1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_gt_mcr.h" 7 8 #include "regs/xe_gt_regs.h" 9 #include "xe_assert.h" 10 #include "xe_gt.h" 11 #include "xe_gt_printk.h" 12 #include "xe_gt_topology.h" 13 #include "xe_gt_types.h" 14 #include "xe_guc_hwconfig.h" 15 #include "xe_mmio.h" 16 #include "xe_sriov.h" 17 18 /** 19 * DOC: GT Multicast/Replicated (MCR) Register Support 20 * 21 * Some GT registers are designed as "multicast" or "replicated" registers: 22 * multiple instances of the same register share a single MMIO offset. MCR 23 * registers are generally used when the hardware needs to potentially track 24 * independent values of a register per hardware unit (e.g., per-subslice, 25 * per-L3bank, etc.). The specific types of replication that exist vary 26 * per-platform. 27 * 28 * MMIO accesses to MCR registers are controlled according to the settings 29 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR 30 * registers can be done in either multicast (a single write updates all 31 * instances of the register to the same value) or unicast (a write updates only 32 * one specific instance) form. Reads of MCR registers always operate in a 33 * unicast manner regardless of how the multicast/unicast bit is set in 34 * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is 35 * referred to as "steering." 36 * 37 * If MCR register operations are steered toward a hardware unit that is 38 * fused off or currently powered down due to power gating, the MMIO operation 39 * is "terminated" by the hardware. Terminated read operations will return a 40 * value of zero and terminated unicast write operations will be silently 41 * ignored. During device initialization, the goal of the various 42 * ``init_steering_*()`` functions is to apply the platform-specific rules for 43 * each MCR register type to identify a steering target that will select a 44 * non-terminated instance. 45 * 46 * MCR registers are not available on Virtual Function (VF). 47 */ 48 49 #define STEER_SEMAPHORE XE_REG(0xFD0) 50 51 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) 52 { 53 return reg_mcr.__reg; 54 } 55 56 enum { 57 MCR_OP_READ, 58 MCR_OP_WRITE 59 }; 60 61 static const struct xe_mmio_range xelp_l3bank_steering_table[] = { 62 { 0x00B100, 0x00B3FF }, 63 {}, 64 }; 65 66 static const struct xe_mmio_range xehp_l3bank_steering_table[] = { 67 { 0x008C80, 0x008CFF }, 68 { 0x00B100, 0x00B3FF }, 69 {}, 70 }; 71 72 /* 73 * Although the bspec lists more "MSLICE" ranges than shown here, some of those 74 * are of a "GAM" subclass that has special rules and doesn't need to be 75 * included here. 76 */ 77 static const struct xe_mmio_range xehp_mslice_steering_table[] = { 78 { 0x00DD00, 0x00DDFF }, 79 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 80 {}, 81 }; 82 83 static const struct xe_mmio_range xehp_lncf_steering_table[] = { 84 { 0x00B000, 0x00B0FF }, 85 { 0x00D880, 0x00D8FF }, 86 {}, 87 }; 88 89 /* 90 * We have several types of MCR registers where steering to (0,0) will always 91 * provide us with a non-terminated value. We'll stick them all in the same 92 * table for simplicity. 93 */ 94 static const struct xe_mmio_range xehpc_instance0_steering_table[] = { 95 { 0x004000, 0x004AFF }, /* HALF-BSLICE */ 96 { 0x008800, 0x00887F }, /* CC */ 97 { 0x008A80, 0x008AFF }, /* TILEPSMI */ 98 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ 99 { 0x00B100, 0x00B3FF }, /* L3BANK */ 100 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ 101 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ 102 { 0x00DD00, 0x00DDFF }, /* BSLICE */ 103 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ 104 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ 105 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ 106 { 0x024180, 0x0241FF }, /* HALF-BSLICE */ 107 {}, 108 }; 109 110 static const struct xe_mmio_range xelpg_instance0_steering_table[] = { 111 { 0x000B00, 0x000BFF }, /* SQIDI */ 112 { 0x001000, 0x001FFF }, /* SQIDI */ 113 { 0x004000, 0x0048FF }, /* GAM */ 114 { 0x008700, 0x0087FF }, /* SQIDI */ 115 { 0x00B000, 0x00B0FF }, /* NODE */ 116 { 0x00C800, 0x00CFFF }, /* GAM */ 117 { 0x00D880, 0x00D8FF }, /* NODE */ 118 { 0x00DD00, 0x00DDFF }, /* OAAL2 */ 119 {}, 120 }; 121 122 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { 123 { 0x00B100, 0x00B3FF }, 124 {}, 125 }; 126 127 static const struct xe_mmio_range xelp_dss_steering_table[] = { 128 { 0x008150, 0x00815F }, 129 { 0x009520, 0x00955F }, 130 { 0x00DE80, 0x00E8FF }, 131 { 0x024A00, 0x024A7F }, 132 {}, 133 }; 134 135 /* DSS steering is used for GSLICE ranges as well */ 136 static const struct xe_mmio_range xehp_dss_steering_table[] = { 137 { 0x005200, 0x0052FF }, /* GSLICE */ 138 { 0x005400, 0x007FFF }, /* GSLICE */ 139 { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 140 { 0x008D00, 0x008DFF }, /* DSS */ 141 { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 142 { 0x009680, 0x0096FF }, /* DSS */ 143 { 0x00D800, 0x00D87F }, /* GSLICE */ 144 { 0x00DC00, 0x00DCFF }, /* GSLICE */ 145 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ 146 { 0x017000, 0x017FFF }, /* GSLICE */ 147 { 0x024A00, 0x024A7F }, /* DSS */ 148 {}, 149 }; 150 151 /* DSS steering is used for COMPUTE ranges as well */ 152 static const struct xe_mmio_range xehpc_dss_steering_table[] = { 153 { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ 154 { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 155 { 0x009680, 0x0096FF }, /* DSS */ 156 { 0x00DC00, 0x00DCFF }, /* COMPUTE */ 157 { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ 158 {}, 159 }; 160 161 /* DSS steering is used for SLICE ranges as well */ 162 static const struct xe_mmio_range xelpg_dss_steering_table[] = { 163 { 0x005200, 0x0052FF }, /* SLICE */ 164 { 0x005500, 0x007FFF }, /* SLICE */ 165 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 166 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 167 { 0x009680, 0x0096FF }, /* DSS */ 168 { 0x00D800, 0x00D87F }, /* SLICE */ 169 { 0x00DC00, 0x00DCFF }, /* SLICE */ 170 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 171 {}, 172 }; 173 174 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { 175 { 0x393200, 0x39323F }, 176 { 0x393400, 0x3934FF }, 177 {}, 178 }; 179 180 static const struct xe_mmio_range dg2_implicit_steering_table[] = { 181 { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ 182 { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ 183 { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ 184 { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ 185 { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ 186 { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ 187 {}, 188 }; 189 190 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { 191 { 0x005200, 0x0052FF }, /* SLICE */ 192 { 0x005500, 0x007FFF }, /* SLICE */ 193 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 194 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 195 { 0x009680, 0x0096FF }, /* DSS */ 196 { 0x00D800, 0x00D87F }, /* SLICE */ 197 { 0x00DC00, 0x00DCFF }, /* SLICE */ 198 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 199 { 0x00E980, 0x00E9FF }, /* SLICE */ 200 { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ 201 {}, 202 }; 203 204 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { 205 { 0x000B00, 0x000BFF }, 206 { 0x001000, 0x001FFF }, 207 {}, 208 }; 209 210 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { 211 { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ 212 { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ 213 { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ 214 { 0x00C800, 0x00CFFF }, /* GAM */ 215 { 0x00D880, 0x00D8FF }, /* NODE */ 216 { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ 217 { 0x00E900, 0x00E97F }, /* MEMPIPE */ 218 { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ 219 { 0x013400, 0x0135FF }, /* MEMPIPE */ 220 {}, 221 }; 222 223 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { 224 { 0x388160, 0x38817F }, 225 { 0x389480, 0x3894CF }, 226 {}, 227 }; 228 229 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { 230 { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ 231 { 0x384900, 0x384AFF }, /* GAM */ 232 { 0x389560, 0x3895FF }, /* MEDIAINF */ 233 { 0x38B600, 0x38B8FF }, /* L3BANK */ 234 { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ 235 { 0x38F000, 0x38F0FF }, /* GAM */ 236 { 0x393C00, 0x393C7F }, /* MEDIAINF */ 237 {}, 238 }; 239 240 static void init_steering_l3bank(struct xe_gt *gt) 241 { 242 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { 243 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 244 xe_mmio_read32(gt, MIRROR_FUSE3)); 245 u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, 246 xe_mmio_read32(gt, XEHP_FUSE4)); 247 248 /* 249 * Group selects mslice, instance selects bank within mslice. 250 * Bank 0 is always valid _except_ when the bank mask is 010b. 251 */ 252 gt->steering[L3BANK].group_target = __ffs(mslice_mask); 253 gt->steering[L3BANK].instance_target = 254 bank_mask & BIT(0) ? 0 : 2; 255 } else if (gt_to_xe(gt)->info.platform == XE_DG2) { 256 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 257 xe_mmio_read32(gt, MIRROR_FUSE3)); 258 u32 bank = __ffs(mslice_mask) * 8; 259 260 /* 261 * Like mslice registers, look for a valid mslice and steer to 262 * the first L3BANK of that quad. Access to the Nth L3 bank is 263 * split between the first bits of group and instance 264 */ 265 gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; 266 gt->steering[L3BANK].instance_target = bank & 0x3; 267 } else { 268 u32 fuse = REG_FIELD_GET(L3BANK_MASK, 269 ~xe_mmio_read32(gt, MIRROR_FUSE3)); 270 271 gt->steering[L3BANK].group_target = 0; /* unused */ 272 gt->steering[L3BANK].instance_target = __ffs(fuse); 273 } 274 } 275 276 static void init_steering_mslice(struct xe_gt *gt) 277 { 278 u32 mask = REG_FIELD_GET(MEML3_EN_MASK, 279 xe_mmio_read32(gt, MIRROR_FUSE3)); 280 281 /* 282 * mslice registers are valid (not terminated) if either the meml3 283 * associated with the mslice is present, or at least one DSS associated 284 * with the mslice is present. There will always be at least one meml3 285 * so we can just use that to find a non-terminated mslice and ignore 286 * the DSS fusing. 287 */ 288 gt->steering[MSLICE].group_target = __ffs(mask); 289 gt->steering[MSLICE].instance_target = 0; /* unused */ 290 291 /* 292 * LNCF termination is also based on mslice presence, so we'll set 293 * it up here. Either LNCF within a non-terminated mslice will work, 294 * so we just always pick LNCF 0 here. 295 */ 296 gt->steering[LNCF].group_target = __ffs(mask) << 1; 297 gt->steering[LNCF].instance_target = 0; /* unused */ 298 } 299 300 static unsigned int dss_per_group(struct xe_gt *gt) 301 { 302 struct xe_guc *guc = >->uc.guc; 303 u32 max_slices = 0, max_subslices = 0; 304 int ret; 305 306 /* 307 * Try to query the GuC's hwconfig table for the maximum number of 308 * slices and subslices. These don't reflect the platform's actual 309 * slice/DSS counts, just the physical layout by which we should 310 * determine the steering targets. On older platforms with older GuC 311 * firmware releases it's possible that these attributes may not be 312 * included in the table, so we can always fall back to the old 313 * hardcoded layouts. 314 */ 315 #define HWCONFIG_ATTR_MAX_SLICES 1 316 #define HWCONFIG_ATTR_MAX_SUBSLICES 70 317 318 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES, 319 &max_slices); 320 if (ret < 0 || max_slices == 0) 321 goto fallback; 322 323 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES, 324 &max_subslices); 325 if (ret < 0 || max_subslices == 0) 326 goto fallback; 327 328 return DIV_ROUND_UP(max_subslices, max_slices); 329 330 fallback: 331 xe_gt_dbg(gt, "GuC hwconfig cannot provide dss/slice; using typical fallback values\n"); 332 if (gt_to_xe(gt)->info.platform == XE_PVC) 333 return 8; 334 else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250) 335 return 4; 336 else 337 return 6; 338 } 339 340 /** 341 * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS 342 * @gt: GT structure 343 * @dss: DSS ID to obtain steering for 344 * @group: pointer to storage for steering group ID 345 * @instance: pointer to storage for steering instance ID 346 */ 347 void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance) 348 { 349 xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS); 350 351 *group = dss / gt->steering_dss_per_grp; 352 *instance = dss % gt->steering_dss_per_grp; 353 } 354 355 static void init_steering_dss(struct xe_gt *gt) 356 { 357 gt->steering_dss_per_grp = dss_per_group(gt); 358 359 xe_gt_mcr_get_dss_steering(gt, 360 min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), 361 xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)), 362 >->steering[DSS].group_target, 363 >->steering[DSS].instance_target); 364 } 365 366 static void init_steering_oaddrm(struct xe_gt *gt) 367 { 368 /* 369 * First instance is only terminated if the entire first media slice 370 * is absent (i.e., no VCS0 or VECS0). 371 */ 372 if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) 373 gt->steering[OADDRM].group_target = 0; 374 else 375 gt->steering[OADDRM].group_target = 1; 376 377 gt->steering[OADDRM].instance_target = 0; /* unused */ 378 } 379 380 static void init_steering_sqidi_psmi(struct xe_gt *gt) 381 { 382 u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, 383 xe_mmio_read32(gt, MIRROR_FUSE3)); 384 u32 select = __ffs(mask); 385 386 gt->steering[SQIDI_PSMI].group_target = select >> 1; 387 gt->steering[SQIDI_PSMI].instance_target = select & 0x1; 388 } 389 390 static void init_steering_inst0(struct xe_gt *gt) 391 { 392 gt->steering[INSTANCE0].group_target = 0; /* unused */ 393 gt->steering[INSTANCE0].instance_target = 0; /* unused */ 394 } 395 396 static const struct { 397 const char *name; 398 void (*init)(struct xe_gt *gt); 399 } xe_steering_types[] = { 400 [L3BANK] = { "L3BANK", init_steering_l3bank }, 401 [MSLICE] = { "MSLICE", init_steering_mslice }, 402 [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ 403 [DSS] = { "DSS", init_steering_dss }, 404 [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, 405 [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, 406 [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 }, 407 [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, 408 }; 409 410 /** 411 * xe_gt_mcr_init_early - Early initialization of the MCR support 412 * @gt: GT structure 413 * 414 * Perform early software only initialization of the MCR lock to allow 415 * the synchronization on accessing the STEER_SEMAPHORE register and 416 * use the xe_gt_mcr_multicast_write() function. 417 */ 418 void xe_gt_mcr_init_early(struct xe_gt *gt) 419 { 420 BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); 421 BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); 422 423 spin_lock_init(>->mcr_lock); 424 } 425 426 /** 427 * xe_gt_mcr_init - Normal initialization of the MCR support 428 * @gt: GT structure 429 * 430 * Perform normal initialization of the MCR for all usages. 431 */ 432 void xe_gt_mcr_init(struct xe_gt *gt) 433 { 434 struct xe_device *xe = gt_to_xe(gt); 435 436 if (IS_SRIOV_VF(xe)) 437 return; 438 439 if (gt->info.type == XE_GT_TYPE_MEDIA) { 440 drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); 441 442 if (MEDIA_VER(xe) >= 20) { 443 gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; 444 gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; 445 } else { 446 gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; 447 } 448 } else { 449 if (GRAPHICS_VER(xe) >= 20) { 450 gt->steering[DSS].ranges = xe2lpg_dss_steering_table; 451 gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; 452 gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; 453 } else if (GRAPHICS_VERx100(xe) >= 1270) { 454 gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; 455 gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; 456 gt->steering[DSS].ranges = xelpg_dss_steering_table; 457 } else if (xe->info.platform == XE_PVC) { 458 gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; 459 gt->steering[DSS].ranges = xehpc_dss_steering_table; 460 } else if (xe->info.platform == XE_DG2) { 461 gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; 462 gt->steering[MSLICE].ranges = xehp_mslice_steering_table; 463 gt->steering[LNCF].ranges = xehp_lncf_steering_table; 464 gt->steering[DSS].ranges = xehp_dss_steering_table; 465 gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; 466 } else { 467 gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; 468 gt->steering[DSS].ranges = xelp_dss_steering_table; 469 } 470 } 471 472 /* Select non-terminated steering target for each type */ 473 for (int i = 0; i < NUM_STEERING_TYPES; i++) 474 if (gt->steering[i].ranges && xe_steering_types[i].init) 475 xe_steering_types[i].init(gt); 476 } 477 478 /** 479 * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers 480 * @gt: GT structure 481 * 482 * Some register ranges don't need to have their steering control registers 483 * changed on each access - it's sufficient to set them once on initialization. 484 * This function sets those registers for each platform * 485 */ 486 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) 487 { 488 struct xe_device *xe = gt_to_xe(gt); 489 490 if (IS_SRIOV_VF(xe)) 491 return; 492 493 if (xe->info.platform == XE_DG2) { 494 u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | 495 REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); 496 497 xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val); 498 xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val); 499 /* 500 * For GAM registers, all reads should be directed to instance 1 501 * (unicast reads against other instances are not allowed), 502 * and instance 1 is already the hardware's default steering 503 * target, which we never change 504 */ 505 } 506 } 507 508 /* 509 * xe_gt_mcr_get_nonterminated_steering - find group/instance values that 510 * will steer a register to a non-terminated instance 511 * @gt: GT structure 512 * @reg: register for which the steering is required 513 * @group: return variable for group steering 514 * @instance: return variable for instance steering 515 * 516 * This function returns a group/instance pair that is guaranteed to work for 517 * read steering of the given register. Note that a value will be returned even 518 * if the register is not replicated and therefore does not actually require 519 * steering. 520 * 521 * Returns true if the caller should steer to the @group/@instance values 522 * returned. Returns false if the caller need not perform any steering 523 */ 524 static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, 525 struct xe_reg_mcr reg_mcr, 526 u8 *group, u8 *instance) 527 { 528 const struct xe_reg reg = to_xe_reg(reg_mcr); 529 const struct xe_mmio_range *implicit_ranges; 530 531 for (int type = 0; type < IMPLICIT_STEERING; type++) { 532 if (!gt->steering[type].ranges) 533 continue; 534 535 for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { 536 if (xe_mmio_in_range(gt, >->steering[type].ranges[i], reg)) { 537 *group = gt->steering[type].group_target; 538 *instance = gt->steering[type].instance_target; 539 return true; 540 } 541 } 542 } 543 544 implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; 545 if (implicit_ranges) 546 for (int i = 0; implicit_ranges[i].end > 0; i++) 547 if (xe_mmio_in_range(gt, &implicit_ranges[i], reg)) 548 return false; 549 550 /* 551 * Not found in a steering table and not a register with implicit 552 * steering. Just steer to 0/0 as a guess and raise a warning. 553 */ 554 drm_WARN(>_to_xe(gt)->drm, true, 555 "Did not find MCR register %#x in any MCR steering table\n", 556 reg.addr); 557 *group = 0; 558 *instance = 0; 559 560 return true; 561 } 562 563 /* 564 * Obtain exclusive access to MCR steering. On MTL and beyond we also need 565 * to synchronize with external clients (e.g., firmware), so a semaphore 566 * register will also need to be taken. 567 */ 568 static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) 569 { 570 struct xe_device *xe = gt_to_xe(gt); 571 int ret = 0; 572 573 spin_lock(>->mcr_lock); 574 575 /* 576 * Starting with MTL we also need to grab a semaphore register 577 * to synchronize with external agents (e.g., firmware) that now 578 * shares the same steering control register. The semaphore is obtained 579 * when a read to the relevant register returns 1. 580 */ 581 if (GRAPHICS_VERx100(xe) >= 1270) 582 ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, 583 true); 584 585 drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); 586 } 587 588 static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) 589 { 590 /* Release hardware semaphore - this is done by writing 1 to the register */ 591 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) 592 xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1); 593 594 spin_unlock(>->mcr_lock); 595 } 596 597 /* 598 * Access a register with specific MCR steering 599 * 600 * Caller needs to make sure the relevant forcewake wells are up. 601 */ 602 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 603 u8 rw_flag, int group, int instance, u32 value) 604 { 605 const struct xe_reg reg = to_xe_reg(reg_mcr); 606 struct xe_reg steer_reg; 607 u32 steer_val, val = 0; 608 609 lockdep_assert_held(>->mcr_lock); 610 611 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { 612 steer_reg = MTL_MCR_SELECTOR; 613 steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | 614 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); 615 } else { 616 steer_reg = MCR_SELECTOR; 617 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | 618 REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); 619 } 620 621 /* 622 * Always leave the hardware in multicast mode when doing reads and only 623 * change it to unicast mode when doing writes of a specific instance. 624 * 625 * The setting of the multicast/unicast bit usually wouldn't matter for 626 * read operations (which always return the value from a single register 627 * instance regardless of how that bit is set), but some platforms may 628 * have workarounds requiring us to remain in multicast mode for reads, 629 * e.g. Wa_22013088509 on PVC. There's no real downside to this, so 630 * we'll just go ahead and do so on all platforms; we'll only clear the 631 * multicast bit from the mask when explicitly doing a write operation. 632 * 633 * No need to save old steering reg value. 634 */ 635 if (rw_flag == MCR_OP_READ) 636 steer_val |= MCR_MULTICAST; 637 638 xe_mmio_write32(gt, steer_reg, steer_val); 639 640 if (rw_flag == MCR_OP_READ) 641 val = xe_mmio_read32(gt, reg); 642 else 643 xe_mmio_write32(gt, reg, value); 644 645 /* 646 * If we turned off the multicast bit (during a write) we're required 647 * to turn it back on before finishing. The group and instance values 648 * don't matter since they'll be re-programmed on the next MCR 649 * operation. 650 */ 651 if (rw_flag == MCR_OP_WRITE) 652 xe_mmio_write32(gt, steer_reg, MCR_MULTICAST); 653 654 return val; 655 } 656 657 /** 658 * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register 659 * @gt: GT structure 660 * @reg_mcr: register to read 661 * 662 * Reads a GT MCR register. The read will be steered to a non-terminated 663 * instance (i.e., one that isn't fused off or powered down by power gating). 664 * This function assumes the caller is already holding any necessary forcewake 665 * domains. 666 * 667 * Returns the value from a non-terminated instance of @reg. 668 */ 669 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) 670 { 671 const struct xe_reg reg = to_xe_reg(reg_mcr); 672 u8 group, instance; 673 u32 val; 674 bool steer; 675 676 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 677 678 steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, 679 &group, &instance); 680 681 if (steer) { 682 mcr_lock(gt); 683 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, 684 group, instance, 0); 685 mcr_unlock(gt); 686 } else { 687 val = xe_mmio_read32(gt, reg); 688 } 689 690 return val; 691 } 692 693 /** 694 * xe_gt_mcr_unicast_read - read a specific instance of an MCR register 695 * @gt: GT structure 696 * @reg_mcr: the MCR register to read 697 * @group: the MCR group 698 * @instance: the MCR instance 699 * 700 * Returns the value read from an MCR register after steering toward a specific 701 * group/instance. 702 */ 703 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, 704 struct xe_reg_mcr reg_mcr, 705 int group, int instance) 706 { 707 u32 val; 708 709 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 710 711 mcr_lock(gt); 712 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); 713 mcr_unlock(gt); 714 715 return val; 716 } 717 718 /** 719 * xe_gt_mcr_unicast_write - write a specific instance of an MCR register 720 * @gt: GT structure 721 * @reg_mcr: the MCR register to write 722 * @value: value to write 723 * @group: the MCR group 724 * @instance: the MCR instance 725 * 726 * Write an MCR register in unicast mode after steering toward a specific 727 * group/instance. 728 */ 729 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 730 u32 value, int group, int instance) 731 { 732 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 733 734 mcr_lock(gt); 735 rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); 736 mcr_unlock(gt); 737 } 738 739 /** 740 * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register 741 * @gt: GT structure 742 * @reg_mcr: the MCR register to write 743 * @value: value to write 744 * 745 * Write an MCR register in multicast mode to update all instances. 746 */ 747 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 748 u32 value) 749 { 750 struct xe_reg reg = to_xe_reg(reg_mcr); 751 752 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 753 754 /* 755 * Synchronize with any unicast operations. Once we have exclusive 756 * access, the MULTICAST bit should already be set, so there's no need 757 * to touch the steering register. 758 */ 759 mcr_lock(gt); 760 xe_mmio_write32(gt, reg, value); 761 mcr_unlock(gt); 762 } 763 764 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) 765 { 766 for (int i = 0; i < NUM_STEERING_TYPES; i++) { 767 if (gt->steering[i].ranges) { 768 drm_printf(p, "%s steering: group=%#x, instance=%#x\n", 769 xe_steering_types[i].name, 770 gt->steering[i].group_target, 771 gt->steering[i].instance_target); 772 for (int j = 0; gt->steering[i].ranges[j].end; j++) 773 drm_printf(p, "\t0x%06x - 0x%06x\n", 774 gt->steering[i].ranges[j].start, 775 gt->steering[i].ranges[j].end); 776 } 777 } 778 } 779