xref: /linux/drivers/gpu/drm/xe/xe_gt_mcr.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_gt_mcr.h"
7 
8 #include "regs/xe_gt_regs.h"
9 #include "xe_gt.h"
10 #include "xe_gt_topology.h"
11 #include "xe_gt_types.h"
12 #include "xe_mmio.h"
13 
14 /**
15  * DOC: GT Multicast/Replicated (MCR) Register Support
16  *
17  * Some GT registers are designed as "multicast" or "replicated" registers:
18  * multiple instances of the same register share a single MMIO offset.  MCR
19  * registers are generally used when the hardware needs to potentially track
20  * independent values of a register per hardware unit (e.g., per-subslice,
21  * per-L3bank, etc.).  The specific types of replication that exist vary
22  * per-platform.
23  *
24  * MMIO accesses to MCR registers are controlled according to the settings
25  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
26  * registers can be done in either multicast (a single write updates all
27  * instances of the register to the same value) or unicast (a write updates only
28  * one specific instance) form.  Reads of MCR registers always operate in a
29  * unicast manner regardless of how the multicast/unicast bit is set in
30  * MCR_SELECTOR.  Selection of a specific MCR instance for unicast operations is
31  * referred to as "steering."
32  *
33  * If MCR register operations are steered toward a hardware unit that is
34  * fused off or currently powered down due to power gating, the MMIO operation
35  * is "terminated" by the hardware.  Terminated read operations will return a
36  * value of zero and terminated unicast write operations will be silently
37  * ignored. During device initialization, the goal of the various
38  * ``init_steering_*()`` functions is to apply the platform-specific rules for
39  * each MCR register type to identify a steering target that will select a
40  * non-terminated instance.
41  */
42 
43 #define STEER_SEMAPHORE		XE_REG(0xFD0)
44 
45 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
46 {
47 	return reg_mcr.__reg;
48 }
49 
50 enum {
51 	MCR_OP_READ,
52 	MCR_OP_WRITE
53 };
54 
55 static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
56 	{ 0x00B100, 0x00B3FF },
57 	{},
58 };
59 
60 static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
61 	{ 0x008C80, 0x008CFF },
62 	{ 0x00B100, 0x00B3FF },
63 	{},
64 };
65 
66 /*
67  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
68  * are of a "GAM" subclass that has special rules and doesn't need to be
69  * included here.
70  */
71 static const struct xe_mmio_range xehp_mslice_steering_table[] = {
72 	{ 0x00DD00, 0x00DDFF },
73 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
74 	{},
75 };
76 
77 static const struct xe_mmio_range xehp_lncf_steering_table[] = {
78 	{ 0x00B000, 0x00B0FF },
79 	{ 0x00D880, 0x00D8FF },
80 	{},
81 };
82 
83 /*
84  * We have several types of MCR registers where steering to (0,0) will always
85  * provide us with a non-terminated value.  We'll stick them all in the same
86  * table for simplicity.
87  */
88 static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
89 	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
90 	{ 0x008800, 0x00887F },		/* CC */
91 	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
92 	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
93 	{ 0x00B100, 0x00B3FF },		/* L3BANK */
94 	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
95 	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
96 	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
97 	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
98 	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
99 	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
100 	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
101 	{},
102 };
103 
104 static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
105 	{ 0x000B00, 0x000BFF },         /* SQIDI */
106 	{ 0x001000, 0x001FFF },         /* SQIDI */
107 	{ 0x004000, 0x0048FF },         /* GAM */
108 	{ 0x008700, 0x0087FF },         /* SQIDI */
109 	{ 0x00B000, 0x00B0FF },         /* NODE */
110 	{ 0x00C800, 0x00CFFF },         /* GAM */
111 	{ 0x00D880, 0x00D8FF },         /* NODE */
112 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
113 	{},
114 };
115 
116 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
117 	{ 0x00B100, 0x00B3FF },
118 	{},
119 };
120 
121 static const struct xe_mmio_range xelp_dss_steering_table[] = {
122 	{ 0x008150, 0x00815F },
123 	{ 0x009520, 0x00955F },
124 	{ 0x00DE80, 0x00E8FF },
125 	{ 0x024A00, 0x024A7F },
126 	{},
127 };
128 
129 /* DSS steering is used for GSLICE ranges as well */
130 static const struct xe_mmio_range xehp_dss_steering_table[] = {
131 	{ 0x005200, 0x0052FF },		/* GSLICE */
132 	{ 0x005400, 0x007FFF },		/* GSLICE */
133 	{ 0x008140, 0x00815F },		/* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
134 	{ 0x008D00, 0x008DFF },		/* DSS */
135 	{ 0x0094D0, 0x00955F },		/* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
136 	{ 0x009680, 0x0096FF },		/* DSS */
137 	{ 0x00D800, 0x00D87F },		/* GSLICE */
138 	{ 0x00DC00, 0x00DCFF },		/* GSLICE */
139 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved ) */
140 	{ 0x017000, 0x017FFF },		/* GSLICE */
141 	{ 0x024A00, 0x024A7F },		/* DSS */
142 	{},
143 };
144 
145 /* DSS steering is used for COMPUTE ranges as well */
146 static const struct xe_mmio_range xehpc_dss_steering_table[] = {
147 	{ 0x008140, 0x00817F },		/* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
148 	{ 0x0094D0, 0x00955F },		/* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
149 	{ 0x009680, 0x0096FF },		/* DSS */
150 	{ 0x00DC00, 0x00DCFF },		/* COMPUTE */
151 	{ 0x00DE80, 0x00E7FF },		/* DSS (0xDF00-0xE1FF reserved ) */
152 	{},
153 };
154 
155 /* DSS steering is used for SLICE ranges as well */
156 static const struct xe_mmio_range xelpg_dss_steering_table[] = {
157 	{ 0x005200, 0x0052FF },		/* SLICE */
158 	{ 0x005500, 0x007FFF },		/* SLICE */
159 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
160 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
161 	{ 0x009680, 0x0096FF },		/* DSS */
162 	{ 0x00D800, 0x00D87F },		/* SLICE */
163 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
164 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
165 	{},
166 };
167 
168 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
169 	{ 0x393200, 0x39323F },
170 	{ 0x393400, 0x3934FF },
171 	{},
172 };
173 
174 static const struct xe_mmio_range dg2_implicit_steering_table[] = {
175 	{ 0x000B00, 0x000BFF },		/* SF (SQIDI replication) */
176 	{ 0x001000, 0x001FFF },		/* SF (SQIDI replication) */
177 	{ 0x004000, 0x004AFF },		/* GAM (MSLICE replication) */
178 	{ 0x008700, 0x0087FF },		/* MCFG (SQIDI replication) */
179 	{ 0x00C800, 0x00CFFF },		/* GAM (MSLICE replication) */
180 	{ 0x00F000, 0x00FFFF },		/* GAM (MSLICE replication) */
181 	{},
182 };
183 
184 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
185 	{ 0x005200, 0x0052FF },         /* SLICE */
186 	{ 0x005500, 0x007FFF },         /* SLICE */
187 	{ 0x008140, 0x00815F },         /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
188 	{ 0x0094D0, 0x00955F },         /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
189 	{ 0x009680, 0x0096FF },         /* DSS */
190 	{ 0x00D800, 0x00D87F },         /* SLICE */
191 	{ 0x00DC00, 0x00DCFF },         /* SLICE */
192 	{ 0x00DE80, 0x00E8FF },         /* DSS (0xE000-0xE0FF reserved) */
193 	{ 0x00E980, 0x00E9FF },         /* SLICE */
194 	{ 0x013000, 0x0133FF },         /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
195 	{},
196 };
197 
198 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
199 	{ 0x000B00, 0x000BFF },
200 	{ 0x001000, 0x001FFF },
201 	{},
202 };
203 
204 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
205 	{ 0x004000, 0x004AFF },         /* GAM, rsvd, GAMWKR */
206 	{ 0x008700, 0x00887F },         /* SQIDI, MEMPIPE */
207 	{ 0x00B000, 0x00B3FF },         /* NODE, L3BANK */
208 	{ 0x00C800, 0x00CFFF },         /* GAM */
209 	{ 0x00D880, 0x00D8FF },         /* NODE */
210 	{ 0x00DD00, 0x00DDFF },         /* MEMPIPE */
211 	{ 0x00E900, 0x00E97F },         /* MEMPIPE */
212 	{ 0x00F000, 0x00FFFF },         /* GAM, GAMWKR */
213 	{ 0x013400, 0x0135FF },         /* MEMPIPE */
214 	{},
215 };
216 
217 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
218 	{ 0x388160, 0x38817F },
219 	{ 0x389480, 0x3894CF },
220 	{},
221 };
222 
223 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
224 	{ 0x384000, 0x3847DF },         /* GAM, rsvd, GAM */
225 	{ 0x384900, 0x384AFF },         /* GAM */
226 	{ 0x389560, 0x3895FF },         /* MEDIAINF */
227 	{ 0x38B600, 0x38B8FF },         /* L3BANK */
228 	{ 0x38C800, 0x38D07F },         /* GAM, MEDIAINF */
229 	{ 0x38F000, 0x38F0FF },         /* GAM */
230 	{ 0x393C00, 0x393C7F },         /* MEDIAINF */
231 	{},
232 };
233 
234 static void init_steering_l3bank(struct xe_gt *gt)
235 {
236 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
237 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
238 						xe_mmio_read32(gt, MIRROR_FUSE3));
239 		u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
240 					      xe_mmio_read32(gt, XEHP_FUSE4));
241 
242 		/*
243 		 * Group selects mslice, instance selects bank within mslice.
244 		 * Bank 0 is always valid _except_ when the bank mask is 010b.
245 		 */
246 		gt->steering[L3BANK].group_target = __ffs(mslice_mask);
247 		gt->steering[L3BANK].instance_target =
248 			bank_mask & BIT(0) ? 0 : 2;
249 	} else if (gt_to_xe(gt)->info.platform == XE_DG2) {
250 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
251 						xe_mmio_read32(gt, MIRROR_FUSE3));
252 		u32 bank = __ffs(mslice_mask) * 8;
253 
254 		/*
255 		 * Like mslice registers, look for a valid mslice and steer to
256 		 * the first L3BANK of that quad. Access to the Nth L3 bank is
257 		 * split between the first bits of group and instance
258 		 */
259 		gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
260 		gt->steering[L3BANK].instance_target = bank & 0x3;
261 	} else {
262 		u32 fuse = REG_FIELD_GET(L3BANK_MASK,
263 					 ~xe_mmio_read32(gt, MIRROR_FUSE3));
264 
265 		gt->steering[L3BANK].group_target = 0;	/* unused */
266 		gt->steering[L3BANK].instance_target = __ffs(fuse);
267 	}
268 }
269 
270 static void init_steering_mslice(struct xe_gt *gt)
271 {
272 	u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
273 				 xe_mmio_read32(gt, MIRROR_FUSE3));
274 
275 	/*
276 	 * mslice registers are valid (not terminated) if either the meml3
277 	 * associated with the mslice is present, or at least one DSS associated
278 	 * with the mslice is present.  There will always be at least one meml3
279 	 * so we can just use that to find a non-terminated mslice and ignore
280 	 * the DSS fusing.
281 	 */
282 	gt->steering[MSLICE].group_target = __ffs(mask);
283 	gt->steering[MSLICE].instance_target = 0;	/* unused */
284 
285 	/*
286 	 * LNCF termination is also based on mslice presence, so we'll set
287 	 * it up here.  Either LNCF within a non-terminated mslice will work,
288 	 * so we just always pick LNCF 0 here.
289 	 */
290 	gt->steering[LNCF].group_target = __ffs(mask) << 1;
291 	gt->steering[LNCF].instance_target = 0;		/* unused */
292 }
293 
294 static void init_steering_dss(struct xe_gt *gt)
295 {
296 	unsigned int dss = min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
297 			       xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0));
298 	unsigned int dss_per_grp = gt_to_xe(gt)->info.platform == XE_PVC ? 8 : 4;
299 
300 	gt->steering[DSS].group_target = dss / dss_per_grp;
301 	gt->steering[DSS].instance_target = dss % dss_per_grp;
302 }
303 
304 static void init_steering_oaddrm(struct xe_gt *gt)
305 {
306 	/*
307 	 * First instance is only terminated if the entire first media slice
308 	 * is absent (i.e., no VCS0 or VECS0).
309 	 */
310 	if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
311 		gt->steering[OADDRM].group_target = 0;
312 	else
313 		gt->steering[OADDRM].group_target = 1;
314 
315 	gt->steering[DSS].instance_target = 0;		/* unused */
316 }
317 
318 static void init_steering_sqidi_psmi(struct xe_gt *gt)
319 {
320 	u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
321 				 xe_mmio_read32(gt, MIRROR_FUSE3));
322 	u32 select = __ffs(mask);
323 
324 	gt->steering[SQIDI_PSMI].group_target = select >> 1;
325 	gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
326 }
327 
328 static void init_steering_inst0(struct xe_gt *gt)
329 {
330 	gt->steering[DSS].group_target = 0;		/* unused */
331 	gt->steering[DSS].instance_target = 0;		/* unused */
332 }
333 
334 static const struct {
335 	const char *name;
336 	void (*init)(struct xe_gt *gt);
337 } xe_steering_types[] = {
338 	[L3BANK] =	{ "L3BANK",	init_steering_l3bank },
339 	[MSLICE] =	{ "MSLICE",	init_steering_mslice },
340 	[LNCF] =	{ "LNCF",	NULL }, /* initialized by mslice init */
341 	[DSS] =		{ "DSS",	init_steering_dss },
342 	[OADDRM] =	{ "OADDRM / GPMXMT", init_steering_oaddrm },
343 	[SQIDI_PSMI] =  { "SQIDI_PSMI", init_steering_sqidi_psmi },
344 	[INSTANCE0] =	{ "INSTANCE 0",	init_steering_inst0 },
345 	[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
346 };
347 
348 void xe_gt_mcr_init(struct xe_gt *gt)
349 {
350 	struct xe_device *xe = gt_to_xe(gt);
351 
352 	BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
353 	BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
354 
355 	spin_lock_init(&gt->mcr_lock);
356 
357 	if (gt->info.type == XE_GT_TYPE_MEDIA) {
358 		drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
359 
360 		if (MEDIA_VER(xe) >= 20) {
361 			gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
362 			gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
363 		} else {
364 			gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
365 		}
366 	} else {
367 		if (GRAPHICS_VER(xe) >= 20) {
368 			gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
369 			gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
370 			gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
371 		} else if (GRAPHICS_VERx100(xe) >= 1270) {
372 			gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
373 			gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
374 			gt->steering[DSS].ranges = xelpg_dss_steering_table;
375 		} else if (xe->info.platform == XE_PVC) {
376 			gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
377 			gt->steering[DSS].ranges = xehpc_dss_steering_table;
378 		} else if (xe->info.platform == XE_DG2) {
379 			gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
380 			gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
381 			gt->steering[LNCF].ranges = xehp_lncf_steering_table;
382 			gt->steering[DSS].ranges = xehp_dss_steering_table;
383 			gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
384 		} else {
385 			gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
386 			gt->steering[DSS].ranges = xelp_dss_steering_table;
387 		}
388 	}
389 
390 	/* Select non-terminated steering target for each type */
391 	for (int i = 0; i < NUM_STEERING_TYPES; i++)
392 		if (gt->steering[i].ranges && xe_steering_types[i].init)
393 			xe_steering_types[i].init(gt);
394 }
395 
396 /**
397  * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
398  * @gt: GT structure
399  *
400  * Some register ranges don't need to have their steering control registers
401  * changed on each access - it's sufficient to set them once on initialization.
402  * This function sets those registers for each platform *
403  */
404 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
405 {
406 	struct xe_device *xe = gt_to_xe(gt);
407 
408 	if (xe->info.platform == XE_DG2) {
409 		u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
410 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
411 
412 		xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val);
413 		xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val);
414 		/*
415 		 * For GAM registers, all reads should be directed to instance 1
416 		 * (unicast reads against other instances are not allowed),
417 		 * and instance 1 is already the hardware's default steering
418 		 * target, which we never change
419 		 */
420 	}
421 }
422 
423 /*
424  * xe_gt_mcr_get_nonterminated_steering - find group/instance values that
425  *    will steer a register to a non-terminated instance
426  * @gt: GT structure
427  * @reg: register for which the steering is required
428  * @group: return variable for group steering
429  * @instance: return variable for instance steering
430  *
431  * This function returns a group/instance pair that is guaranteed to work for
432  * read steering of the given register. Note that a value will be returned even
433  * if the register is not replicated and therefore does not actually require
434  * steering.
435  *
436  * Returns true if the caller should steer to the @group/@instance values
437  * returned.  Returns false if the caller need not perform any steering
438  */
439 static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
440 						 struct xe_reg_mcr reg_mcr,
441 						 u8 *group, u8 *instance)
442 {
443 	const struct xe_reg reg = to_xe_reg(reg_mcr);
444 	const struct xe_mmio_range *implicit_ranges;
445 
446 	for (int type = 0; type < IMPLICIT_STEERING; type++) {
447 		if (!gt->steering[type].ranges)
448 			continue;
449 
450 		for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
451 			if (xe_mmio_in_range(gt, &gt->steering[type].ranges[i], reg)) {
452 				*group = gt->steering[type].group_target;
453 				*instance = gt->steering[type].instance_target;
454 				return true;
455 			}
456 		}
457 	}
458 
459 	implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
460 	if (implicit_ranges)
461 		for (int i = 0; implicit_ranges[i].end > 0; i++)
462 			if (xe_mmio_in_range(gt, &implicit_ranges[i], reg))
463 				return false;
464 
465 	/*
466 	 * Not found in a steering table and not a register with implicit
467 	 * steering. Just steer to 0/0 as a guess and raise a warning.
468 	 */
469 	drm_WARN(&gt_to_xe(gt)->drm, true,
470 		 "Did not find MCR register %#x in any MCR steering table\n",
471 		 reg.addr);
472 	*group = 0;
473 	*instance = 0;
474 
475 	return true;
476 }
477 
478 /*
479  * Obtain exclusive access to MCR steering.  On MTL and beyond we also need
480  * to synchronize with external clients (e.g., firmware), so a semaphore
481  * register will also need to be taken.
482  */
483 static void mcr_lock(struct xe_gt *gt) __acquires(&gt->mcr_lock)
484 {
485 	struct xe_device *xe = gt_to_xe(gt);
486 	int ret = 0;
487 
488 	spin_lock(&gt->mcr_lock);
489 
490 	/*
491 	 * Starting with MTL we also need to grab a semaphore register
492 	 * to synchronize with external agents (e.g., firmware) that now
493 	 * shares the same steering control register. The semaphore is obtained
494 	 * when a read to the relevant register returns 1.
495 	 */
496 	if (GRAPHICS_VERx100(xe) >= 1270)
497 		ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
498 				     true);
499 
500 	drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
501 }
502 
503 static void mcr_unlock(struct xe_gt *gt) __releases(&gt->mcr_lock)
504 {
505 	/* Release hardware semaphore - this is done by writing 1 to the register */
506 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
507 		xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1);
508 
509 	spin_unlock(&gt->mcr_lock);
510 }
511 
512 /*
513  * Access a register with specific MCR steering
514  *
515  * Caller needs to make sure the relevant forcewake wells are up.
516  */
517 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
518 				u8 rw_flag, int group, int instance, u32 value)
519 {
520 	const struct xe_reg reg = to_xe_reg(reg_mcr);
521 	struct xe_reg steer_reg;
522 	u32 steer_val, val = 0;
523 
524 	lockdep_assert_held(&gt->mcr_lock);
525 
526 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
527 		steer_reg = MTL_MCR_SELECTOR;
528 		steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
529 			REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
530 	} else {
531 		steer_reg = MCR_SELECTOR;
532 		steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
533 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
534 	}
535 
536 	/*
537 	 * Always leave the hardware in multicast mode when doing reads and only
538 	 * change it to unicast mode when doing writes of a specific instance.
539 	 *
540 	 * The setting of the multicast/unicast bit usually wouldn't matter for
541 	 * read operations (which always return the value from a single register
542 	 * instance regardless of how that bit is set), but some platforms may
543 	 * have workarounds requiring us to remain in multicast mode for reads,
544 	 * e.g. Wa_22013088509 on PVC.  There's no real downside to this, so
545 	 * we'll just go ahead and do so on all platforms; we'll only clear the
546 	 * multicast bit from the mask when explicitly doing a write operation.
547 	 *
548 	 * No need to save old steering reg value.
549 	 */
550 	if (rw_flag == MCR_OP_READ)
551 		steer_val |= MCR_MULTICAST;
552 
553 	xe_mmio_write32(gt, steer_reg, steer_val);
554 
555 	if (rw_flag == MCR_OP_READ)
556 		val = xe_mmio_read32(gt, reg);
557 	else
558 		xe_mmio_write32(gt, reg, value);
559 
560 	/*
561 	 * If we turned off the multicast bit (during a write) we're required
562 	 * to turn it back on before finishing.  The group and instance values
563 	 * don't matter since they'll be re-programmed on the next MCR
564 	 * operation.
565 	 */
566 	if (rw_flag == MCR_OP_WRITE)
567 		xe_mmio_write32(gt, steer_reg, MCR_MULTICAST);
568 
569 	return val;
570 }
571 
572 /**
573  * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
574  * @gt: GT structure
575  * @reg_mcr: register to read
576  *
577  * Reads a GT MCR register.  The read will be steered to a non-terminated
578  * instance (i.e., one that isn't fused off or powered down by power gating).
579  * This function assumes the caller is already holding any necessary forcewake
580  * domains.
581  *
582  * Returns the value from a non-terminated instance of @reg.
583  */
584 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
585 {
586 	const struct xe_reg reg = to_xe_reg(reg_mcr);
587 	u8 group, instance;
588 	u32 val;
589 	bool steer;
590 
591 	steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
592 						     &group, &instance);
593 
594 	if (steer) {
595 		mcr_lock(gt);
596 		val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
597 					   group, instance, 0);
598 		mcr_unlock(gt);
599 	} else {
600 		val = xe_mmio_read32(gt, reg);
601 	}
602 
603 	return val;
604 }
605 
606 /**
607  * xe_gt_mcr_unicast_read - read a specific instance of an MCR register
608  * @gt: GT structure
609  * @reg_mcr: the MCR register to read
610  * @group: the MCR group
611  * @instance: the MCR instance
612  *
613  * Returns the value read from an MCR register after steering toward a specific
614  * group/instance.
615  */
616 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
617 			   struct xe_reg_mcr reg_mcr,
618 			   int group, int instance)
619 {
620 	u32 val;
621 
622 	mcr_lock(gt);
623 	val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
624 	mcr_unlock(gt);
625 
626 	return val;
627 }
628 
629 /**
630  * xe_gt_mcr_unicast_write - write a specific instance of an MCR register
631  * @gt: GT structure
632  * @reg_mcr: the MCR register to write
633  * @value: value to write
634  * @group: the MCR group
635  * @instance: the MCR instance
636  *
637  * Write an MCR register in unicast mode after steering toward a specific
638  * group/instance.
639  */
640 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
641 			     u32 value, int group, int instance)
642 {
643 	mcr_lock(gt);
644 	rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
645 	mcr_unlock(gt);
646 }
647 
648 /**
649  * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
650  * @gt: GT structure
651  * @reg_mcr: the MCR register to write
652  * @value: value to write
653  *
654  * Write an MCR register in multicast mode to update all instances.
655  */
656 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
657 			       u32 value)
658 {
659 	struct xe_reg reg = to_xe_reg(reg_mcr);
660 
661 	/*
662 	 * Synchronize with any unicast operations.  Once we have exclusive
663 	 * access, the MULTICAST bit should already be set, so there's no need
664 	 * to touch the steering register.
665 	 */
666 	mcr_lock(gt);
667 	xe_mmio_write32(gt, reg, value);
668 	mcr_unlock(gt);
669 }
670 
671 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
672 {
673 	for (int i = 0; i < NUM_STEERING_TYPES; i++) {
674 		if (gt->steering[i].ranges) {
675 			drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
676 				   xe_steering_types[i].name,
677 				   gt->steering[i].group_target,
678 				   gt->steering[i].instance_target);
679 			for (int j = 0; gt->steering[i].ranges[j].end; j++)
680 				drm_printf(p, "\t0x%06x - 0x%06x\n",
681 					   gt->steering[i].ranges[j].start,
682 					   gt->steering[i].ranges[j].end);
683 		}
684 	}
685 }
686