1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_gt_mcr.h" 7 8 #include "regs/xe_gt_regs.h" 9 #include "xe_assert.h" 10 #include "xe_gt.h" 11 #include "xe_gt_printk.h" 12 #include "xe_gt_topology.h" 13 #include "xe_gt_types.h" 14 #include "xe_guc_hwconfig.h" 15 #include "xe_mmio.h" 16 #include "xe_sriov.h" 17 18 /** 19 * DOC: GT Multicast/Replicated (MCR) Register Support 20 * 21 * Some GT registers are designed as "multicast" or "replicated" registers: 22 * multiple instances of the same register share a single MMIO offset. MCR 23 * registers are generally used when the hardware needs to potentially track 24 * independent values of a register per hardware unit (e.g., per-subslice, 25 * per-L3bank, etc.). The specific types of replication that exist vary 26 * per-platform. 27 * 28 * MMIO accesses to MCR registers are controlled according to the settings 29 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR 30 * registers can be done in either multicast (a single write updates all 31 * instances of the register to the same value) or unicast (a write updates only 32 * one specific instance) form. Reads of MCR registers always operate in a 33 * unicast manner regardless of how the multicast/unicast bit is set in 34 * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is 35 * referred to as "steering." 36 * 37 * If MCR register operations are steered toward a hardware unit that is 38 * fused off or currently powered down due to power gating, the MMIO operation 39 * is "terminated" by the hardware. Terminated read operations will return a 40 * value of zero and terminated unicast write operations will be silently 41 * ignored. During device initialization, the goal of the various 42 * ``init_steering_*()`` functions is to apply the platform-specific rules for 43 * each MCR register type to identify a steering target that will select a 44 * non-terminated instance. 45 * 46 * MCR registers are not available on Virtual Function (VF). 47 */ 48 49 #define STEER_SEMAPHORE XE_REG(0xFD0) 50 51 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) 52 { 53 return reg_mcr.__reg; 54 } 55 56 enum { 57 MCR_OP_READ, 58 MCR_OP_WRITE 59 }; 60 61 static const struct xe_mmio_range xelp_l3bank_steering_table[] = { 62 { 0x00B100, 0x00B3FF }, 63 {}, 64 }; 65 66 static const struct xe_mmio_range xehp_l3bank_steering_table[] = { 67 { 0x008C80, 0x008CFF }, 68 { 0x00B100, 0x00B3FF }, 69 {}, 70 }; 71 72 /* 73 * Although the bspec lists more "MSLICE" ranges than shown here, some of those 74 * are of a "GAM" subclass that has special rules and doesn't need to be 75 * included here. 76 */ 77 static const struct xe_mmio_range xehp_mslice_steering_table[] = { 78 { 0x00DD00, 0x00DDFF }, 79 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 80 {}, 81 }; 82 83 static const struct xe_mmio_range xehp_lncf_steering_table[] = { 84 { 0x00B000, 0x00B0FF }, 85 { 0x00D880, 0x00D8FF }, 86 {}, 87 }; 88 89 /* 90 * We have several types of MCR registers where steering to (0,0) will always 91 * provide us with a non-terminated value. We'll stick them all in the same 92 * table for simplicity. 93 */ 94 static const struct xe_mmio_range xehpc_instance0_steering_table[] = { 95 { 0x004000, 0x004AFF }, /* HALF-BSLICE */ 96 { 0x008800, 0x00887F }, /* CC */ 97 { 0x008A80, 0x008AFF }, /* TILEPSMI */ 98 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ 99 { 0x00B100, 0x00B3FF }, /* L3BANK */ 100 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ 101 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ 102 { 0x00DD00, 0x00DDFF }, /* BSLICE */ 103 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ 104 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ 105 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ 106 { 0x024180, 0x0241FF }, /* HALF-BSLICE */ 107 {}, 108 }; 109 110 static const struct xe_mmio_range xelpg_instance0_steering_table[] = { 111 { 0x000B00, 0x000BFF }, /* SQIDI */ 112 { 0x001000, 0x001FFF }, /* SQIDI */ 113 { 0x004000, 0x0048FF }, /* GAM */ 114 { 0x008700, 0x0087FF }, /* SQIDI */ 115 { 0x00B000, 0x00B0FF }, /* NODE */ 116 { 0x00C800, 0x00CFFF }, /* GAM */ 117 { 0x00D880, 0x00D8FF }, /* NODE */ 118 { 0x00DD00, 0x00DDFF }, /* OAAL2 */ 119 {}, 120 }; 121 122 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { 123 { 0x00B100, 0x00B3FF }, 124 {}, 125 }; 126 127 static const struct xe_mmio_range xelp_dss_steering_table[] = { 128 { 0x008150, 0x00815F }, 129 { 0x009520, 0x00955F }, 130 { 0x00DE80, 0x00E8FF }, 131 { 0x024A00, 0x024A7F }, 132 {}, 133 }; 134 135 /* DSS steering is used for GSLICE ranges as well */ 136 static const struct xe_mmio_range xehp_dss_steering_table[] = { 137 { 0x005200, 0x0052FF }, /* GSLICE */ 138 { 0x005400, 0x007FFF }, /* GSLICE */ 139 { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 140 { 0x008D00, 0x008DFF }, /* DSS */ 141 { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 142 { 0x009680, 0x0096FF }, /* DSS */ 143 { 0x00D800, 0x00D87F }, /* GSLICE */ 144 { 0x00DC00, 0x00DCFF }, /* GSLICE */ 145 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ 146 { 0x017000, 0x017FFF }, /* GSLICE */ 147 { 0x024A00, 0x024A7F }, /* DSS */ 148 {}, 149 }; 150 151 /* DSS steering is used for COMPUTE ranges as well */ 152 static const struct xe_mmio_range xehpc_dss_steering_table[] = { 153 { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ 154 { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 155 { 0x009680, 0x0096FF }, /* DSS */ 156 { 0x00DC00, 0x00DCFF }, /* COMPUTE */ 157 { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ 158 {}, 159 }; 160 161 /* DSS steering is used for SLICE ranges as well */ 162 static const struct xe_mmio_range xelpg_dss_steering_table[] = { 163 { 0x005200, 0x0052FF }, /* SLICE */ 164 { 0x005500, 0x007FFF }, /* SLICE */ 165 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 166 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 167 { 0x009680, 0x0096FF }, /* DSS */ 168 { 0x00D800, 0x00D87F }, /* SLICE */ 169 { 0x00DC00, 0x00DCFF }, /* SLICE */ 170 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 171 {}, 172 }; 173 174 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { 175 { 0x393200, 0x39323F }, 176 { 0x393400, 0x3934FF }, 177 {}, 178 }; 179 180 static const struct xe_mmio_range dg2_implicit_steering_table[] = { 181 { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ 182 { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ 183 { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ 184 { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ 185 { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ 186 { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ 187 {}, 188 }; 189 190 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { 191 { 0x005200, 0x0052FF }, /* SLICE */ 192 { 0x005500, 0x007FFF }, /* SLICE */ 193 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 194 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 195 { 0x009680, 0x0096FF }, /* DSS */ 196 { 0x00D800, 0x00D87F }, /* SLICE */ 197 { 0x00DC00, 0x00DCFF }, /* SLICE */ 198 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 199 { 0x00E980, 0x00E9FF }, /* SLICE */ 200 { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ 201 {}, 202 }; 203 204 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { 205 { 0x000B00, 0x000BFF }, 206 { 0x001000, 0x001FFF }, 207 {}, 208 }; 209 210 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { 211 { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ 212 { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ 213 { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ 214 { 0x00C800, 0x00CFFF }, /* GAM */ 215 { 0x00D880, 0x00D8FF }, /* NODE */ 216 { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ 217 { 0x00E900, 0x00E97F }, /* MEMPIPE */ 218 { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ 219 { 0x013400, 0x0135FF }, /* MEMPIPE */ 220 {}, 221 }; 222 223 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { 224 { 0x388160, 0x38817F }, 225 { 0x389480, 0x3894CF }, 226 {}, 227 }; 228 229 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { 230 { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ 231 { 0x384900, 0x384AFF }, /* GAM */ 232 { 0x389560, 0x3895FF }, /* MEDIAINF */ 233 { 0x38B600, 0x38B8FF }, /* L3BANK */ 234 { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ 235 { 0x38F000, 0x38F0FF }, /* GAM */ 236 { 0x393C00, 0x393C7F }, /* MEDIAINF */ 237 {}, 238 }; 239 240 static const struct xe_mmio_range xe3lpm_instance0_steering_table[] = { 241 { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ 242 { 0x384900, 0x384AFF }, /* GAM */ 243 { 0x389560, 0x3895FF }, /* MEDIAINF */ 244 { 0x38B600, 0x38B8FF }, /* L3BANK */ 245 { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ 246 { 0x38D0D0, 0x38F0FF }, /* MEDIAINF, GAM */ 247 { 0x393C00, 0x393C7F }, /* MEDIAINF */ 248 {}, 249 }; 250 251 static void init_steering_l3bank(struct xe_gt *gt) 252 { 253 struct xe_mmio *mmio = >->mmio; 254 255 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { 256 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 257 xe_mmio_read32(mmio, MIRROR_FUSE3)); 258 u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, 259 xe_mmio_read32(mmio, XEHP_FUSE4)); 260 261 /* 262 * Group selects mslice, instance selects bank within mslice. 263 * Bank 0 is always valid _except_ when the bank mask is 010b. 264 */ 265 gt->steering[L3BANK].group_target = __ffs(mslice_mask); 266 gt->steering[L3BANK].instance_target = 267 bank_mask & BIT(0) ? 0 : 2; 268 } else if (gt_to_xe(gt)->info.platform == XE_DG2) { 269 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 270 xe_mmio_read32(mmio, MIRROR_FUSE3)); 271 u32 bank = __ffs(mslice_mask) * 8; 272 273 /* 274 * Like mslice registers, look for a valid mslice and steer to 275 * the first L3BANK of that quad. Access to the Nth L3 bank is 276 * split between the first bits of group and instance 277 */ 278 gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; 279 gt->steering[L3BANK].instance_target = bank & 0x3; 280 } else { 281 u32 fuse = REG_FIELD_GET(L3BANK_MASK, 282 ~xe_mmio_read32(mmio, MIRROR_FUSE3)); 283 284 gt->steering[L3BANK].group_target = 0; /* unused */ 285 gt->steering[L3BANK].instance_target = __ffs(fuse); 286 } 287 } 288 289 static void init_steering_mslice(struct xe_gt *gt) 290 { 291 u32 mask = REG_FIELD_GET(MEML3_EN_MASK, 292 xe_mmio_read32(>->mmio, MIRROR_FUSE3)); 293 294 /* 295 * mslice registers are valid (not terminated) if either the meml3 296 * associated with the mslice is present, or at least one DSS associated 297 * with the mslice is present. There will always be at least one meml3 298 * so we can just use that to find a non-terminated mslice and ignore 299 * the DSS fusing. 300 */ 301 gt->steering[MSLICE].group_target = __ffs(mask); 302 gt->steering[MSLICE].instance_target = 0; /* unused */ 303 304 /* 305 * LNCF termination is also based on mslice presence, so we'll set 306 * it up here. Either LNCF within a non-terminated mslice will work, 307 * so we just always pick LNCF 0 here. 308 */ 309 gt->steering[LNCF].group_target = __ffs(mask) << 1; 310 gt->steering[LNCF].instance_target = 0; /* unused */ 311 } 312 313 static unsigned int dss_per_group(struct xe_gt *gt) 314 { 315 struct xe_guc *guc = >->uc.guc; 316 u32 max_slices = 0, max_subslices = 0; 317 int ret; 318 319 /* 320 * Try to query the GuC's hwconfig table for the maximum number of 321 * slices and subslices. These don't reflect the platform's actual 322 * slice/DSS counts, just the physical layout by which we should 323 * determine the steering targets. On older platforms with older GuC 324 * firmware releases it's possible that these attributes may not be 325 * included in the table, so we can always fall back to the old 326 * hardcoded layouts. 327 */ 328 #define HWCONFIG_ATTR_MAX_SLICES 1 329 #define HWCONFIG_ATTR_MAX_SUBSLICES 70 330 331 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES, 332 &max_slices); 333 if (ret < 0 || max_slices == 0) 334 goto fallback; 335 336 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES, 337 &max_subslices); 338 if (ret < 0 || max_subslices == 0) 339 goto fallback; 340 341 return DIV_ROUND_UP(max_subslices, max_slices); 342 343 fallback: 344 xe_gt_dbg(gt, "GuC hwconfig cannot provide dss/slice; using typical fallback values\n"); 345 if (gt_to_xe(gt)->info.platform == XE_PVC) 346 return 8; 347 else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250) 348 return 4; 349 else 350 return 6; 351 } 352 353 /** 354 * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS 355 * @gt: GT structure 356 * @dss: DSS ID to obtain steering for 357 * @group: pointer to storage for steering group ID 358 * @instance: pointer to storage for steering instance ID 359 */ 360 void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance) 361 { 362 xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS); 363 364 *group = dss / gt->steering_dss_per_grp; 365 *instance = dss % gt->steering_dss_per_grp; 366 } 367 368 /** 369 * xe_gt_mcr_steering_info_to_dss_id - Get DSS ID from group/instance steering 370 * @gt: GT structure 371 * @group: steering group ID 372 * @instance: steering instance ID 373 * 374 * Return: the coverted DSS id. 375 */ 376 u32 xe_gt_mcr_steering_info_to_dss_id(struct xe_gt *gt, u16 group, u16 instance) 377 { 378 return group * dss_per_group(gt) + instance; 379 } 380 381 static void init_steering_dss(struct xe_gt *gt) 382 { 383 gt->steering_dss_per_grp = dss_per_group(gt); 384 385 xe_gt_mcr_get_dss_steering(gt, 386 min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), 387 xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)), 388 >->steering[DSS].group_target, 389 >->steering[DSS].instance_target); 390 } 391 392 static void init_steering_oaddrm(struct xe_gt *gt) 393 { 394 /* 395 * First instance is only terminated if the entire first media slice 396 * is absent (i.e., no VCS0 or VECS0). 397 */ 398 if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) 399 gt->steering[OADDRM].group_target = 0; 400 else 401 gt->steering[OADDRM].group_target = 1; 402 403 gt->steering[OADDRM].instance_target = 0; /* unused */ 404 } 405 406 static void init_steering_sqidi_psmi(struct xe_gt *gt) 407 { 408 u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, 409 xe_mmio_read32(>->mmio, MIRROR_FUSE3)); 410 u32 select = __ffs(mask); 411 412 gt->steering[SQIDI_PSMI].group_target = select >> 1; 413 gt->steering[SQIDI_PSMI].instance_target = select & 0x1; 414 } 415 416 static void init_steering_inst0(struct xe_gt *gt) 417 { 418 gt->steering[INSTANCE0].group_target = 0; /* unused */ 419 gt->steering[INSTANCE0].instance_target = 0; /* unused */ 420 } 421 422 static const struct { 423 const char *name; 424 void (*init)(struct xe_gt *gt); 425 } xe_steering_types[] = { 426 [L3BANK] = { "L3BANK", init_steering_l3bank }, 427 [MSLICE] = { "MSLICE", init_steering_mslice }, 428 [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ 429 [DSS] = { "DSS", init_steering_dss }, 430 [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, 431 [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, 432 [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 }, 433 [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, 434 }; 435 436 /** 437 * xe_gt_mcr_init_early - Early initialization of the MCR support 438 * @gt: GT structure 439 * 440 * Perform early software only initialization of the MCR lock to allow 441 * the synchronization on accessing the STEER_SEMAPHORE register and 442 * use the xe_gt_mcr_multicast_write() function. 443 */ 444 void xe_gt_mcr_init_early(struct xe_gt *gt) 445 { 446 BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); 447 BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); 448 449 spin_lock_init(>->mcr_lock); 450 } 451 452 /** 453 * xe_gt_mcr_init - Normal initialization of the MCR support 454 * @gt: GT structure 455 * 456 * Perform normal initialization of the MCR for all usages. 457 */ 458 void xe_gt_mcr_init(struct xe_gt *gt) 459 { 460 struct xe_device *xe = gt_to_xe(gt); 461 462 if (IS_SRIOV_VF(xe)) 463 return; 464 465 if (gt->info.type == XE_GT_TYPE_MEDIA) { 466 drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); 467 468 if (MEDIA_VER(xe) >= 30) { 469 gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; 470 gt->steering[INSTANCE0].ranges = xe3lpm_instance0_steering_table; 471 } else if (MEDIA_VERx100(xe) >= 1301) { 472 gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; 473 gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; 474 } else { 475 gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; 476 } 477 } else { 478 if (GRAPHICS_VER(xe) >= 20) { 479 gt->steering[DSS].ranges = xe2lpg_dss_steering_table; 480 gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; 481 gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; 482 } else if (GRAPHICS_VERx100(xe) >= 1270) { 483 gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; 484 gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; 485 gt->steering[DSS].ranges = xelpg_dss_steering_table; 486 } else if (xe->info.platform == XE_PVC) { 487 gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; 488 gt->steering[DSS].ranges = xehpc_dss_steering_table; 489 } else if (xe->info.platform == XE_DG2) { 490 gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; 491 gt->steering[MSLICE].ranges = xehp_mslice_steering_table; 492 gt->steering[LNCF].ranges = xehp_lncf_steering_table; 493 gt->steering[DSS].ranges = xehp_dss_steering_table; 494 gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; 495 } else { 496 gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; 497 gt->steering[DSS].ranges = xelp_dss_steering_table; 498 } 499 } 500 501 /* Select non-terminated steering target for each type */ 502 for (int i = 0; i < NUM_STEERING_TYPES; i++) 503 if (gt->steering[i].ranges && xe_steering_types[i].init) 504 xe_steering_types[i].init(gt); 505 } 506 507 /** 508 * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers 509 * @gt: GT structure 510 * 511 * Some register ranges don't need to have their steering control registers 512 * changed on each access - it's sufficient to set them once on initialization. 513 * This function sets those registers for each platform * 514 */ 515 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) 516 { 517 struct xe_device *xe = gt_to_xe(gt); 518 519 if (IS_SRIOV_VF(xe)) 520 return; 521 522 if (xe->info.platform == XE_DG2) { 523 u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | 524 REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); 525 526 xe_mmio_write32(>->mmio, MCFG_MCR_SELECTOR, steer_val); 527 xe_mmio_write32(>->mmio, SF_MCR_SELECTOR, steer_val); 528 /* 529 * For GAM registers, all reads should be directed to instance 1 530 * (unicast reads against other instances are not allowed), 531 * and instance 1 is already the hardware's default steering 532 * target, which we never change 533 */ 534 } 535 } 536 537 /* 538 * xe_gt_mcr_get_nonterminated_steering - find group/instance values that 539 * will steer a register to a non-terminated instance 540 * @gt: GT structure 541 * @reg: register for which the steering is required 542 * @group: return variable for group steering 543 * @instance: return variable for instance steering 544 * 545 * This function returns a group/instance pair that is guaranteed to work for 546 * read steering of the given register. Note that a value will be returned even 547 * if the register is not replicated and therefore does not actually require 548 * steering. 549 * 550 * Returns true if the caller should steer to the @group/@instance values 551 * returned. Returns false if the caller need not perform any steering 552 */ 553 static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, 554 struct xe_reg_mcr reg_mcr, 555 u8 *group, u8 *instance) 556 { 557 const struct xe_reg reg = to_xe_reg(reg_mcr); 558 const struct xe_mmio_range *implicit_ranges; 559 560 for (int type = 0; type < IMPLICIT_STEERING; type++) { 561 if (!gt->steering[type].ranges) 562 continue; 563 564 for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { 565 if (xe_mmio_in_range(>->mmio, >->steering[type].ranges[i], reg)) { 566 *group = gt->steering[type].group_target; 567 *instance = gt->steering[type].instance_target; 568 return true; 569 } 570 } 571 } 572 573 implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; 574 if (implicit_ranges) 575 for (int i = 0; implicit_ranges[i].end > 0; i++) 576 if (xe_mmio_in_range(>->mmio, &implicit_ranges[i], reg)) 577 return false; 578 579 /* 580 * Not found in a steering table and not a register with implicit 581 * steering. Just steer to 0/0 as a guess and raise a warning. 582 */ 583 drm_WARN(>_to_xe(gt)->drm, true, 584 "Did not find MCR register %#x in any MCR steering table\n", 585 reg.addr); 586 *group = 0; 587 *instance = 0; 588 589 return true; 590 } 591 592 /* 593 * Obtain exclusive access to MCR steering. On MTL and beyond we also need 594 * to synchronize with external clients (e.g., firmware), so a semaphore 595 * register will also need to be taken. 596 */ 597 static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) 598 { 599 struct xe_device *xe = gt_to_xe(gt); 600 int ret = 0; 601 602 spin_lock(>->mcr_lock); 603 604 /* 605 * Starting with MTL we also need to grab a semaphore register 606 * to synchronize with external agents (e.g., firmware) that now 607 * shares the same steering control register. The semaphore is obtained 608 * when a read to the relevant register returns 1. 609 */ 610 if (GRAPHICS_VERx100(xe) >= 1270) 611 ret = xe_mmio_wait32(>->mmio, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, 612 true); 613 614 drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); 615 } 616 617 static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) 618 { 619 /* Release hardware semaphore - this is done by writing 1 to the register */ 620 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) 621 xe_mmio_write32(>->mmio, STEER_SEMAPHORE, 0x1); 622 623 spin_unlock(>->mcr_lock); 624 } 625 626 /* 627 * Access a register with specific MCR steering 628 * 629 * Caller needs to make sure the relevant forcewake wells are up. 630 */ 631 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 632 u8 rw_flag, int group, int instance, u32 value) 633 { 634 const struct xe_reg reg = to_xe_reg(reg_mcr); 635 struct xe_mmio *mmio = >->mmio; 636 struct xe_reg steer_reg; 637 u32 steer_val, val = 0; 638 639 lockdep_assert_held(>->mcr_lock); 640 641 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { 642 steer_reg = MTL_MCR_SELECTOR; 643 steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | 644 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); 645 } else { 646 steer_reg = MCR_SELECTOR; 647 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | 648 REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); 649 } 650 651 /* 652 * Always leave the hardware in multicast mode when doing reads and only 653 * change it to unicast mode when doing writes of a specific instance. 654 * 655 * The setting of the multicast/unicast bit usually wouldn't matter for 656 * read operations (which always return the value from a single register 657 * instance regardless of how that bit is set), but some platforms may 658 * have workarounds requiring us to remain in multicast mode for reads, 659 * e.g. Wa_22013088509 on PVC. There's no real downside to this, so 660 * we'll just go ahead and do so on all platforms; we'll only clear the 661 * multicast bit from the mask when explicitly doing a write operation. 662 * 663 * No need to save old steering reg value. 664 */ 665 if (rw_flag == MCR_OP_READ) 666 steer_val |= MCR_MULTICAST; 667 668 xe_mmio_write32(mmio, steer_reg, steer_val); 669 670 if (rw_flag == MCR_OP_READ) 671 val = xe_mmio_read32(mmio, reg); 672 else 673 xe_mmio_write32(mmio, reg, value); 674 675 /* 676 * If we turned off the multicast bit (during a write) we're required 677 * to turn it back on before finishing. The group and instance values 678 * don't matter since they'll be re-programmed on the next MCR 679 * operation. 680 */ 681 if (rw_flag == MCR_OP_WRITE) 682 xe_mmio_write32(mmio, steer_reg, MCR_MULTICAST); 683 684 return val; 685 } 686 687 /** 688 * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register 689 * @gt: GT structure 690 * @reg_mcr: register to read 691 * 692 * Reads a GT MCR register. The read will be steered to a non-terminated 693 * instance (i.e., one that isn't fused off or powered down by power gating). 694 * This function assumes the caller is already holding any necessary forcewake 695 * domains. 696 * 697 * Returns the value from a non-terminated instance of @reg. 698 */ 699 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) 700 { 701 const struct xe_reg reg = to_xe_reg(reg_mcr); 702 u8 group, instance; 703 u32 val; 704 bool steer; 705 706 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 707 708 steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, 709 &group, &instance); 710 711 if (steer) { 712 mcr_lock(gt); 713 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, 714 group, instance, 0); 715 mcr_unlock(gt); 716 } else { 717 val = xe_mmio_read32(>->mmio, reg); 718 } 719 720 return val; 721 } 722 723 /** 724 * xe_gt_mcr_unicast_read - read a specific instance of an MCR register 725 * @gt: GT structure 726 * @reg_mcr: the MCR register to read 727 * @group: the MCR group 728 * @instance: the MCR instance 729 * 730 * Returns the value read from an MCR register after steering toward a specific 731 * group/instance. 732 */ 733 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, 734 struct xe_reg_mcr reg_mcr, 735 int group, int instance) 736 { 737 u32 val; 738 739 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 740 741 mcr_lock(gt); 742 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); 743 mcr_unlock(gt); 744 745 return val; 746 } 747 748 /** 749 * xe_gt_mcr_unicast_write - write a specific instance of an MCR register 750 * @gt: GT structure 751 * @reg_mcr: the MCR register to write 752 * @value: value to write 753 * @group: the MCR group 754 * @instance: the MCR instance 755 * 756 * Write an MCR register in unicast mode after steering toward a specific 757 * group/instance. 758 */ 759 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 760 u32 value, int group, int instance) 761 { 762 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 763 764 mcr_lock(gt); 765 rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); 766 mcr_unlock(gt); 767 } 768 769 /** 770 * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register 771 * @gt: GT structure 772 * @reg_mcr: the MCR register to write 773 * @value: value to write 774 * 775 * Write an MCR register in multicast mode to update all instances. 776 */ 777 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 778 u32 value) 779 { 780 struct xe_reg reg = to_xe_reg(reg_mcr); 781 782 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 783 784 /* 785 * Synchronize with any unicast operations. Once we have exclusive 786 * access, the MULTICAST bit should already be set, so there's no need 787 * to touch the steering register. 788 */ 789 mcr_lock(gt); 790 xe_mmio_write32(>->mmio, reg, value); 791 mcr_unlock(gt); 792 } 793 794 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) 795 { 796 for (int i = 0; i < NUM_STEERING_TYPES; i++) { 797 if (gt->steering[i].ranges) { 798 drm_printf(p, "%s steering: group=%#x, instance=%#x\n", 799 xe_steering_types[i].name, 800 gt->steering[i].group_target, 801 gt->steering[i].instance_target); 802 for (int j = 0; gt->steering[i].ranges[j].end; j++) 803 drm_printf(p, "\t0x%06x - 0x%06x\n", 804 gt->steering[i].ranges[j].start, 805 gt->steering[i].ranges[j].end); 806 } 807 } 808 } 809