1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_gt_mcr.h" 7 8 #include "regs/xe_gt_regs.h" 9 #include "xe_gt.h" 10 #include "xe_gt_topology.h" 11 #include "xe_gt_types.h" 12 #include "xe_mmio.h" 13 14 /** 15 * DOC: GT Multicast/Replicated (MCR) Register Support 16 * 17 * Some GT registers are designed as "multicast" or "replicated" registers: 18 * multiple instances of the same register share a single MMIO offset. MCR 19 * registers are generally used when the hardware needs to potentially track 20 * independent values of a register per hardware unit (e.g., per-subslice, 21 * per-L3bank, etc.). The specific types of replication that exist vary 22 * per-platform. 23 * 24 * MMIO accesses to MCR registers are controlled according to the settings 25 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR 26 * registers can be done in either multicast (a single write updates all 27 * instances of the register to the same value) or unicast (a write updates only 28 * one specific instance) form. Reads of MCR registers always operate in a 29 * unicast manner regardless of how the multicast/unicast bit is set in 30 * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is 31 * referred to as "steering." 32 * 33 * If MCR register operations are steered toward a hardware unit that is 34 * fused off or currently powered down due to power gating, the MMIO operation 35 * is "terminated" by the hardware. Terminated read operations will return a 36 * value of zero and terminated unicast write operations will be silently 37 * ignored. During device initialization, the goal of the various 38 * ``init_steering_*()`` functions is to apply the platform-specific rules for 39 * each MCR register type to identify a steering target that will select a 40 * non-terminated instance. 41 */ 42 43 #define STEER_SEMAPHORE XE_REG(0xFD0) 44 45 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) 46 { 47 return reg_mcr.__reg; 48 } 49 50 enum { 51 MCR_OP_READ, 52 MCR_OP_WRITE 53 }; 54 55 static const struct xe_mmio_range xelp_l3bank_steering_table[] = { 56 { 0x00B100, 0x00B3FF }, 57 {}, 58 }; 59 60 static const struct xe_mmio_range xehp_l3bank_steering_table[] = { 61 { 0x008C80, 0x008CFF }, 62 { 0x00B100, 0x00B3FF }, 63 {}, 64 }; 65 66 /* 67 * Although the bspec lists more "MSLICE" ranges than shown here, some of those 68 * are of a "GAM" subclass that has special rules and doesn't need to be 69 * included here. 70 */ 71 static const struct xe_mmio_range xehp_mslice_steering_table[] = { 72 { 0x00DD00, 0x00DDFF }, 73 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 74 {}, 75 }; 76 77 static const struct xe_mmio_range xehp_lncf_steering_table[] = { 78 { 0x00B000, 0x00B0FF }, 79 { 0x00D880, 0x00D8FF }, 80 {}, 81 }; 82 83 /* 84 * We have several types of MCR registers where steering to (0,0) will always 85 * provide us with a non-terminated value. We'll stick them all in the same 86 * table for simplicity. 87 */ 88 static const struct xe_mmio_range xehpc_instance0_steering_table[] = { 89 { 0x004000, 0x004AFF }, /* HALF-BSLICE */ 90 { 0x008800, 0x00887F }, /* CC */ 91 { 0x008A80, 0x008AFF }, /* TILEPSMI */ 92 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ 93 { 0x00B100, 0x00B3FF }, /* L3BANK */ 94 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ 95 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ 96 { 0x00DD00, 0x00DDFF }, /* BSLICE */ 97 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ 98 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ 99 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ 100 { 0x024180, 0x0241FF }, /* HALF-BSLICE */ 101 {}, 102 }; 103 104 static const struct xe_mmio_range xelpg_instance0_steering_table[] = { 105 { 0x000B00, 0x000BFF }, /* SQIDI */ 106 { 0x001000, 0x001FFF }, /* SQIDI */ 107 { 0x004000, 0x0048FF }, /* GAM */ 108 { 0x008700, 0x0087FF }, /* SQIDI */ 109 { 0x00B000, 0x00B0FF }, /* NODE */ 110 { 0x00C800, 0x00CFFF }, /* GAM */ 111 { 0x00D880, 0x00D8FF }, /* NODE */ 112 { 0x00DD00, 0x00DDFF }, /* OAAL2 */ 113 {}, 114 }; 115 116 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { 117 { 0x00B100, 0x00B3FF }, 118 {}, 119 }; 120 121 static const struct xe_mmio_range xelp_dss_steering_table[] = { 122 { 0x008150, 0x00815F }, 123 { 0x009520, 0x00955F }, 124 { 0x00DE80, 0x00E8FF }, 125 { 0x024A00, 0x024A7F }, 126 {}, 127 }; 128 129 /* DSS steering is used for GSLICE ranges as well */ 130 static const struct xe_mmio_range xehp_dss_steering_table[] = { 131 { 0x005200, 0x0052FF }, /* GSLICE */ 132 { 0x005400, 0x007FFF }, /* GSLICE */ 133 { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 134 { 0x008D00, 0x008DFF }, /* DSS */ 135 { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 136 { 0x009680, 0x0096FF }, /* DSS */ 137 { 0x00D800, 0x00D87F }, /* GSLICE */ 138 { 0x00DC00, 0x00DCFF }, /* GSLICE */ 139 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ 140 { 0x017000, 0x017FFF }, /* GSLICE */ 141 { 0x024A00, 0x024A7F }, /* DSS */ 142 {}, 143 }; 144 145 /* DSS steering is used for COMPUTE ranges as well */ 146 static const struct xe_mmio_range xehpc_dss_steering_table[] = { 147 { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ 148 { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 149 { 0x009680, 0x0096FF }, /* DSS */ 150 { 0x00DC00, 0x00DCFF }, /* COMPUTE */ 151 { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ 152 {}, 153 }; 154 155 /* DSS steering is used for SLICE ranges as well */ 156 static const struct xe_mmio_range xelpg_dss_steering_table[] = { 157 { 0x005200, 0x0052FF }, /* SLICE */ 158 { 0x005500, 0x007FFF }, /* SLICE */ 159 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 160 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 161 { 0x009680, 0x0096FF }, /* DSS */ 162 { 0x00D800, 0x00D87F }, /* SLICE */ 163 { 0x00DC00, 0x00DCFF }, /* SLICE */ 164 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 165 {}, 166 }; 167 168 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { 169 { 0x393200, 0x39323F }, 170 { 0x393400, 0x3934FF }, 171 {}, 172 }; 173 174 static const struct xe_mmio_range dg2_implicit_steering_table[] = { 175 { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ 176 { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ 177 { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ 178 { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ 179 { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ 180 { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ 181 {}, 182 }; 183 184 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { 185 { 0x005200, 0x0052FF }, /* SLICE */ 186 { 0x005500, 0x007FFF }, /* SLICE */ 187 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 188 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 189 { 0x009680, 0x0096FF }, /* DSS */ 190 { 0x00D800, 0x00D87F }, /* SLICE */ 191 { 0x00DC00, 0x00DCFF }, /* SLICE */ 192 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 193 { 0x00E980, 0x00E9FF }, /* SLICE */ 194 { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ 195 {}, 196 }; 197 198 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { 199 { 0x000B00, 0x000BFF }, 200 { 0x001000, 0x001FFF }, 201 {}, 202 }; 203 204 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { 205 { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ 206 { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ 207 { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ 208 { 0x00C800, 0x00CFFF }, /* GAM */ 209 { 0x00D880, 0x00D8FF }, /* NODE */ 210 { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ 211 { 0x00E900, 0x00E97F }, /* MEMPIPE */ 212 { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ 213 { 0x013400, 0x0135FF }, /* MEMPIPE */ 214 {}, 215 }; 216 217 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { 218 { 0x388160, 0x38817F }, 219 { 0x389480, 0x3894CF }, 220 {}, 221 }; 222 223 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { 224 { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ 225 { 0x384900, 0x384AFF }, /* GAM */ 226 { 0x389560, 0x3895FF }, /* MEDIAINF */ 227 { 0x38B600, 0x38B8FF }, /* L3BANK */ 228 { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ 229 { 0x38F000, 0x38F0FF }, /* GAM */ 230 { 0x393C00, 0x393C7F }, /* MEDIAINF */ 231 {}, 232 }; 233 234 static void init_steering_l3bank(struct xe_gt *gt) 235 { 236 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { 237 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 238 xe_mmio_read32(gt, MIRROR_FUSE3)); 239 u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, 240 xe_mmio_read32(gt, XEHP_FUSE4)); 241 242 /* 243 * Group selects mslice, instance selects bank within mslice. 244 * Bank 0 is always valid _except_ when the bank mask is 010b. 245 */ 246 gt->steering[L3BANK].group_target = __ffs(mslice_mask); 247 gt->steering[L3BANK].instance_target = 248 bank_mask & BIT(0) ? 0 : 2; 249 } else if (gt_to_xe(gt)->info.platform == XE_DG2) { 250 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 251 xe_mmio_read32(gt, MIRROR_FUSE3)); 252 u32 bank = __ffs(mslice_mask) * 8; 253 254 /* 255 * Like mslice registers, look for a valid mslice and steer to 256 * the first L3BANK of that quad. Access to the Nth L3 bank is 257 * split between the first bits of group and instance 258 */ 259 gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; 260 gt->steering[L3BANK].instance_target = bank & 0x3; 261 } else { 262 u32 fuse = REG_FIELD_GET(L3BANK_MASK, 263 ~xe_mmio_read32(gt, MIRROR_FUSE3)); 264 265 gt->steering[L3BANK].group_target = 0; /* unused */ 266 gt->steering[L3BANK].instance_target = __ffs(fuse); 267 } 268 } 269 270 static void init_steering_mslice(struct xe_gt *gt) 271 { 272 u32 mask = REG_FIELD_GET(MEML3_EN_MASK, 273 xe_mmio_read32(gt, MIRROR_FUSE3)); 274 275 /* 276 * mslice registers are valid (not terminated) if either the meml3 277 * associated with the mslice is present, or at least one DSS associated 278 * with the mslice is present. There will always be at least one meml3 279 * so we can just use that to find a non-terminated mslice and ignore 280 * the DSS fusing. 281 */ 282 gt->steering[MSLICE].group_target = __ffs(mask); 283 gt->steering[MSLICE].instance_target = 0; /* unused */ 284 285 /* 286 * LNCF termination is also based on mslice presence, so we'll set 287 * it up here. Either LNCF within a non-terminated mslice will work, 288 * so we just always pick LNCF 0 here. 289 */ 290 gt->steering[LNCF].group_target = __ffs(mask) << 1; 291 gt->steering[LNCF].instance_target = 0; /* unused */ 292 } 293 294 static void init_steering_dss(struct xe_gt *gt) 295 { 296 unsigned int dss = min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), 297 xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)); 298 unsigned int dss_per_grp = gt_to_xe(gt)->info.platform == XE_PVC ? 8 : 4; 299 300 gt->steering[DSS].group_target = dss / dss_per_grp; 301 gt->steering[DSS].instance_target = dss % dss_per_grp; 302 } 303 304 static void init_steering_oaddrm(struct xe_gt *gt) 305 { 306 /* 307 * First instance is only terminated if the entire first media slice 308 * is absent (i.e., no VCS0 or VECS0). 309 */ 310 if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) 311 gt->steering[OADDRM].group_target = 0; 312 else 313 gt->steering[OADDRM].group_target = 1; 314 315 gt->steering[DSS].instance_target = 0; /* unused */ 316 } 317 318 static void init_steering_sqidi_psmi(struct xe_gt *gt) 319 { 320 u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, 321 xe_mmio_read32(gt, MIRROR_FUSE3)); 322 u32 select = __ffs(mask); 323 324 gt->steering[SQIDI_PSMI].group_target = select >> 1; 325 gt->steering[SQIDI_PSMI].instance_target = select & 0x1; 326 } 327 328 static void init_steering_inst0(struct xe_gt *gt) 329 { 330 gt->steering[DSS].group_target = 0; /* unused */ 331 gt->steering[DSS].instance_target = 0; /* unused */ 332 } 333 334 static const struct { 335 const char *name; 336 void (*init)(struct xe_gt *gt); 337 } xe_steering_types[] = { 338 [L3BANK] = { "L3BANK", init_steering_l3bank }, 339 [MSLICE] = { "MSLICE", init_steering_mslice }, 340 [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ 341 [DSS] = { "DSS", init_steering_dss }, 342 [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, 343 [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, 344 [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 }, 345 [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, 346 }; 347 348 void xe_gt_mcr_init(struct xe_gt *gt) 349 { 350 struct xe_device *xe = gt_to_xe(gt); 351 352 BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); 353 BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); 354 355 spin_lock_init(>->mcr_lock); 356 357 if (gt->info.type == XE_GT_TYPE_MEDIA) { 358 drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); 359 360 if (MEDIA_VER(xe) >= 20) { 361 gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; 362 gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; 363 } else { 364 gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; 365 } 366 } else { 367 if (GRAPHICS_VER(xe) >= 20) { 368 gt->steering[DSS].ranges = xe2lpg_dss_steering_table; 369 gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; 370 gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; 371 } else if (GRAPHICS_VERx100(xe) >= 1270) { 372 gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; 373 gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; 374 gt->steering[DSS].ranges = xelpg_dss_steering_table; 375 } else if (xe->info.platform == XE_PVC) { 376 gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; 377 gt->steering[DSS].ranges = xehpc_dss_steering_table; 378 } else if (xe->info.platform == XE_DG2) { 379 gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; 380 gt->steering[MSLICE].ranges = xehp_mslice_steering_table; 381 gt->steering[LNCF].ranges = xehp_lncf_steering_table; 382 gt->steering[DSS].ranges = xehp_dss_steering_table; 383 gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; 384 } else { 385 gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; 386 gt->steering[DSS].ranges = xelp_dss_steering_table; 387 } 388 } 389 390 /* Select non-terminated steering target for each type */ 391 for (int i = 0; i < NUM_STEERING_TYPES; i++) 392 if (gt->steering[i].ranges && xe_steering_types[i].init) 393 xe_steering_types[i].init(gt); 394 } 395 396 /** 397 * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers 398 * @gt: GT structure 399 * 400 * Some register ranges don't need to have their steering control registers 401 * changed on each access - it's sufficient to set them once on initialization. 402 * This function sets those registers for each platform * 403 */ 404 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) 405 { 406 struct xe_device *xe = gt_to_xe(gt); 407 408 if (xe->info.platform == XE_DG2) { 409 u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | 410 REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); 411 412 xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val); 413 xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val); 414 /* 415 * For GAM registers, all reads should be directed to instance 1 416 * (unicast reads against other instances are not allowed), 417 * and instance 1 is already the hardware's default steering 418 * target, which we never change 419 */ 420 } 421 } 422 423 /* 424 * xe_gt_mcr_get_nonterminated_steering - find group/instance values that 425 * will steer a register to a non-terminated instance 426 * @gt: GT structure 427 * @reg: register for which the steering is required 428 * @group: return variable for group steering 429 * @instance: return variable for instance steering 430 * 431 * This function returns a group/instance pair that is guaranteed to work for 432 * read steering of the given register. Note that a value will be returned even 433 * if the register is not replicated and therefore does not actually require 434 * steering. 435 * 436 * Returns true if the caller should steer to the @group/@instance values 437 * returned. Returns false if the caller need not perform any steering 438 */ 439 static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, 440 struct xe_reg_mcr reg_mcr, 441 u8 *group, u8 *instance) 442 { 443 const struct xe_reg reg = to_xe_reg(reg_mcr); 444 const struct xe_mmio_range *implicit_ranges; 445 446 for (int type = 0; type < IMPLICIT_STEERING; type++) { 447 if (!gt->steering[type].ranges) 448 continue; 449 450 for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { 451 if (xe_mmio_in_range(gt, >->steering[type].ranges[i], reg)) { 452 *group = gt->steering[type].group_target; 453 *instance = gt->steering[type].instance_target; 454 return true; 455 } 456 } 457 } 458 459 implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; 460 if (implicit_ranges) 461 for (int i = 0; implicit_ranges[i].end > 0; i++) 462 if (xe_mmio_in_range(gt, &implicit_ranges[i], reg)) 463 return false; 464 465 /* 466 * Not found in a steering table and not a register with implicit 467 * steering. Just steer to 0/0 as a guess and raise a warning. 468 */ 469 drm_WARN(>_to_xe(gt)->drm, true, 470 "Did not find MCR register %#x in any MCR steering table\n", 471 reg.addr); 472 *group = 0; 473 *instance = 0; 474 475 return true; 476 } 477 478 /* 479 * Obtain exclusive access to MCR steering. On MTL and beyond we also need 480 * to synchronize with external clients (e.g., firmware), so a semaphore 481 * register will also need to be taken. 482 */ 483 static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) 484 { 485 struct xe_device *xe = gt_to_xe(gt); 486 int ret = 0; 487 488 spin_lock(>->mcr_lock); 489 490 /* 491 * Starting with MTL we also need to grab a semaphore register 492 * to synchronize with external agents (e.g., firmware) that now 493 * shares the same steering control register. The semaphore is obtained 494 * when a read to the relevant register returns 1. 495 */ 496 if (GRAPHICS_VERx100(xe) >= 1270) 497 ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, 498 true); 499 500 drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); 501 } 502 503 static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) 504 { 505 /* Release hardware semaphore - this is done by writing 1 to the register */ 506 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) 507 xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1); 508 509 spin_unlock(>->mcr_lock); 510 } 511 512 /* 513 * Access a register with specific MCR steering 514 * 515 * Caller needs to make sure the relevant forcewake wells are up. 516 */ 517 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 518 u8 rw_flag, int group, int instance, u32 value) 519 { 520 const struct xe_reg reg = to_xe_reg(reg_mcr); 521 struct xe_reg steer_reg; 522 u32 steer_val, val = 0; 523 524 lockdep_assert_held(>->mcr_lock); 525 526 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { 527 steer_reg = MTL_MCR_SELECTOR; 528 steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | 529 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); 530 } else { 531 steer_reg = MCR_SELECTOR; 532 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | 533 REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); 534 } 535 536 /* 537 * Always leave the hardware in multicast mode when doing reads and only 538 * change it to unicast mode when doing writes of a specific instance. 539 * 540 * The setting of the multicast/unicast bit usually wouldn't matter for 541 * read operations (which always return the value from a single register 542 * instance regardless of how that bit is set), but some platforms may 543 * have workarounds requiring us to remain in multicast mode for reads, 544 * e.g. Wa_22013088509 on PVC. There's no real downside to this, so 545 * we'll just go ahead and do so on all platforms; we'll only clear the 546 * multicast bit from the mask when explicitly doing a write operation. 547 * 548 * No need to save old steering reg value. 549 */ 550 if (rw_flag == MCR_OP_READ) 551 steer_val |= MCR_MULTICAST; 552 553 xe_mmio_write32(gt, steer_reg, steer_val); 554 555 if (rw_flag == MCR_OP_READ) 556 val = xe_mmio_read32(gt, reg); 557 else 558 xe_mmio_write32(gt, reg, value); 559 560 /* 561 * If we turned off the multicast bit (during a write) we're required 562 * to turn it back on before finishing. The group and instance values 563 * don't matter since they'll be re-programmed on the next MCR 564 * operation. 565 */ 566 if (rw_flag == MCR_OP_WRITE) 567 xe_mmio_write32(gt, steer_reg, MCR_MULTICAST); 568 569 return val; 570 } 571 572 /** 573 * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register 574 * @gt: GT structure 575 * @reg_mcr: register to read 576 * 577 * Reads a GT MCR register. The read will be steered to a non-terminated 578 * instance (i.e., one that isn't fused off or powered down by power gating). 579 * This function assumes the caller is already holding any necessary forcewake 580 * domains. 581 * 582 * Returns the value from a non-terminated instance of @reg. 583 */ 584 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) 585 { 586 const struct xe_reg reg = to_xe_reg(reg_mcr); 587 u8 group, instance; 588 u32 val; 589 bool steer; 590 591 steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, 592 &group, &instance); 593 594 if (steer) { 595 mcr_lock(gt); 596 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, 597 group, instance, 0); 598 mcr_unlock(gt); 599 } else { 600 val = xe_mmio_read32(gt, reg); 601 } 602 603 return val; 604 } 605 606 /** 607 * xe_gt_mcr_unicast_read - read a specific instance of an MCR register 608 * @gt: GT structure 609 * @reg_mcr: the MCR register to read 610 * @group: the MCR group 611 * @instance: the MCR instance 612 * 613 * Returns the value read from an MCR register after steering toward a specific 614 * group/instance. 615 */ 616 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, 617 struct xe_reg_mcr reg_mcr, 618 int group, int instance) 619 { 620 u32 val; 621 622 mcr_lock(gt); 623 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); 624 mcr_unlock(gt); 625 626 return val; 627 } 628 629 /** 630 * xe_gt_mcr_unicast_write - write a specific instance of an MCR register 631 * @gt: GT structure 632 * @reg_mcr: the MCR register to write 633 * @value: value to write 634 * @group: the MCR group 635 * @instance: the MCR instance 636 * 637 * Write an MCR register in unicast mode after steering toward a specific 638 * group/instance. 639 */ 640 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 641 u32 value, int group, int instance) 642 { 643 mcr_lock(gt); 644 rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); 645 mcr_unlock(gt); 646 } 647 648 /** 649 * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register 650 * @gt: GT structure 651 * @reg_mcr: the MCR register to write 652 * @value: value to write 653 * 654 * Write an MCR register in multicast mode to update all instances. 655 */ 656 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 657 u32 value) 658 { 659 struct xe_reg reg = to_xe_reg(reg_mcr); 660 661 /* 662 * Synchronize with any unicast operations. Once we have exclusive 663 * access, the MULTICAST bit should already be set, so there's no need 664 * to touch the steering register. 665 */ 666 mcr_lock(gt); 667 xe_mmio_write32(gt, reg, value); 668 mcr_unlock(gt); 669 } 670 671 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) 672 { 673 for (int i = 0; i < NUM_STEERING_TYPES; i++) { 674 if (gt->steering[i].ranges) { 675 drm_printf(p, "%s steering: group=%#x, instance=%#x\n", 676 xe_steering_types[i].name, 677 gt->steering[i].group_target, 678 gt->steering[i].instance_target); 679 for (int j = 0; gt->steering[i].ranges[j].end; j++) 680 drm_printf(p, "\t0x%06x - 0x%06x\n", 681 gt->steering[i].ranges[j].start, 682 gt->steering[i].ranges[j].end); 683 } 684 } 685 } 686