1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_ggtt.h" 7 8 #include <kunit/visibility.h> 9 #include <linux/fault-inject.h> 10 #include <linux/io-64-nonatomic-lo-hi.h> 11 #include <linux/sizes.h> 12 13 #include <drm/drm_drv.h> 14 #include <drm/drm_managed.h> 15 #include <drm/intel/i915_drm.h> 16 #include <generated/xe_wa_oob.h> 17 18 #include "regs/xe_gt_regs.h" 19 #include "regs/xe_gtt_defs.h" 20 #include "regs/xe_regs.h" 21 #include "xe_assert.h" 22 #include "xe_bo.h" 23 #include "xe_device.h" 24 #include "xe_gt.h" 25 #include "xe_gt_printk.h" 26 #include "xe_map.h" 27 #include "xe_mmio.h" 28 #include "xe_pm.h" 29 #include "xe_res_cursor.h" 30 #include "xe_sriov.h" 31 #include "xe_tile_printk.h" 32 #include "xe_tile_sriov_vf.h" 33 #include "xe_tlb_inval.h" 34 #include "xe_wa.h" 35 #include "xe_wopcm.h" 36 37 /** 38 * DOC: Global Graphics Translation Table (GGTT) 39 * 40 * Xe GGTT implements the support for a Global Virtual Address space that is used 41 * for resources that are accessible to privileged (i.e. kernel-mode) processes, 42 * and not tied to a specific user-level process. For example, the Graphics 43 * micro-Controller (GuC) and Display Engine (if present) utilize this Global 44 * address space. 45 * 46 * The Global GTT (GGTT) translates from the Global virtual address to a physical 47 * address that can be accessed by HW. The GGTT is a flat, single-level table. 48 * 49 * Xe implements a simplified version of the GGTT specifically managing only a 50 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM) 51 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to 52 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space 53 * is limited on both ends of the GGTT, because the GuC shim HW redirects 54 * accesses to those addresses to other HW areas instead of going through the 55 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size, 56 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things 57 * simple, instead of checking each object to see if they are accessed by GuC or 58 * not, we just exclude those areas from the allocator. Additionally, to simplify 59 * the driver load, we use the maximum WOPCM size in this logic instead of the 60 * programmed one, so we don't need to wait until the actual size to be 61 * programmed is determined (which requires FW fetch) before initializing the 62 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs 63 * depending on the platform) but we can live with this. Another benefit of this 64 * is the GuC bootrom can't access anything below the WOPCM max size so anything 65 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT 66 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max 67 * give us the correct placement for free. 68 */ 69 70 static u64 xelp_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index) 71 { 72 u64 pte = XE_PAGE_PRESENT; 73 74 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) 75 pte |= XE_GGTT_PTE_DM; 76 77 return pte; 78 } 79 80 static u64 xelpg_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index) 81 { 82 struct xe_device *xe = xe_bo_device(bo); 83 u64 pte; 84 85 pte = xelp_ggtt_pte_flags(bo, pat_index); 86 87 xe_assert(xe, pat_index <= 3); 88 89 if (pat_index & BIT(0)) 90 pte |= XELPG_GGTT_PTE_PAT0; 91 92 if (pat_index & BIT(1)) 93 pte |= XELPG_GGTT_PTE_PAT1; 94 95 return pte; 96 } 97 98 static unsigned int probe_gsm_size(struct pci_dev *pdev) 99 { 100 u16 gmch_ctl, ggms; 101 102 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); 103 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; 104 return ggms ? SZ_1M << ggms : 0; 105 } 106 107 static void ggtt_update_access_counter(struct xe_ggtt *ggtt) 108 { 109 struct xe_tile *tile = ggtt->tile; 110 struct xe_gt *affected_gt; 111 u32 max_gtt_writes; 112 113 if (tile->primary_gt && XE_GT_WA(tile->primary_gt, 22019338487)) { 114 affected_gt = tile->primary_gt; 115 max_gtt_writes = 1100; 116 117 /* Only expected to apply to primary GT on dgpu platforms */ 118 xe_tile_assert(tile, IS_DGFX(tile_to_xe(tile))); 119 } else { 120 affected_gt = tile->media_gt; 121 max_gtt_writes = 63; 122 123 /* Only expected to apply to media GT on igpu platforms */ 124 xe_tile_assert(tile, !IS_DGFX(tile_to_xe(tile))); 125 } 126 127 /* 128 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit 129 * to wait for completion of prior GTT writes before letting this through. 130 * This needs to be done for all GGTT writes originating from the CPU. 131 */ 132 lockdep_assert_held(&ggtt->lock); 133 134 if ((++ggtt->access_count % max_gtt_writes) == 0) { 135 xe_mmio_write32(&affected_gt->mmio, GMD_ID, 0x0); 136 ggtt->access_count = 0; 137 } 138 } 139 140 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) 141 { 142 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); 143 xe_tile_assert(ggtt->tile, addr < ggtt->size); 144 145 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); 146 } 147 148 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) 149 { 150 xe_ggtt_set_pte(ggtt, addr, pte); 151 ggtt_update_access_counter(ggtt); 152 } 153 154 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) 155 { 156 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; 157 u64 end = start + size - 1; 158 u64 scratch_pte; 159 160 xe_tile_assert(ggtt->tile, start < end); 161 162 if (ggtt->scratch) 163 scratch_pte = xe_bo_addr(ggtt->scratch, 0, XE_PAGE_SIZE) | 164 ggtt->pt_ops->pte_encode_flags(ggtt->scratch, 165 pat_index); 166 else 167 scratch_pte = 0; 168 169 while (start < end) { 170 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); 171 start += XE_PAGE_SIZE; 172 } 173 } 174 175 static void primelockdep(struct xe_ggtt *ggtt) 176 { 177 if (!IS_ENABLED(CONFIG_LOCKDEP)) 178 return; 179 180 fs_reclaim_acquire(GFP_KERNEL); 181 might_lock(&ggtt->lock); 182 fs_reclaim_release(GFP_KERNEL); 183 } 184 185 /** 186 * xe_ggtt_alloc - Allocate a GGTT for a given &xe_tile 187 * @tile: &xe_tile 188 * 189 * Allocates a &xe_ggtt for a given tile. 190 * 191 * Return: &xe_ggtt on success, or NULL when out of memory. 192 */ 193 struct xe_ggtt *xe_ggtt_alloc(struct xe_tile *tile) 194 { 195 struct xe_device *xe = tile_to_xe(tile); 196 struct xe_ggtt *ggtt; 197 198 ggtt = drmm_kzalloc(&xe->drm, sizeof(*ggtt), GFP_KERNEL); 199 if (!ggtt) 200 return NULL; 201 202 if (drmm_mutex_init(&xe->drm, &ggtt->lock)) 203 return NULL; 204 205 primelockdep(ggtt); 206 ggtt->tile = tile; 207 208 return ggtt; 209 } 210 211 static void ggtt_fini_early(struct drm_device *drm, void *arg) 212 { 213 struct xe_ggtt *ggtt = arg; 214 215 destroy_workqueue(ggtt->wq); 216 drm_mm_takedown(&ggtt->mm); 217 } 218 219 static void ggtt_fini(void *arg) 220 { 221 struct xe_ggtt *ggtt = arg; 222 223 ggtt->scratch = NULL; 224 } 225 226 #ifdef CONFIG_LOCKDEP 227 void xe_ggtt_might_lock(struct xe_ggtt *ggtt) 228 { 229 might_lock(&ggtt->lock); 230 } 231 #endif 232 233 static const struct xe_ggtt_pt_ops xelp_pt_ops = { 234 .pte_encode_flags = xelp_ggtt_pte_flags, 235 .ggtt_set_pte = xe_ggtt_set_pte, 236 }; 237 238 static const struct xe_ggtt_pt_ops xelpg_pt_ops = { 239 .pte_encode_flags = xelpg_ggtt_pte_flags, 240 .ggtt_set_pte = xe_ggtt_set_pte, 241 }; 242 243 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { 244 .pte_encode_flags = xelpg_ggtt_pte_flags, 245 .ggtt_set_pte = xe_ggtt_set_pte_and_flush, 246 }; 247 248 static void __xe_ggtt_init_early(struct xe_ggtt *ggtt, u32 reserved) 249 { 250 drm_mm_init(&ggtt->mm, reserved, 251 ggtt->size - reserved); 252 } 253 254 int xe_ggtt_init_kunit(struct xe_ggtt *ggtt, u32 reserved, u32 size) 255 { 256 ggtt->size = size; 257 __xe_ggtt_init_early(ggtt, reserved); 258 return 0; 259 } 260 EXPORT_SYMBOL_IF_KUNIT(xe_ggtt_init_kunit); 261 262 static void dev_fini_ggtt(void *arg) 263 { 264 struct xe_ggtt *ggtt = arg; 265 266 drain_workqueue(ggtt->wq); 267 } 268 269 /** 270 * xe_ggtt_init_early - Early GGTT initialization 271 * @ggtt: the &xe_ggtt to be initialized 272 * 273 * It allows to create new mappings usable by the GuC. 274 * Mappings are not usable by the HW engines, as it doesn't have scratch nor 275 * initial clear done to it yet. That will happen in the regular, non-early 276 * GGTT initialization. 277 * 278 * Return: 0 on success or a negative error code on failure. 279 */ 280 int xe_ggtt_init_early(struct xe_ggtt *ggtt) 281 { 282 struct xe_device *xe = tile_to_xe(ggtt->tile); 283 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 284 unsigned int gsm_size; 285 int err; 286 287 if (IS_SRIOV_VF(xe) || GRAPHICS_VERx100(xe) >= 1250) 288 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ 289 else 290 gsm_size = probe_gsm_size(pdev); 291 292 if (gsm_size == 0) { 293 xe_tile_err(ggtt->tile, "Hardware reported no preallocated GSM\n"); 294 return -ENOMEM; 295 } 296 297 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; 298 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; 299 300 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) 301 ggtt->flags |= XE_GGTT_FLAGS_64K; 302 303 if (ggtt->size > GUC_GGTT_TOP) 304 ggtt->size = GUC_GGTT_TOP; 305 306 if (GRAPHICS_VERx100(xe) >= 1270) 307 ggtt->pt_ops = 308 (ggtt->tile->media_gt && XE_GT_WA(ggtt->tile->media_gt, 22019338487)) || 309 (ggtt->tile->primary_gt && XE_GT_WA(ggtt->tile->primary_gt, 22019338487)) ? 310 &xelpg_pt_wa_ops : &xelpg_pt_ops; 311 else 312 ggtt->pt_ops = &xelp_pt_ops; 313 314 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM); 315 __xe_ggtt_init_early(ggtt, xe_wopcm_size(xe)); 316 317 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); 318 if (err) 319 return err; 320 321 err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt); 322 if (err) 323 return err; 324 325 if (IS_SRIOV_VF(xe)) { 326 err = xe_tile_sriov_vf_prepare_ggtt(ggtt->tile); 327 if (err) 328 return err; 329 } 330 331 return 0; 332 } 333 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */ 334 335 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); 336 337 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) 338 { 339 struct drm_mm_node *hole; 340 u64 start, end; 341 342 /* Display may have allocated inside ggtt, so be careful with clearing here */ 343 mutex_lock(&ggtt->lock); 344 drm_mm_for_each_hole(hole, &ggtt->mm, start, end) 345 xe_ggtt_clear(ggtt, start, end - start); 346 347 xe_ggtt_invalidate(ggtt); 348 mutex_unlock(&ggtt->lock); 349 } 350 351 static void ggtt_node_remove(struct xe_ggtt_node *node) 352 { 353 struct xe_ggtt *ggtt = node->ggtt; 354 struct xe_device *xe = tile_to_xe(ggtt->tile); 355 bool bound; 356 int idx; 357 358 bound = drm_dev_enter(&xe->drm, &idx); 359 360 mutex_lock(&ggtt->lock); 361 if (bound) 362 xe_ggtt_clear(ggtt, node->base.start, node->base.size); 363 drm_mm_remove_node(&node->base); 364 node->base.size = 0; 365 mutex_unlock(&ggtt->lock); 366 367 if (!bound) 368 goto free_node; 369 370 if (node->invalidate_on_remove) 371 xe_ggtt_invalidate(ggtt); 372 373 drm_dev_exit(idx); 374 375 free_node: 376 xe_ggtt_node_fini(node); 377 } 378 379 static void ggtt_node_remove_work_func(struct work_struct *work) 380 { 381 struct xe_ggtt_node *node = container_of(work, typeof(*node), 382 delayed_removal_work); 383 struct xe_device *xe = tile_to_xe(node->ggtt->tile); 384 385 xe_pm_runtime_get(xe); 386 ggtt_node_remove(node); 387 xe_pm_runtime_put(xe); 388 } 389 390 /** 391 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT 392 * @node: the &xe_ggtt_node to be removed 393 * @invalidate: if node needs invalidation upon removal 394 */ 395 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate) 396 { 397 struct xe_ggtt *ggtt; 398 struct xe_device *xe; 399 400 if (!node || !node->ggtt) 401 return; 402 403 ggtt = node->ggtt; 404 xe = tile_to_xe(ggtt->tile); 405 406 node->invalidate_on_remove = invalidate; 407 408 if (xe_pm_runtime_get_if_active(xe)) { 409 ggtt_node_remove(node); 410 xe_pm_runtime_put(xe); 411 } else { 412 queue_work(ggtt->wq, &node->delayed_removal_work); 413 } 414 } 415 416 /** 417 * xe_ggtt_init - Regular non-early GGTT initialization 418 * @ggtt: the &xe_ggtt to be initialized 419 * 420 * Return: 0 on success or a negative error code on failure. 421 */ 422 int xe_ggtt_init(struct xe_ggtt *ggtt) 423 { 424 struct xe_device *xe = tile_to_xe(ggtt->tile); 425 unsigned int flags; 426 int err; 427 428 /* 429 * So we don't need to worry about 64K GGTT layout when dealing with 430 * scratch entries, rather keep the scratch page in system memory on 431 * platforms where 64K pages are needed for VRAM. 432 */ 433 flags = 0; 434 if (ggtt->flags & XE_GGTT_FLAGS_64K) 435 flags |= XE_BO_FLAG_SYSTEM; 436 else 437 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); 438 439 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); 440 if (IS_ERR(ggtt->scratch)) { 441 err = PTR_ERR(ggtt->scratch); 442 goto err; 443 } 444 445 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, xe_bo_size(ggtt->scratch)); 446 447 xe_ggtt_initial_clear(ggtt); 448 449 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt); 450 err: 451 ggtt->scratch = NULL; 452 return err; 453 } 454 455 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) 456 { 457 int err; 458 459 if (!gt) 460 return; 461 462 err = xe_tlb_inval_ggtt(>->tlb_inval); 463 xe_gt_WARN(gt, err, "Failed to invalidate GGTT (%pe)", ERR_PTR(err)); 464 } 465 466 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) 467 { 468 struct xe_device *xe = tile_to_xe(ggtt->tile); 469 470 /* 471 * XXX: Barrier for GGTT pages. Unsure exactly why this required but 472 * without this LNL is having issues with the GuC reading scratch page 473 * vs. correct GGTT page. Not particularly a hot code path so blindly 474 * do a mmio read here which results in GuC reading correct GGTT page. 475 */ 476 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG); 477 478 /* Each GT in a tile has its own TLB to cache GGTT lookups */ 479 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); 480 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); 481 } 482 483 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, 484 const struct drm_mm_node *node, const char *description) 485 { 486 char buf[10]; 487 488 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 489 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); 490 xe_tile_dbg(ggtt->tile, "GGTT %#llx-%#llx (%s) %s\n", 491 node->start, node->start + node->size, buf, description); 492 } 493 } 494 495 /** 496 * xe_ggtt_node_insert_balloon_locked - prevent allocation of specified GGTT addresses 497 * @node: the &xe_ggtt_node to hold reserved GGTT node 498 * @start: the starting GGTT address of the reserved region 499 * @end: then end GGTT address of the reserved region 500 * 501 * To be used in cases where ggtt->lock is already taken. 502 * Use xe_ggtt_node_remove_balloon_locked() to release a reserved GGTT node. 503 * 504 * Return: 0 on success or a negative error code on failure. 505 */ 506 int xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node *node, u64 start, u64 end) 507 { 508 struct xe_ggtt *ggtt = node->ggtt; 509 int err; 510 511 xe_tile_assert(ggtt->tile, start < end); 512 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); 513 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); 514 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base)); 515 lockdep_assert_held(&ggtt->lock); 516 517 node->base.color = 0; 518 node->base.start = start; 519 node->base.size = end - start; 520 521 err = drm_mm_reserve_node(&ggtt->mm, &node->base); 522 523 if (xe_tile_WARN(ggtt->tile, err, "Failed to balloon GGTT %#llx-%#llx (%pe)\n", 524 node->base.start, node->base.start + node->base.size, ERR_PTR(err))) 525 return err; 526 527 xe_ggtt_dump_node(ggtt, &node->base, "balloon"); 528 return 0; 529 } 530 531 /** 532 * xe_ggtt_node_remove_balloon_locked - release a reserved GGTT region 533 * @node: the &xe_ggtt_node with reserved GGTT region 534 * 535 * To be used in cases where ggtt->lock is already taken. 536 * See xe_ggtt_node_insert_balloon_locked() for details. 537 */ 538 void xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node *node) 539 { 540 if (!xe_ggtt_node_allocated(node)) 541 return; 542 543 lockdep_assert_held(&node->ggtt->lock); 544 545 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon"); 546 547 drm_mm_remove_node(&node->base); 548 } 549 550 static void xe_ggtt_assert_fit(struct xe_ggtt *ggtt, u64 start, u64 size) 551 { 552 struct xe_tile *tile = ggtt->tile; 553 struct xe_device *xe = tile_to_xe(tile); 554 u64 __maybe_unused wopcm = xe_wopcm_size(xe); 555 556 xe_tile_assert(tile, start >= wopcm); 557 xe_tile_assert(tile, start + size < ggtt->size - wopcm); 558 } 559 560 /** 561 * xe_ggtt_shift_nodes_locked - Shift GGTT nodes to adjust for a change in usable address range. 562 * @ggtt: the &xe_ggtt struct instance 563 * @shift: change to the location of area provisioned for current VF 564 * 565 * This function moves all nodes from the GGTT VM, to a temp list. These nodes are expected 566 * to represent allocations in range formerly assigned to current VF, before the range changed. 567 * When the GGTT VM is completely clear of any nodes, they are re-added with shifted offsets. 568 * 569 * The function has no ability of failing - because it shifts existing nodes, without 570 * any additional processing. If the nodes were successfully existing at the old address, 571 * they will do the same at the new one. A fail inside this function would indicate that 572 * the list of nodes was either already damaged, or that the shift brings the address range 573 * outside of valid bounds. Both cases justify an assert rather than error code. 574 */ 575 void xe_ggtt_shift_nodes_locked(struct xe_ggtt *ggtt, s64 shift) 576 { 577 struct xe_tile *tile __maybe_unused = ggtt->tile; 578 struct drm_mm_node *node, *tmpn; 579 LIST_HEAD(temp_list_head); 580 581 lockdep_assert_held(&ggtt->lock); 582 583 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) 584 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) 585 xe_ggtt_assert_fit(ggtt, node->start + shift, node->size); 586 587 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) { 588 drm_mm_remove_node(node); 589 list_add(&node->node_list, &temp_list_head); 590 } 591 592 list_for_each_entry_safe(node, tmpn, &temp_list_head, node_list) { 593 list_del(&node->node_list); 594 node->start += shift; 595 drm_mm_reserve_node(&ggtt->mm, node); 596 xe_tile_assert(tile, drm_mm_node_allocated(node)); 597 } 598 } 599 600 /** 601 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT 602 * @node: the &xe_ggtt_node to be inserted 603 * @size: size of the node 604 * @align: alignment constrain of the node 605 * @mm_flags: flags to control the node behavior 606 * 607 * It cannot be called without first having called xe_ggtt_init() once. 608 * To be used in cases where ggtt->lock is already taken. 609 * 610 * Return: 0 on success or a negative error code on failure. 611 */ 612 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node, 613 u32 size, u32 align, u32 mm_flags) 614 { 615 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0, 616 mm_flags); 617 } 618 619 /** 620 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT 621 * @node: the &xe_ggtt_node to be inserted 622 * @size: size of the node 623 * @align: alignment constrain of the node 624 * 625 * It cannot be called without first having called xe_ggtt_init() once. 626 * 627 * Return: 0 on success or a negative error code on failure. 628 */ 629 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align) 630 { 631 int ret; 632 633 if (!node || !node->ggtt) 634 return -ENOENT; 635 636 mutex_lock(&node->ggtt->lock); 637 ret = xe_ggtt_node_insert_locked(node, size, align, 638 DRM_MM_INSERT_HIGH); 639 mutex_unlock(&node->ggtt->lock); 640 641 return ret; 642 } 643 644 /** 645 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct 646 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved. 647 * 648 * This function will allocate the struct %xe_ggtt_node and return its pointer. 649 * This struct will then be freed after the node removal upon xe_ggtt_node_remove() 650 * or xe_ggtt_node_remove_balloon_locked(). 651 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated 652 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 653 * xe_ggtt_node_insert_balloon_locked() will ensure the node is inserted or reserved in GGTT. 654 * 655 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise. 656 **/ 657 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt) 658 { 659 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS); 660 661 if (!node) 662 return ERR_PTR(-ENOMEM); 663 664 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func); 665 node->ggtt = ggtt; 666 667 return node; 668 } 669 670 /** 671 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct 672 * @node: the &xe_ggtt_node to be freed 673 * 674 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 675 * or xe_ggtt_node_insert_balloon_locked(); and this @node is not going to be reused, then, 676 * this function needs to be called to free the %xe_ggtt_node struct 677 **/ 678 void xe_ggtt_node_fini(struct xe_ggtt_node *node) 679 { 680 kfree(node); 681 } 682 683 /** 684 * xe_ggtt_node_allocated - Check if node is allocated in GGTT 685 * @node: the &xe_ggtt_node to be inspected 686 * 687 * Return: True if allocated, False otherwise. 688 */ 689 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node) 690 { 691 if (!node || !node->ggtt) 692 return false; 693 694 return drm_mm_node_allocated(&node->base); 695 } 696 697 /** 698 * xe_ggtt_map_bo - Map the BO into GGTT 699 * @ggtt: the &xe_ggtt where node will be mapped 700 * @node: the &xe_ggtt_node where this BO is mapped 701 * @bo: the &xe_bo to be mapped 702 * @pat_index: Which pat_index to use. 703 */ 704 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_ggtt_node *node, 705 struct xe_bo *bo, u16 pat_index) 706 { 707 708 u64 start, pte, end; 709 struct xe_res_cursor cur; 710 711 if (XE_WARN_ON(!node)) 712 return; 713 714 start = node->base.start; 715 end = start + xe_bo_size(bo); 716 717 pte = ggtt->pt_ops->pte_encode_flags(bo, pat_index); 718 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 719 xe_assert(xe_bo_device(bo), bo->ttm.ttm); 720 721 for (xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &cur); 722 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE)) 723 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining, 724 pte | xe_res_dma(&cur)); 725 } else { 726 /* Prepend GPU offset */ 727 pte |= vram_region_gpu_offset(bo->ttm.resource); 728 729 for (xe_res_first(bo->ttm.resource, 0, xe_bo_size(bo), &cur); 730 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE)) 731 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining, 732 pte + cur.start); 733 } 734 } 735 736 /** 737 * xe_ggtt_map_bo_unlocked - Restore a mapping of a BO into GGTT 738 * @ggtt: the &xe_ggtt where node will be mapped 739 * @bo: the &xe_bo to be mapped 740 * 741 * This is used to restore a GGTT mapping after suspend. 742 */ 743 void xe_ggtt_map_bo_unlocked(struct xe_ggtt *ggtt, struct xe_bo *bo) 744 { 745 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 746 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 747 748 mutex_lock(&ggtt->lock); 749 xe_ggtt_map_bo(ggtt, bo->ggtt_node[ggtt->tile->id], bo, pat_index); 750 mutex_unlock(&ggtt->lock); 751 } 752 753 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 754 u64 start, u64 end, struct drm_exec *exec) 755 { 756 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE; 757 u8 tile_id = ggtt->tile->id; 758 int err; 759 760 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) 761 alignment = SZ_64K; 762 763 if (XE_WARN_ON(bo->ggtt_node[tile_id])) { 764 /* Someone's already inserted this BO in the GGTT */ 765 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo)); 766 return 0; 767 } 768 769 err = xe_bo_validate(bo, NULL, false, exec); 770 if (err) 771 return err; 772 773 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); 774 775 bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt); 776 if (IS_ERR(bo->ggtt_node[tile_id])) { 777 err = PTR_ERR(bo->ggtt_node[tile_id]); 778 bo->ggtt_node[tile_id] = NULL; 779 goto out; 780 } 781 782 mutex_lock(&ggtt->lock); 783 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base, 784 xe_bo_size(bo), alignment, 0, start, end, 0); 785 if (err) { 786 xe_ggtt_node_fini(bo->ggtt_node[tile_id]); 787 bo->ggtt_node[tile_id] = NULL; 788 } else { 789 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 790 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 791 792 xe_ggtt_map_bo(ggtt, bo->ggtt_node[tile_id], bo, pat_index); 793 } 794 mutex_unlock(&ggtt->lock); 795 796 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) 797 xe_ggtt_invalidate(ggtt); 798 799 out: 800 xe_pm_runtime_put(tile_to_xe(ggtt->tile)); 801 802 return err; 803 } 804 805 /** 806 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space 807 * @ggtt: the &xe_ggtt where bo will be inserted 808 * @bo: the &xe_bo to be inserted 809 * @start: address where it will be inserted 810 * @end: end of the range where it will be inserted 811 * @exec: The drm_exec transaction to use for exhaustive eviction. 812 * 813 * Return: 0 on success or a negative error code on failure. 814 */ 815 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 816 u64 start, u64 end, struct drm_exec *exec) 817 { 818 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end, exec); 819 } 820 821 /** 822 * xe_ggtt_insert_bo - Insert BO into GGTT 823 * @ggtt: the &xe_ggtt where bo will be inserted 824 * @bo: the &xe_bo to be inserted 825 * @exec: The drm_exec transaction to use for exhaustive eviction. 826 * 827 * Return: 0 on success or a negative error code on failure. 828 */ 829 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo, 830 struct drm_exec *exec) 831 { 832 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX, exec); 833 } 834 835 /** 836 * xe_ggtt_remove_bo - Remove a BO from the GGTT 837 * @ggtt: the &xe_ggtt where node will be removed 838 * @bo: the &xe_bo to be removed 839 */ 840 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 841 { 842 u8 tile_id = ggtt->tile->id; 843 844 if (XE_WARN_ON(!bo->ggtt_node[tile_id])) 845 return; 846 847 /* This BO is not currently in the GGTT */ 848 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo)); 849 850 xe_ggtt_node_remove(bo->ggtt_node[tile_id], 851 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); 852 } 853 854 /** 855 * xe_ggtt_largest_hole - Largest GGTT hole 856 * @ggtt: the &xe_ggtt that will be inspected 857 * @alignment: minimum alignment 858 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare 859 * 860 * Return: size of the largest continuous GGTT region 861 */ 862 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare) 863 { 864 const struct drm_mm *mm = &ggtt->mm; 865 const struct drm_mm_node *entry; 866 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 867 u64 hole_start, hole_end, hole_size; 868 u64 max_hole = 0; 869 870 mutex_lock(&ggtt->lock); 871 872 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 873 hole_start = max(hole_start, hole_min_start); 874 hole_start = ALIGN(hole_start, alignment); 875 hole_end = ALIGN_DOWN(hole_end, alignment); 876 if (hole_start >= hole_end) 877 continue; 878 hole_size = hole_end - hole_start; 879 if (spare) 880 *spare -= min3(*spare, hole_size, max_hole); 881 max_hole = max(max_hole, hole_size); 882 } 883 884 mutex_unlock(&ggtt->lock); 885 886 return max_hole; 887 } 888 889 #ifdef CONFIG_PCI_IOV 890 static u64 xe_encode_vfid_pte(u16 vfid) 891 { 892 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; 893 } 894 895 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) 896 { 897 u64 start = node->start; 898 u64 size = node->size; 899 u64 end = start + size - 1; 900 u64 pte = xe_encode_vfid_pte(vfid); 901 902 lockdep_assert_held(&ggtt->lock); 903 904 if (!drm_mm_node_allocated(node)) 905 return; 906 907 while (start < end) { 908 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); 909 start += XE_PAGE_SIZE; 910 } 911 912 xe_ggtt_invalidate(ggtt); 913 } 914 915 /** 916 * xe_ggtt_assign - assign a GGTT region to the VF 917 * @node: the &xe_ggtt_node to update 918 * @vfid: the VF identifier 919 * 920 * This function is used by the PF driver to assign a GGTT region to the VF. 921 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some 922 * platforms VFs can't modify that either. 923 */ 924 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid) 925 { 926 mutex_lock(&node->ggtt->lock); 927 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid); 928 mutex_unlock(&node->ggtt->lock); 929 } 930 #endif 931 932 /** 933 * xe_ggtt_dump - Dump GGTT for debug 934 * @ggtt: the &xe_ggtt to be dumped 935 * @p: the &drm_mm_printer helper handle to be used to dump the information 936 * 937 * Return: 0 on success or a negative error code on failure. 938 */ 939 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) 940 { 941 int err; 942 943 err = mutex_lock_interruptible(&ggtt->lock); 944 if (err) 945 return err; 946 947 drm_mm_print(&ggtt->mm, p); 948 mutex_unlock(&ggtt->lock); 949 return err; 950 } 951 952 /** 953 * xe_ggtt_print_holes - Print holes 954 * @ggtt: the &xe_ggtt to be inspected 955 * @alignment: min alignment 956 * @p: the &drm_printer 957 * 958 * Print GGTT ranges that are available and return total size available. 959 * 960 * Return: Total available size. 961 */ 962 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p) 963 { 964 const struct drm_mm *mm = &ggtt->mm; 965 const struct drm_mm_node *entry; 966 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 967 u64 hole_start, hole_end, hole_size; 968 u64 total = 0; 969 char buf[10]; 970 971 mutex_lock(&ggtt->lock); 972 973 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 974 hole_start = max(hole_start, hole_min_start); 975 hole_start = ALIGN(hole_start, alignment); 976 hole_end = ALIGN_DOWN(hole_end, alignment); 977 if (hole_start >= hole_end) 978 continue; 979 hole_size = hole_end - hole_start; 980 total += hole_size; 981 982 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf)); 983 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n", 984 hole_start, hole_end - 1, buf); 985 } 986 987 mutex_unlock(&ggtt->lock); 988 989 return total; 990 } 991 992 /** 993 * xe_ggtt_encode_pte_flags - Get PTE encoding flags for BO 994 * @ggtt: &xe_ggtt 995 * @bo: &xe_bo 996 * @pat_index: The pat_index for the PTE. 997 * 998 * This function returns the pte_flags for a given BO, without address. 999 * It's used for DPT to fill a GGTT mapped BO with a linear lookup table. 1000 */ 1001 u64 xe_ggtt_encode_pte_flags(struct xe_ggtt *ggtt, 1002 struct xe_bo *bo, u16 pat_index) 1003 { 1004 return ggtt->pt_ops->pte_encode_flags(bo, pat_index); 1005 } 1006 1007 /** 1008 * xe_ggtt_read_pte - Read a PTE from the GGTT 1009 * @ggtt: &xe_ggtt 1010 * @offset: the offset for which the mapping should be read. 1011 * 1012 * Used by testcases, and by display reading out an inherited bios FB. 1013 */ 1014 u64 xe_ggtt_read_pte(struct xe_ggtt *ggtt, u64 offset) 1015 { 1016 return ioread64(ggtt->gsm + (offset / XE_PAGE_SIZE)); 1017 } 1018