xref: /linux/drivers/gpu/drm/xe/xe_gt_idle.c (revision e3966940559d52aa1800a008dcfeec218dd31f88)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 
8 #include "xe_force_wake.h"
9 #include "xe_device.h"
10 #include "xe_gt.h"
11 #include "xe_gt_idle.h"
12 #include "xe_gt_sysfs.h"
13 #include "xe_guc_pc.h"
14 #include "regs/xe_gt_regs.h"
15 #include "xe_macros.h"
16 #include "xe_mmio.h"
17 #include "xe_pm.h"
18 #include "xe_sriov.h"
19 
20 /**
21  * DOC: Xe GT Idle
22  *
23  * Contains functions that init GT idle features like C6
24  *
25  * device/gt#/gtidle/name - name of the state
26  * device/gt#/gtidle/idle_residency_ms - Provides residency of the idle state in ms
27  * device/gt#/gtidle/idle_status - Provides current idle state
28  */
29 
30 static struct xe_gt_idle *dev_to_gtidle(struct device *dev)
31 {
32 	struct kobject *kobj = &dev->kobj;
33 
34 	return &kobj_to_gt(kobj->parent)->gtidle;
35 }
36 
37 static struct xe_gt *gtidle_to_gt(struct xe_gt_idle *gtidle)
38 {
39 	return container_of(gtidle, struct xe_gt, gtidle);
40 }
41 
42 static struct xe_guc_pc *gtidle_to_pc(struct xe_gt_idle *gtidle)
43 {
44 	return &gtidle_to_gt(gtidle)->uc.guc.pc;
45 }
46 
47 static struct xe_device *
48 pc_to_xe(struct xe_guc_pc *pc)
49 {
50 	struct xe_guc *guc = container_of(pc, struct xe_guc, pc);
51 	struct xe_gt *gt = container_of(guc, struct xe_gt, uc.guc);
52 
53 	return gt_to_xe(gt);
54 }
55 
56 static const char *gt_idle_state_to_string(enum xe_gt_idle_state state)
57 {
58 	switch (state) {
59 	case GT_IDLE_C0:
60 		return "gt-c0";
61 	case GT_IDLE_C6:
62 		return "gt-c6";
63 	default:
64 		return "unknown";
65 	}
66 }
67 
68 static u64 get_residency_ms(struct xe_gt_idle *gtidle, u64 cur_residency)
69 {
70 	u64 delta, overflow_residency, prev_residency;
71 
72 	lockdep_assert_held(&gtidle->lock);
73 
74 	overflow_residency = BIT_ULL(32);
75 
76 	/*
77 	 * Counter wrap handling
78 	 * Store previous hw counter values for counter wrap-around handling
79 	 * Relying on sufficient frequency of queries otherwise counters can still wrap.
80 	 */
81 	prev_residency = gtidle->prev_residency;
82 	gtidle->prev_residency = cur_residency;
83 
84 	/* delta */
85 	if (cur_residency >= prev_residency)
86 		delta = cur_residency - prev_residency;
87 	else
88 		delta = cur_residency + (overflow_residency - prev_residency);
89 
90 	/* Add delta to extended raw driver copy of idle residency */
91 	cur_residency = gtidle->cur_residency + delta;
92 	gtidle->cur_residency = cur_residency;
93 
94 	/* residency multiplier in ns, convert to ms */
95 	cur_residency = mul_u64_u32_div(cur_residency, gtidle->residency_multiplier, 1e6);
96 
97 	return cur_residency;
98 }
99 
100 void xe_gt_idle_enable_pg(struct xe_gt *gt)
101 {
102 	struct xe_device *xe = gt_to_xe(gt);
103 	struct xe_gt_idle *gtidle = &gt->gtidle;
104 	struct xe_mmio *mmio = &gt->mmio;
105 	u32 vcs_mask, vecs_mask;
106 	unsigned int fw_ref;
107 	int i, j;
108 
109 	if (IS_SRIOV_VF(xe))
110 		return;
111 
112 	/* Disable CPG for PVC */
113 	if (xe->info.platform == XE_PVC)
114 		return;
115 
116 	xe_device_assert_mem_access(gt_to_xe(gt));
117 
118 	vcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_DECODE);
119 	vecs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_ENHANCE);
120 
121 	if (vcs_mask || vecs_mask)
122 		gtidle->powergate_enable = MEDIA_POWERGATE_ENABLE;
123 
124 	if (xe_gt_is_main_type(gt))
125 		gtidle->powergate_enable |= RENDER_POWERGATE_ENABLE;
126 
127 	if (MEDIA_VERx100(xe) >= 1100 && MEDIA_VERx100(xe) < 1255)
128 		gtidle->powergate_enable |= MEDIA_SAMPLERS_POWERGATE_ENABLE;
129 
130 	if (xe->info.platform != XE_DG1) {
131 		for (i = XE_HW_ENGINE_VCS0, j = 0; i <= XE_HW_ENGINE_VCS7; ++i, ++j) {
132 			if ((gt->info.engine_mask & BIT(i)))
133 				gtidle->powergate_enable |= (VDN_HCP_POWERGATE_ENABLE(j) |
134 							     VDN_MFXVDENC_POWERGATE_ENABLE(j));
135 		}
136 	}
137 
138 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
139 	if (xe->info.skip_guc_pc) {
140 		/*
141 		 * GuC sets the hysteresis value when GuC PC is enabled
142 		 * else set it to 25 (25 * 1.28us)
143 		 */
144 		xe_mmio_write32(mmio, MEDIA_POWERGATE_IDLE_HYSTERESIS, 25);
145 		xe_mmio_write32(mmio, RENDER_POWERGATE_IDLE_HYSTERESIS, 25);
146 	}
147 
148 	xe_mmio_write32(mmio, POWERGATE_ENABLE, gtidle->powergate_enable);
149 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
150 }
151 
152 void xe_gt_idle_disable_pg(struct xe_gt *gt)
153 {
154 	struct xe_gt_idle *gtidle = &gt->gtidle;
155 	unsigned int fw_ref;
156 
157 	if (IS_SRIOV_VF(gt_to_xe(gt)))
158 		return;
159 
160 	xe_device_assert_mem_access(gt_to_xe(gt));
161 	gtidle->powergate_enable = 0;
162 
163 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
164 	xe_mmio_write32(&gt->mmio, POWERGATE_ENABLE, gtidle->powergate_enable);
165 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
166 }
167 
168 /**
169  * xe_gt_idle_pg_print - Xe powergating info
170  * @gt: GT object
171  * @p: drm_printer.
172  *
173  * This function prints the powergating information
174  *
175  * Return: 0 on success, negative error code otherwise
176  */
177 int xe_gt_idle_pg_print(struct xe_gt *gt, struct drm_printer *p)
178 {
179 	struct xe_gt_idle *gtidle = &gt->gtidle;
180 	struct xe_device *xe = gt_to_xe(gt);
181 	enum xe_gt_idle_state state;
182 	u32 pg_enabled, pg_status = 0;
183 	u32 vcs_mask, vecs_mask;
184 	unsigned int fw_ref;
185 	int n;
186 	/*
187 	 * Media Slices
188 	 *
189 	 * Slice 0: VCS0, VCS1, VECS0
190 	 * Slice 1: VCS2, VCS3, VECS1
191 	 * Slice 2: VCS4, VCS5, VECS2
192 	 * Slice 3: VCS6, VCS7, VECS3
193 	 */
194 	static const struct {
195 		u64 engines;
196 		u32 status_bit;
197 	} media_slices[] = {
198 		{(BIT(XE_HW_ENGINE_VCS0) | BIT(XE_HW_ENGINE_VCS1) |
199 		  BIT(XE_HW_ENGINE_VECS0)), MEDIA_SLICE0_AWAKE_STATUS},
200 
201 		{(BIT(XE_HW_ENGINE_VCS2) | BIT(XE_HW_ENGINE_VCS3) |
202 		   BIT(XE_HW_ENGINE_VECS1)), MEDIA_SLICE1_AWAKE_STATUS},
203 
204 		{(BIT(XE_HW_ENGINE_VCS4) | BIT(XE_HW_ENGINE_VCS5) |
205 		   BIT(XE_HW_ENGINE_VECS2)), MEDIA_SLICE2_AWAKE_STATUS},
206 
207 		{(BIT(XE_HW_ENGINE_VCS6) | BIT(XE_HW_ENGINE_VCS7) |
208 		   BIT(XE_HW_ENGINE_VECS3)), MEDIA_SLICE3_AWAKE_STATUS},
209 	};
210 
211 	if (xe->info.platform == XE_PVC) {
212 		drm_printf(p, "Power Gating not supported\n");
213 		return 0;
214 	}
215 
216 	state = gtidle->idle_status(gtidle_to_pc(gtidle));
217 	pg_enabled = gtidle->powergate_enable;
218 
219 	/* Do not wake the GT to read powergating status */
220 	if (state != GT_IDLE_C6) {
221 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
222 		if (!fw_ref)
223 			return -ETIMEDOUT;
224 
225 		pg_enabled = xe_mmio_read32(&gt->mmio, POWERGATE_ENABLE);
226 		pg_status = xe_mmio_read32(&gt->mmio, POWERGATE_DOMAIN_STATUS);
227 
228 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
229 	}
230 
231 	if (gt->info.engine_mask & XE_HW_ENGINE_RCS_MASK) {
232 		drm_printf(p, "Render Power Gating Enabled: %s\n",
233 			   str_yes_no(pg_enabled & RENDER_POWERGATE_ENABLE));
234 
235 		drm_printf(p, "Render Power Gate Status: %s\n",
236 			   str_up_down(pg_status & RENDER_AWAKE_STATUS));
237 	}
238 
239 	vcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_DECODE);
240 	vecs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_ENHANCE);
241 
242 	/* Print media CPG status only if media is present */
243 	if (vcs_mask || vecs_mask) {
244 		drm_printf(p, "Media Power Gating Enabled: %s\n",
245 			   str_yes_no(pg_enabled & MEDIA_POWERGATE_ENABLE));
246 
247 		for (n = 0; n < ARRAY_SIZE(media_slices); n++)
248 			if (gt->info.engine_mask & media_slices[n].engines)
249 				drm_printf(p, "Media Slice%d Power Gate Status: %s\n", n,
250 					   str_up_down(pg_status & media_slices[n].status_bit));
251 	}
252 
253 	if (MEDIA_VERx100(xe) >= 1100 && MEDIA_VERx100(xe) < 1255)
254 		drm_printf(p, "Media Samplers Power Gating Enabled: %s\n",
255 			   str_yes_no(pg_enabled & MEDIA_SAMPLERS_POWERGATE_ENABLE));
256 
257 	return 0;
258 }
259 
260 static ssize_t name_show(struct kobject *kobj,
261 			 struct kobj_attribute *attr, char *buff)
262 {
263 	struct device *dev = kobj_to_dev(kobj);
264 	struct xe_gt_idle *gtidle = dev_to_gtidle(dev);
265 	struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
266 	ssize_t ret;
267 
268 	xe_pm_runtime_get(pc_to_xe(pc));
269 	ret = sysfs_emit(buff, "%s\n", gtidle->name);
270 	xe_pm_runtime_put(pc_to_xe(pc));
271 
272 	return ret;
273 }
274 static struct kobj_attribute name_attr = __ATTR_RO(name);
275 
276 static ssize_t idle_status_show(struct kobject *kobj,
277 				struct kobj_attribute *attr, char *buff)
278 {
279 	struct device *dev = kobj_to_dev(kobj);
280 	struct xe_gt_idle *gtidle = dev_to_gtidle(dev);
281 	struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
282 	enum xe_gt_idle_state state;
283 
284 	xe_pm_runtime_get(pc_to_xe(pc));
285 	state = gtidle->idle_status(pc);
286 	xe_pm_runtime_put(pc_to_xe(pc));
287 
288 	return sysfs_emit(buff, "%s\n", gt_idle_state_to_string(state));
289 }
290 static struct kobj_attribute idle_status_attr = __ATTR_RO(idle_status);
291 
292 u64 xe_gt_idle_residency_msec(struct xe_gt_idle *gtidle)
293 {
294 	struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
295 	u64 residency;
296 	unsigned long flags;
297 
298 	raw_spin_lock_irqsave(&gtidle->lock, flags);
299 	residency = get_residency_ms(gtidle, gtidle->idle_residency(pc));
300 	raw_spin_unlock_irqrestore(&gtidle->lock, flags);
301 
302 	return residency;
303 }
304 
305 
306 static ssize_t idle_residency_ms_show(struct kobject *kobj,
307 				      struct kobj_attribute *attr, char *buff)
308 {
309 	struct device *dev = kobj_to_dev(kobj);
310 	struct xe_gt_idle *gtidle = dev_to_gtidle(dev);
311 	struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
312 	u64 residency;
313 
314 	xe_pm_runtime_get(pc_to_xe(pc));
315 	residency = xe_gt_idle_residency_msec(gtidle);
316 	xe_pm_runtime_put(pc_to_xe(pc));
317 
318 	return sysfs_emit(buff, "%llu\n", residency);
319 }
320 static struct kobj_attribute idle_residency_attr = __ATTR_RO(idle_residency_ms);
321 
322 static const struct attribute *gt_idle_attrs[] = {
323 	&name_attr.attr,
324 	&idle_status_attr.attr,
325 	&idle_residency_attr.attr,
326 	NULL,
327 };
328 
329 static void gt_idle_fini(void *arg)
330 {
331 	struct kobject *kobj = arg;
332 	struct xe_gt *gt = kobj_to_gt(kobj->parent);
333 
334 	xe_gt_idle_disable_pg(gt);
335 
336 	if (gt_to_xe(gt)->info.skip_guc_pc)
337 		xe_gt_idle_disable_c6(gt);
338 
339 	sysfs_remove_files(kobj, gt_idle_attrs);
340 	kobject_put(kobj);
341 }
342 
343 int xe_gt_idle_init(struct xe_gt_idle *gtidle)
344 {
345 	struct xe_gt *gt = gtidle_to_gt(gtidle);
346 	struct xe_device *xe = gt_to_xe(gt);
347 	struct kobject *kobj;
348 	int err;
349 
350 	if (IS_SRIOV_VF(xe))
351 		return 0;
352 
353 	kobj = kobject_create_and_add("gtidle", gt->sysfs);
354 	if (!kobj)
355 		return -ENOMEM;
356 
357 	raw_spin_lock_init(&gtidle->lock);
358 
359 	if (xe_gt_is_media_type(gt)) {
360 		snprintf(gtidle->name, sizeof(gtidle->name), "gt%d-mc", gt->info.id);
361 		gtidle->idle_residency = xe_guc_pc_mc6_residency;
362 	} else {
363 		snprintf(gtidle->name, sizeof(gtidle->name), "gt%d-rc", gt->info.id);
364 		gtidle->idle_residency = xe_guc_pc_rc6_residency;
365 	}
366 
367 	/* Multiplier for Residency counter in units of 1.28us */
368 	gtidle->residency_multiplier = 1280;
369 	gtidle->idle_status = xe_guc_pc_c_status;
370 
371 	err = sysfs_create_files(kobj, gt_idle_attrs);
372 	if (err) {
373 		kobject_put(kobj);
374 		return err;
375 	}
376 
377 	xe_gt_idle_enable_pg(gt);
378 
379 	return devm_add_action_or_reset(xe->drm.dev, gt_idle_fini, kobj);
380 }
381 
382 void xe_gt_idle_enable_c6(struct xe_gt *gt)
383 {
384 	xe_device_assert_mem_access(gt_to_xe(gt));
385 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
386 
387 	if (IS_SRIOV_VF(gt_to_xe(gt)))
388 		return;
389 
390 	/* Units of 1280 ns for a total of 5s */
391 	xe_mmio_write32(&gt->mmio, RC_IDLE_HYSTERSIS, 0x3B9ACA);
392 	/* Enable RC6 */
393 	xe_mmio_write32(&gt->mmio, RC_CONTROL,
394 			RC_CTL_HW_ENABLE | RC_CTL_TO_MODE | RC_CTL_RC6_ENABLE);
395 }
396 
397 int xe_gt_idle_disable_c6(struct xe_gt *gt)
398 {
399 	unsigned int fw_ref;
400 
401 	xe_device_assert_mem_access(gt_to_xe(gt));
402 
403 	if (IS_SRIOV_VF(gt_to_xe(gt)))
404 		return 0;
405 
406 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
407 	if (!fw_ref)
408 		return -ETIMEDOUT;
409 
410 	xe_mmio_write32(&gt->mmio, RC_CONTROL, 0);
411 	xe_mmio_write32(&gt->mmio, RC_STATE, 0);
412 
413 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
414 
415 	return 0;
416 }
417