xref: /linux/drivers/gpu/drm/xe/xe_gt_mcr.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_gt_mcr.h"
7 
8 #include "regs/xe_gt_regs.h"
9 #include "xe_assert.h"
10 #include "xe_gt.h"
11 #include "xe_gt_topology.h"
12 #include "xe_gt_types.h"
13 #include "xe_mmio.h"
14 #include "xe_sriov.h"
15 
16 /**
17  * DOC: GT Multicast/Replicated (MCR) Register Support
18  *
19  * Some GT registers are designed as "multicast" or "replicated" registers:
20  * multiple instances of the same register share a single MMIO offset.  MCR
21  * registers are generally used when the hardware needs to potentially track
22  * independent values of a register per hardware unit (e.g., per-subslice,
23  * per-L3bank, etc.).  The specific types of replication that exist vary
24  * per-platform.
25  *
26  * MMIO accesses to MCR registers are controlled according to the settings
27  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
28  * registers can be done in either multicast (a single write updates all
29  * instances of the register to the same value) or unicast (a write updates only
30  * one specific instance) form.  Reads of MCR registers always operate in a
31  * unicast manner regardless of how the multicast/unicast bit is set in
32  * MCR_SELECTOR.  Selection of a specific MCR instance for unicast operations is
33  * referred to as "steering."
34  *
35  * If MCR register operations are steered toward a hardware unit that is
36  * fused off or currently powered down due to power gating, the MMIO operation
37  * is "terminated" by the hardware.  Terminated read operations will return a
38  * value of zero and terminated unicast write operations will be silently
39  * ignored. During device initialization, the goal of the various
40  * ``init_steering_*()`` functions is to apply the platform-specific rules for
41  * each MCR register type to identify a steering target that will select a
42  * non-terminated instance.
43  *
44  * MCR registers are not available on Virtual Function (VF).
45  */
46 
47 #define STEER_SEMAPHORE		XE_REG(0xFD0)
48 
49 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
50 {
51 	return reg_mcr.__reg;
52 }
53 
54 enum {
55 	MCR_OP_READ,
56 	MCR_OP_WRITE
57 };
58 
59 static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
60 	{ 0x00B100, 0x00B3FF },
61 	{},
62 };
63 
64 static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
65 	{ 0x008C80, 0x008CFF },
66 	{ 0x00B100, 0x00B3FF },
67 	{},
68 };
69 
70 /*
71  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
72  * are of a "GAM" subclass that has special rules and doesn't need to be
73  * included here.
74  */
75 static const struct xe_mmio_range xehp_mslice_steering_table[] = {
76 	{ 0x00DD00, 0x00DDFF },
77 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
78 	{},
79 };
80 
81 static const struct xe_mmio_range xehp_lncf_steering_table[] = {
82 	{ 0x00B000, 0x00B0FF },
83 	{ 0x00D880, 0x00D8FF },
84 	{},
85 };
86 
87 /*
88  * We have several types of MCR registers where steering to (0,0) will always
89  * provide us with a non-terminated value.  We'll stick them all in the same
90  * table for simplicity.
91  */
92 static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
93 	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
94 	{ 0x008800, 0x00887F },		/* CC */
95 	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
96 	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
97 	{ 0x00B100, 0x00B3FF },		/* L3BANK */
98 	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
99 	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
100 	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
101 	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
102 	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
103 	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
104 	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
105 	{},
106 };
107 
108 static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
109 	{ 0x000B00, 0x000BFF },         /* SQIDI */
110 	{ 0x001000, 0x001FFF },         /* SQIDI */
111 	{ 0x004000, 0x0048FF },         /* GAM */
112 	{ 0x008700, 0x0087FF },         /* SQIDI */
113 	{ 0x00B000, 0x00B0FF },         /* NODE */
114 	{ 0x00C800, 0x00CFFF },         /* GAM */
115 	{ 0x00D880, 0x00D8FF },         /* NODE */
116 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
117 	{},
118 };
119 
120 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
121 	{ 0x00B100, 0x00B3FF },
122 	{},
123 };
124 
125 static const struct xe_mmio_range xelp_dss_steering_table[] = {
126 	{ 0x008150, 0x00815F },
127 	{ 0x009520, 0x00955F },
128 	{ 0x00DE80, 0x00E8FF },
129 	{ 0x024A00, 0x024A7F },
130 	{},
131 };
132 
133 /* DSS steering is used for GSLICE ranges as well */
134 static const struct xe_mmio_range xehp_dss_steering_table[] = {
135 	{ 0x005200, 0x0052FF },		/* GSLICE */
136 	{ 0x005400, 0x007FFF },		/* GSLICE */
137 	{ 0x008140, 0x00815F },		/* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
138 	{ 0x008D00, 0x008DFF },		/* DSS */
139 	{ 0x0094D0, 0x00955F },		/* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
140 	{ 0x009680, 0x0096FF },		/* DSS */
141 	{ 0x00D800, 0x00D87F },		/* GSLICE */
142 	{ 0x00DC00, 0x00DCFF },		/* GSLICE */
143 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved ) */
144 	{ 0x017000, 0x017FFF },		/* GSLICE */
145 	{ 0x024A00, 0x024A7F },		/* DSS */
146 	{},
147 };
148 
149 /* DSS steering is used for COMPUTE ranges as well */
150 static const struct xe_mmio_range xehpc_dss_steering_table[] = {
151 	{ 0x008140, 0x00817F },		/* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
152 	{ 0x0094D0, 0x00955F },		/* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
153 	{ 0x009680, 0x0096FF },		/* DSS */
154 	{ 0x00DC00, 0x00DCFF },		/* COMPUTE */
155 	{ 0x00DE80, 0x00E7FF },		/* DSS (0xDF00-0xE1FF reserved ) */
156 	{},
157 };
158 
159 /* DSS steering is used for SLICE ranges as well */
160 static const struct xe_mmio_range xelpg_dss_steering_table[] = {
161 	{ 0x005200, 0x0052FF },		/* SLICE */
162 	{ 0x005500, 0x007FFF },		/* SLICE */
163 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
164 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
165 	{ 0x009680, 0x0096FF },		/* DSS */
166 	{ 0x00D800, 0x00D87F },		/* SLICE */
167 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
168 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
169 	{},
170 };
171 
172 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
173 	{ 0x393200, 0x39323F },
174 	{ 0x393400, 0x3934FF },
175 	{},
176 };
177 
178 static const struct xe_mmio_range dg2_implicit_steering_table[] = {
179 	{ 0x000B00, 0x000BFF },		/* SF (SQIDI replication) */
180 	{ 0x001000, 0x001FFF },		/* SF (SQIDI replication) */
181 	{ 0x004000, 0x004AFF },		/* GAM (MSLICE replication) */
182 	{ 0x008700, 0x0087FF },		/* MCFG (SQIDI replication) */
183 	{ 0x00C800, 0x00CFFF },		/* GAM (MSLICE replication) */
184 	{ 0x00F000, 0x00FFFF },		/* GAM (MSLICE replication) */
185 	{},
186 };
187 
188 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
189 	{ 0x005200, 0x0052FF },         /* SLICE */
190 	{ 0x005500, 0x007FFF },         /* SLICE */
191 	{ 0x008140, 0x00815F },         /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
192 	{ 0x0094D0, 0x00955F },         /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
193 	{ 0x009680, 0x0096FF },         /* DSS */
194 	{ 0x00D800, 0x00D87F },         /* SLICE */
195 	{ 0x00DC00, 0x00DCFF },         /* SLICE */
196 	{ 0x00DE80, 0x00E8FF },         /* DSS (0xE000-0xE0FF reserved) */
197 	{ 0x00E980, 0x00E9FF },         /* SLICE */
198 	{ 0x013000, 0x0133FF },         /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
199 	{},
200 };
201 
202 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
203 	{ 0x000B00, 0x000BFF },
204 	{ 0x001000, 0x001FFF },
205 	{},
206 };
207 
208 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
209 	{ 0x004000, 0x004AFF },         /* GAM, rsvd, GAMWKR */
210 	{ 0x008700, 0x00887F },         /* SQIDI, MEMPIPE */
211 	{ 0x00B000, 0x00B3FF },         /* NODE, L3BANK */
212 	{ 0x00C800, 0x00CFFF },         /* GAM */
213 	{ 0x00D880, 0x00D8FF },         /* NODE */
214 	{ 0x00DD00, 0x00DDFF },         /* MEMPIPE */
215 	{ 0x00E900, 0x00E97F },         /* MEMPIPE */
216 	{ 0x00F000, 0x00FFFF },         /* GAM, GAMWKR */
217 	{ 0x013400, 0x0135FF },         /* MEMPIPE */
218 	{},
219 };
220 
221 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
222 	{ 0x388160, 0x38817F },
223 	{ 0x389480, 0x3894CF },
224 	{},
225 };
226 
227 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
228 	{ 0x384000, 0x3847DF },         /* GAM, rsvd, GAM */
229 	{ 0x384900, 0x384AFF },         /* GAM */
230 	{ 0x389560, 0x3895FF },         /* MEDIAINF */
231 	{ 0x38B600, 0x38B8FF },         /* L3BANK */
232 	{ 0x38C800, 0x38D07F },         /* GAM, MEDIAINF */
233 	{ 0x38F000, 0x38F0FF },         /* GAM */
234 	{ 0x393C00, 0x393C7F },         /* MEDIAINF */
235 	{},
236 };
237 
238 static void init_steering_l3bank(struct xe_gt *gt)
239 {
240 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
241 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
242 						xe_mmio_read32(gt, MIRROR_FUSE3));
243 		u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
244 					      xe_mmio_read32(gt, XEHP_FUSE4));
245 
246 		/*
247 		 * Group selects mslice, instance selects bank within mslice.
248 		 * Bank 0 is always valid _except_ when the bank mask is 010b.
249 		 */
250 		gt->steering[L3BANK].group_target = __ffs(mslice_mask);
251 		gt->steering[L3BANK].instance_target =
252 			bank_mask & BIT(0) ? 0 : 2;
253 	} else if (gt_to_xe(gt)->info.platform == XE_DG2) {
254 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
255 						xe_mmio_read32(gt, MIRROR_FUSE3));
256 		u32 bank = __ffs(mslice_mask) * 8;
257 
258 		/*
259 		 * Like mslice registers, look for a valid mslice and steer to
260 		 * the first L3BANK of that quad. Access to the Nth L3 bank is
261 		 * split between the first bits of group and instance
262 		 */
263 		gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
264 		gt->steering[L3BANK].instance_target = bank & 0x3;
265 	} else {
266 		u32 fuse = REG_FIELD_GET(L3BANK_MASK,
267 					 ~xe_mmio_read32(gt, MIRROR_FUSE3));
268 
269 		gt->steering[L3BANK].group_target = 0;	/* unused */
270 		gt->steering[L3BANK].instance_target = __ffs(fuse);
271 	}
272 }
273 
274 static void init_steering_mslice(struct xe_gt *gt)
275 {
276 	u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
277 				 xe_mmio_read32(gt, MIRROR_FUSE3));
278 
279 	/*
280 	 * mslice registers are valid (not terminated) if either the meml3
281 	 * associated with the mslice is present, or at least one DSS associated
282 	 * with the mslice is present.  There will always be at least one meml3
283 	 * so we can just use that to find a non-terminated mslice and ignore
284 	 * the DSS fusing.
285 	 */
286 	gt->steering[MSLICE].group_target = __ffs(mask);
287 	gt->steering[MSLICE].instance_target = 0;	/* unused */
288 
289 	/*
290 	 * LNCF termination is also based on mslice presence, so we'll set
291 	 * it up here.  Either LNCF within a non-terminated mslice will work,
292 	 * so we just always pick LNCF 0 here.
293 	 */
294 	gt->steering[LNCF].group_target = __ffs(mask) << 1;
295 	gt->steering[LNCF].instance_target = 0;		/* unused */
296 }
297 
298 static unsigned int dss_per_group(struct xe_gt *gt)
299 {
300 	if (gt_to_xe(gt)->info.platform == XE_PVC)
301 		return 8;
302 	else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250)
303 		return 4;
304 	else
305 		return 6;
306 }
307 
308 /**
309  * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS
310  * @gt: GT structure
311  * @dss: DSS ID to obtain steering for
312  * @group: pointer to storage for steering group ID
313  * @instance: pointer to storage for steering instance ID
314  */
315 void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance)
316 {
317 	int dss_per_grp = dss_per_group(gt);
318 
319 	xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS);
320 
321 	*group = dss / dss_per_grp;
322 	*instance = dss % dss_per_grp;
323 }
324 
325 static void init_steering_dss(struct xe_gt *gt)
326 {
327 	xe_gt_mcr_get_dss_steering(gt,
328 				   min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
329 				       xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)),
330 				   &gt->steering[DSS].group_target,
331 				   &gt->steering[DSS].instance_target);
332 }
333 
334 static void init_steering_oaddrm(struct xe_gt *gt)
335 {
336 	/*
337 	 * First instance is only terminated if the entire first media slice
338 	 * is absent (i.e., no VCS0 or VECS0).
339 	 */
340 	if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
341 		gt->steering[OADDRM].group_target = 0;
342 	else
343 		gt->steering[OADDRM].group_target = 1;
344 
345 	gt->steering[DSS].instance_target = 0;		/* unused */
346 }
347 
348 static void init_steering_sqidi_psmi(struct xe_gt *gt)
349 {
350 	u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
351 				 xe_mmio_read32(gt, MIRROR_FUSE3));
352 	u32 select = __ffs(mask);
353 
354 	gt->steering[SQIDI_PSMI].group_target = select >> 1;
355 	gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
356 }
357 
358 static void init_steering_inst0(struct xe_gt *gt)
359 {
360 	gt->steering[DSS].group_target = 0;		/* unused */
361 	gt->steering[DSS].instance_target = 0;		/* unused */
362 }
363 
364 static const struct {
365 	const char *name;
366 	void (*init)(struct xe_gt *gt);
367 } xe_steering_types[] = {
368 	[L3BANK] =	{ "L3BANK",	init_steering_l3bank },
369 	[MSLICE] =	{ "MSLICE",	init_steering_mslice },
370 	[LNCF] =	{ "LNCF",	NULL }, /* initialized by mslice init */
371 	[DSS] =		{ "DSS",	init_steering_dss },
372 	[OADDRM] =	{ "OADDRM / GPMXMT", init_steering_oaddrm },
373 	[SQIDI_PSMI] =  { "SQIDI_PSMI", init_steering_sqidi_psmi },
374 	[INSTANCE0] =	{ "INSTANCE 0",	init_steering_inst0 },
375 	[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
376 };
377 
378 void xe_gt_mcr_init(struct xe_gt *gt)
379 {
380 	struct xe_device *xe = gt_to_xe(gt);
381 
382 	BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
383 	BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
384 
385 	if (IS_SRIOV_VF(xe))
386 		return;
387 
388 	spin_lock_init(&gt->mcr_lock);
389 
390 	if (gt->info.type == XE_GT_TYPE_MEDIA) {
391 		drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
392 
393 		if (MEDIA_VER(xe) >= 20) {
394 			gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
395 			gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
396 		} else {
397 			gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
398 		}
399 	} else {
400 		if (GRAPHICS_VER(xe) >= 20) {
401 			gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
402 			gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
403 			gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
404 		} else if (GRAPHICS_VERx100(xe) >= 1270) {
405 			gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
406 			gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
407 			gt->steering[DSS].ranges = xelpg_dss_steering_table;
408 		} else if (xe->info.platform == XE_PVC) {
409 			gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
410 			gt->steering[DSS].ranges = xehpc_dss_steering_table;
411 		} else if (xe->info.platform == XE_DG2) {
412 			gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
413 			gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
414 			gt->steering[LNCF].ranges = xehp_lncf_steering_table;
415 			gt->steering[DSS].ranges = xehp_dss_steering_table;
416 			gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
417 		} else {
418 			gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
419 			gt->steering[DSS].ranges = xelp_dss_steering_table;
420 		}
421 	}
422 
423 	/* Select non-terminated steering target for each type */
424 	for (int i = 0; i < NUM_STEERING_TYPES; i++)
425 		if (gt->steering[i].ranges && xe_steering_types[i].init)
426 			xe_steering_types[i].init(gt);
427 }
428 
429 /**
430  * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
431  * @gt: GT structure
432  *
433  * Some register ranges don't need to have their steering control registers
434  * changed on each access - it's sufficient to set them once on initialization.
435  * This function sets those registers for each platform *
436  */
437 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
438 {
439 	struct xe_device *xe = gt_to_xe(gt);
440 
441 	if (IS_SRIOV_VF(xe))
442 		return;
443 
444 	if (xe->info.platform == XE_DG2) {
445 		u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
446 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
447 
448 		xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val);
449 		xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val);
450 		/*
451 		 * For GAM registers, all reads should be directed to instance 1
452 		 * (unicast reads against other instances are not allowed),
453 		 * and instance 1 is already the hardware's default steering
454 		 * target, which we never change
455 		 */
456 	}
457 }
458 
459 /*
460  * xe_gt_mcr_get_nonterminated_steering - find group/instance values that
461  *    will steer a register to a non-terminated instance
462  * @gt: GT structure
463  * @reg: register for which the steering is required
464  * @group: return variable for group steering
465  * @instance: return variable for instance steering
466  *
467  * This function returns a group/instance pair that is guaranteed to work for
468  * read steering of the given register. Note that a value will be returned even
469  * if the register is not replicated and therefore does not actually require
470  * steering.
471  *
472  * Returns true if the caller should steer to the @group/@instance values
473  * returned.  Returns false if the caller need not perform any steering
474  */
475 static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
476 						 struct xe_reg_mcr reg_mcr,
477 						 u8 *group, u8 *instance)
478 {
479 	const struct xe_reg reg = to_xe_reg(reg_mcr);
480 	const struct xe_mmio_range *implicit_ranges;
481 
482 	for (int type = 0; type < IMPLICIT_STEERING; type++) {
483 		if (!gt->steering[type].ranges)
484 			continue;
485 
486 		for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
487 			if (xe_mmio_in_range(gt, &gt->steering[type].ranges[i], reg)) {
488 				*group = gt->steering[type].group_target;
489 				*instance = gt->steering[type].instance_target;
490 				return true;
491 			}
492 		}
493 	}
494 
495 	implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
496 	if (implicit_ranges)
497 		for (int i = 0; implicit_ranges[i].end > 0; i++)
498 			if (xe_mmio_in_range(gt, &implicit_ranges[i], reg))
499 				return false;
500 
501 	/*
502 	 * Not found in a steering table and not a register with implicit
503 	 * steering. Just steer to 0/0 as a guess and raise a warning.
504 	 */
505 	drm_WARN(&gt_to_xe(gt)->drm, true,
506 		 "Did not find MCR register %#x in any MCR steering table\n",
507 		 reg.addr);
508 	*group = 0;
509 	*instance = 0;
510 
511 	return true;
512 }
513 
514 /*
515  * Obtain exclusive access to MCR steering.  On MTL and beyond we also need
516  * to synchronize with external clients (e.g., firmware), so a semaphore
517  * register will also need to be taken.
518  */
519 static void mcr_lock(struct xe_gt *gt) __acquires(&gt->mcr_lock)
520 {
521 	struct xe_device *xe = gt_to_xe(gt);
522 	int ret = 0;
523 
524 	spin_lock(&gt->mcr_lock);
525 
526 	/*
527 	 * Starting with MTL we also need to grab a semaphore register
528 	 * to synchronize with external agents (e.g., firmware) that now
529 	 * shares the same steering control register. The semaphore is obtained
530 	 * when a read to the relevant register returns 1.
531 	 */
532 	if (GRAPHICS_VERx100(xe) >= 1270)
533 		ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
534 				     true);
535 
536 	drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
537 }
538 
539 static void mcr_unlock(struct xe_gt *gt) __releases(&gt->mcr_lock)
540 {
541 	/* Release hardware semaphore - this is done by writing 1 to the register */
542 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
543 		xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1);
544 
545 	spin_unlock(&gt->mcr_lock);
546 }
547 
548 /*
549  * Access a register with specific MCR steering
550  *
551  * Caller needs to make sure the relevant forcewake wells are up.
552  */
553 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
554 				u8 rw_flag, int group, int instance, u32 value)
555 {
556 	const struct xe_reg reg = to_xe_reg(reg_mcr);
557 	struct xe_reg steer_reg;
558 	u32 steer_val, val = 0;
559 
560 	lockdep_assert_held(&gt->mcr_lock);
561 
562 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
563 		steer_reg = MTL_MCR_SELECTOR;
564 		steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
565 			REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
566 	} else {
567 		steer_reg = MCR_SELECTOR;
568 		steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
569 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
570 	}
571 
572 	/*
573 	 * Always leave the hardware in multicast mode when doing reads and only
574 	 * change it to unicast mode when doing writes of a specific instance.
575 	 *
576 	 * The setting of the multicast/unicast bit usually wouldn't matter for
577 	 * read operations (which always return the value from a single register
578 	 * instance regardless of how that bit is set), but some platforms may
579 	 * have workarounds requiring us to remain in multicast mode for reads,
580 	 * e.g. Wa_22013088509 on PVC.  There's no real downside to this, so
581 	 * we'll just go ahead and do so on all platforms; we'll only clear the
582 	 * multicast bit from the mask when explicitly doing a write operation.
583 	 *
584 	 * No need to save old steering reg value.
585 	 */
586 	if (rw_flag == MCR_OP_READ)
587 		steer_val |= MCR_MULTICAST;
588 
589 	xe_mmio_write32(gt, steer_reg, steer_val);
590 
591 	if (rw_flag == MCR_OP_READ)
592 		val = xe_mmio_read32(gt, reg);
593 	else
594 		xe_mmio_write32(gt, reg, value);
595 
596 	/*
597 	 * If we turned off the multicast bit (during a write) we're required
598 	 * to turn it back on before finishing.  The group and instance values
599 	 * don't matter since they'll be re-programmed on the next MCR
600 	 * operation.
601 	 */
602 	if (rw_flag == MCR_OP_WRITE)
603 		xe_mmio_write32(gt, steer_reg, MCR_MULTICAST);
604 
605 	return val;
606 }
607 
608 /**
609  * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
610  * @gt: GT structure
611  * @reg_mcr: register to read
612  *
613  * Reads a GT MCR register.  The read will be steered to a non-terminated
614  * instance (i.e., one that isn't fused off or powered down by power gating).
615  * This function assumes the caller is already holding any necessary forcewake
616  * domains.
617  *
618  * Returns the value from a non-terminated instance of @reg.
619  */
620 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
621 {
622 	const struct xe_reg reg = to_xe_reg(reg_mcr);
623 	u8 group, instance;
624 	u32 val;
625 	bool steer;
626 
627 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
628 
629 	steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
630 						     &group, &instance);
631 
632 	if (steer) {
633 		mcr_lock(gt);
634 		val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
635 					   group, instance, 0);
636 		mcr_unlock(gt);
637 	} else {
638 		val = xe_mmio_read32(gt, reg);
639 	}
640 
641 	return val;
642 }
643 
644 /**
645  * xe_gt_mcr_unicast_read - read a specific instance of an MCR register
646  * @gt: GT structure
647  * @reg_mcr: the MCR register to read
648  * @group: the MCR group
649  * @instance: the MCR instance
650  *
651  * Returns the value read from an MCR register after steering toward a specific
652  * group/instance.
653  */
654 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
655 			   struct xe_reg_mcr reg_mcr,
656 			   int group, int instance)
657 {
658 	u32 val;
659 
660 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
661 
662 	mcr_lock(gt);
663 	val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
664 	mcr_unlock(gt);
665 
666 	return val;
667 }
668 
669 /**
670  * xe_gt_mcr_unicast_write - write a specific instance of an MCR register
671  * @gt: GT structure
672  * @reg_mcr: the MCR register to write
673  * @value: value to write
674  * @group: the MCR group
675  * @instance: the MCR instance
676  *
677  * Write an MCR register in unicast mode after steering toward a specific
678  * group/instance.
679  */
680 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
681 			     u32 value, int group, int instance)
682 {
683 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
684 
685 	mcr_lock(gt);
686 	rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
687 	mcr_unlock(gt);
688 }
689 
690 /**
691  * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
692  * @gt: GT structure
693  * @reg_mcr: the MCR register to write
694  * @value: value to write
695  *
696  * Write an MCR register in multicast mode to update all instances.
697  */
698 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
699 			       u32 value)
700 {
701 	struct xe_reg reg = to_xe_reg(reg_mcr);
702 
703 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
704 
705 	/*
706 	 * Synchronize with any unicast operations.  Once we have exclusive
707 	 * access, the MULTICAST bit should already be set, so there's no need
708 	 * to touch the steering register.
709 	 */
710 	mcr_lock(gt);
711 	xe_mmio_write32(gt, reg, value);
712 	mcr_unlock(gt);
713 }
714 
715 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
716 {
717 	for (int i = 0; i < NUM_STEERING_TYPES; i++) {
718 		if (gt->steering[i].ranges) {
719 			drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
720 				   xe_steering_types[i].name,
721 				   gt->steering[i].group_target,
722 				   gt->steering[i].instance_target);
723 			for (int j = 0; gt->steering[i].ranges[j].end; j++)
724 				drm_printf(p, "\t0x%06x - 0x%06x\n",
725 					   gt->steering[i].ranges[j].start,
726 					   gt->steering[i].ranges[j].end);
727 		}
728 	}
729 }
730