
404  * @gt: GT structure
405  *
406  * Some register ranges don't need to have their steering control registers
407  * changed on each access - it's sufficient to set them once on initialization.
408  * This function sets those registers for each platform *
409  */
410 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
411 {
412 	struct xe_device *xe = gt_to_xe(gt);
413 
414 	if (IS_SRIOV_VF(xe))
415 		return;
416 
417 	if (xe->info.platform == XE_DG2) {
418 		u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
419 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
420 
421 		xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val);
422 		xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val);
423 		/*
424 		 * For GAM registers, all reads should be directed to instance 1
425 		 * (unicast reads against other instances are not allowed),
426 		 * and instance 1 is already the hardware's default steering
427 		 * target, which we never change
428 		 */
429 	}
430 }
431 
432 /*
433  * xe_gt_mcr_get_nonterminated_steering - find group/instance values that
434  *    will steer a register to a non-terminated instance
435  * @gt: GT structure
436  * @reg: register for which the steering is required
437  * @group: return variable for group steering
438  * @instance: return variable for instance steering
439  *
440  * This function returns a group/instance pair that is guaranteed to work for
441  * read steering of the given register. Note that a value will be returned even
442  * if the register is not replicated and therefore does not actually require
443  * steering.
444  *
445  * Returns true if the caller should steer to the @group/@instance values
446  * returned.  Returns false if the caller need not perform any steering
447  */
448 static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
449 						 struct xe_reg_mcr reg_mcr,
450 						 u8 *group, u8 *instance)
451 {
452 	const struct xe_reg reg = to_xe_reg(reg_mcr);
453 	const struct xe_mmio_range *implicit_ranges;
454 
455 	for (int type = 0; type < IMPLICIT_STEERING; type++) {
456 		if (!gt->steering[type].ranges)
457 			continue;
458 
459 		for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
460 			if (xe_mmio_in_range(gt, &gt->steering[type].ranges[i], reg)) {
461 				*group = gt->steering[type].group_target;
462 				*instance = gt->steering[type].instance_target;
463 				return true;
464 			}
465 		}
466 	}
467 
468 	implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
469 	if (implicit_ranges)
470 		for (int i = 0; implicit_ranges[i].end > 0; i++)
471 			if (xe_mmio_in_range(gt, &implicit_ranges[i], reg))
472 				return false;
473 
474 	/*
475 	 * Not found in a steering table and not a register with implicit
476 	 * steering. Just steer to 0/0 as a guess and raise a warning.
477 	 */
478 	drm_WARN(&gt_to_xe(gt)->drm, true,
479 		 "Did not find MCR register %#x in any MCR steering table\n",
480 		 reg.addr);
481 	*group = 0;
482 	*instance = 0;
483 
484 	return true;
485 }
486 
487 /*
488  * Obtain exclusive access to MCR steering.  On MTL and beyond we also need
489  * to synchronize with external clients (e.g., firmware), so a semaphore
490  * register will also need to be taken.
491  */
492 static void mcr_lock(struct xe_gt *gt) __acquires(&gt->mcr_lock)
493 {
494 	struct xe_device *xe = gt_to_xe(gt);
495 	int ret = 0;
496 
497 	spin_lock(&gt->mcr_lock);
498 
499 	/*
500 	 * Starting with MTL we also need to grab a semaphore register
501 	 * to synchronize with external agents (e.g., firmware) that now
502 	 * shares the same steering control register. The semaphore is obtained
503 	 * when a read to the relevant register returns 1.
504 	 */
505 	if (GRAPHICS_VERx100(xe) >= 1270)
506 		ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
507 				     true);
508 
509 	drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
510 }
511 
512 static void mcr_unlock(struct xe_gt *gt) __releases(&gt->mcr_lock)
513 {
514 	/* Release hardware semaphore - this is done by writing 1 to the register */
515 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
516 		xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1);
517 
518 	spin_unlock(&gt->mcr_lock);
519 }
520 
521 /*
522  * Access a register with specific MCR steering
523  *
524  * Caller needs to make sure the relevant forcewake wells are up.
525  */
526 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
527 				u8 rw_flag, int group, int instance, u32 value)
528 {
529 	const struct xe_reg reg = to_xe_reg(reg_mcr);
530 	struct xe_reg steer_reg;
531 	u32 steer_val, val = 0;
532 
533 	lockdep_assert_held(&gt->mcr_lock);
534 
535 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
536 		steer_reg = MTL_MCR_SELECTOR;
537 		steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
538 			REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
539 	} else {
540 		steer_reg = MCR_SELECTOR;
541 		steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
542 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
543 	}
544 
545 	/*
546 	 * Always leave the hardware in multicast mode when doing reads and only
547 	 * change it to unicast mode when doing writes of a specific instance.
548 	 *
549 	 * The setting of the multicast/unicast bit usually wouldn't matter for
550 	 * read operations (which always return the value from a single register
551 	 * instance regardless of how that bit is set), but some platforms may
552 	 * have workarounds requiring us to remain in multicast mode for reads,
553 	 * e.g. Wa_22013088509 on PVC.  There's no real downside to this, so
554 	 * we'll just go ahead and do so on all platforms; we'll only clear the
555 	 * multicast bit from the mask when explicitly doing a write operation.
556 	 *
557 	 * No need to save old steering reg value.
558 	 */
559 	if (rw_flag == MCR_OP_READ)
560 		steer_val |= MCR_MULTICAST;
561 
562 	xe_mmio_write32(gt, steer_reg, steer_val);
563 
564 	if (rw_flag == MCR_OP_READ)
565 		val = xe_mmio_read32(gt, reg);
566 	else
567 		xe_mmio_write32(gt, reg, value);
568 
569 	/*
570 	 * If we turned off the multicast bit (during a write) we're required
571 	 * to turn it back on before finishing.  The group and instance values
572 	 * don't matter since they'll be re-programmed on the next MCR
573 	 * operation.
574 	 */
575 	if (rw_flag == MCR_OP_WRITE)
576 		xe_mmio_write32(gt, steer_reg, MCR_MULTICAST);
577 
578 	return val;
579 }
580 
581 /**
582  * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
583  * @gt: GT structure
584  * @reg_mcr: register to read
585  *
586  * Reads a GT MCR register.  The read will be steered to a non-terminated
587  * instance (i.e., one that isn't fused off or powered down by power gating).
588  * This function assumes the caller is already holding any necessary forcewake
589  * domains.
590  *
591  * Returns the value from a non-terminated instance of @reg.
592  */
593 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
594 {
595 	const struct xe_reg reg = to_xe_reg(reg_mcr);
596 	u8 group, instance;
597 	u32 val;
598 	bool steer;
599 
600 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
601 
602 	steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
603 						     &group, &instance);
604 
605 	if (steer) {
606 		mcr_lock(gt);
607 		val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
608 					   group, instance, 0);
609 		mcr_unlock(gt);
610 	} else {
611 		val = xe_mmio_read32(gt, reg);
612 	}
613 
614 	return val;
615 }
616 
617 /**
618  * xe_gt_mcr_unicast_read - read a specific instance of an MCR register
619  * @gt: GT structure
620  * @reg_mcr: the MCR register to read
621  * @group: the MCR group
622  * @instance: the MCR instance
623  *
624  * Returns the value read from an MCR register after steering toward a specific
625  * group/instance.
626  */
627 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
628 			   struct xe_reg_mcr reg_mcr,
629 			   int group, int instance)
630 {
631 	u32 val;
632 
633 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
634 
635 	mcr_lock(gt);
636 	val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
637 	mcr_unlock(gt);
638 
639 	return val;
640 }
641 
642 /**
643  * xe_gt_mcr_unicast_write - write a specific instance of an MCR register
644  * @gt: GT structure
645  * @reg_mcr: the MCR register to write
646  * @value: value to write
647  * @group: the MCR group
648  * @instance: the MCR instance
649  *
650  * Write an MCR register in unicast mode after steering toward a specific
651  * group/instance.
652  */
653 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
654 			     u32 value, int group, int instance)
655 {
656 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
657 
658 	mcr_lock(gt);
659 	rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
660 	mcr_unlock(gt);
661 }
662 
663 /**
664  * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
665  * @gt: GT structure
666  * @reg_mcr: the MCR register to write
667  * @value: value to write
668  *
669  * Write an MCR register in multicast mode to update all instances.
670  */
671 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
672 			       u32 value)
673 {
674 	struct xe_reg reg = to_xe_reg(reg_mcr);
675 
676 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
677 
678 	/*
679 	 * Synchronize with any unicast operations.  Once we have exclusive
680 	 * access, the MULTICAST bit should already be set, so there's no need
681 	 * to touch the steering register.
682 	 */
683 	mcr_lock(gt);
684 	xe_mmio_write32(gt, reg, value);
685 	mcr_unlock(gt);
686 }
687 
688 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
689 {
690 	for (int i = 0; i < NUM_STEERING_TYPES; i++) {
691 		if (gt->steering[i].ranges) {
692 			drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
693 				   xe_steering_types[i].name,
694 				   gt->steering[i].group_target,
695 				   gt->steering[i].instance_target);
696 			for (int j = 0; gt->steering[i].ranges[j].end; j++)
697 				drm_printf(p, "\t0x%06x - 0x%06x\n",
698 					   gt->steering[i].ranges[j].start,
699 					   gt->steering[i].ranges[j].end);
700 		}
701 	}
702 }
703