1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_ggtt.h" 7 8 #include <linux/fault-inject.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/sizes.h> 11 12 #include <drm/drm_drv.h> 13 #include <drm/drm_managed.h> 14 #include <drm/intel/i915_drm.h> 15 #include <generated/xe_wa_oob.h> 16 17 #include "regs/xe_gt_regs.h" 18 #include "regs/xe_gtt_defs.h" 19 #include "regs/xe_regs.h" 20 #include "xe_assert.h" 21 #include "xe_bo.h" 22 #include "xe_device.h" 23 #include "xe_gt.h" 24 #include "xe_gt_printk.h" 25 #include "xe_gt_sriov_vf.h" 26 #include "xe_gt_tlb_invalidation.h" 27 #include "xe_map.h" 28 #include "xe_mmio.h" 29 #include "xe_pm.h" 30 #include "xe_sriov.h" 31 #include "xe_wa.h" 32 #include "xe_wopcm.h" 33 34 /** 35 * DOC: Global Graphics Translation Table (GGTT) 36 * 37 * Xe GGTT implements the support for a Global Virtual Address space that is used 38 * for resources that are accessible to privileged (i.e. kernel-mode) processes, 39 * and not tied to a specific user-level process. For example, the Graphics 40 * micro-Controller (GuC) and Display Engine (if present) utilize this Global 41 * address space. 42 * 43 * The Global GTT (GGTT) translates from the Global virtual address to a physical 44 * address that can be accessed by HW. The GGTT is a flat, single-level table. 45 * 46 * Xe implements a simplified version of the GGTT specifically managing only a 47 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM) 48 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to 49 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space 50 * is limited on both ends of the GGTT, because the GuC shim HW redirects 51 * accesses to those addresses to other HW areas instead of going through the 52 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size, 53 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things 54 * simple, instead of checking each object to see if they are accessed by GuC or 55 * not, we just exclude those areas from the allocator. Additionally, to simplify 56 * the driver load, we use the maximum WOPCM size in this logic instead of the 57 * programmed one, so we don't need to wait until the actual size to be 58 * programmed is determined (which requires FW fetch) before initializing the 59 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs 60 * depending on the platform) but we can live with this. Another benefit of this 61 * is the GuC bootrom can't access anything below the WOPCM max size so anything 62 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT 63 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max 64 * give us the correct placement for free. 65 */ 66 67 static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, 68 u16 pat_index) 69 { 70 u64 pte; 71 72 pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE); 73 pte |= XE_PAGE_PRESENT; 74 75 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) 76 pte |= XE_GGTT_PTE_DM; 77 78 return pte; 79 } 80 81 static u64 xelpg_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, 82 u16 pat_index) 83 { 84 struct xe_device *xe = xe_bo_device(bo); 85 u64 pte; 86 87 pte = xelp_ggtt_pte_encode_bo(bo, bo_offset, pat_index); 88 89 xe_assert(xe, pat_index <= 3); 90 91 if (pat_index & BIT(0)) 92 pte |= XELPG_GGTT_PTE_PAT0; 93 94 if (pat_index & BIT(1)) 95 pte |= XELPG_GGTT_PTE_PAT1; 96 97 return pte; 98 } 99 100 static unsigned int probe_gsm_size(struct pci_dev *pdev) 101 { 102 u16 gmch_ctl, ggms; 103 104 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); 105 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; 106 return ggms ? SZ_1M << ggms : 0; 107 } 108 109 static void ggtt_update_access_counter(struct xe_ggtt *ggtt) 110 { 111 struct xe_tile *tile = ggtt->tile; 112 struct xe_gt *affected_gt = XE_WA(tile->primary_gt, 22019338487) ? 113 tile->primary_gt : tile->media_gt; 114 struct xe_mmio *mmio = &affected_gt->mmio; 115 u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63; 116 /* 117 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit 118 * to wait for completion of prior GTT writes before letting this through. 119 * This needs to be done for all GGTT writes originating from the CPU. 120 */ 121 lockdep_assert_held(&ggtt->lock); 122 123 if ((++ggtt->access_count % max_gtt_writes) == 0) { 124 xe_mmio_write32(mmio, GMD_ID, 0x0); 125 ggtt->access_count = 0; 126 } 127 } 128 129 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) 130 { 131 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); 132 xe_tile_assert(ggtt->tile, addr < ggtt->size); 133 134 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); 135 } 136 137 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) 138 { 139 xe_ggtt_set_pte(ggtt, addr, pte); 140 ggtt_update_access_counter(ggtt); 141 } 142 143 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) 144 { 145 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; 146 u64 end = start + size - 1; 147 u64 scratch_pte; 148 149 xe_tile_assert(ggtt->tile, start < end); 150 151 if (ggtt->scratch) 152 scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, 153 pat_index); 154 else 155 scratch_pte = 0; 156 157 while (start < end) { 158 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); 159 start += XE_PAGE_SIZE; 160 } 161 } 162 163 static void ggtt_fini_early(struct drm_device *drm, void *arg) 164 { 165 struct xe_ggtt *ggtt = arg; 166 167 destroy_workqueue(ggtt->wq); 168 mutex_destroy(&ggtt->lock); 169 drm_mm_takedown(&ggtt->mm); 170 } 171 172 static void ggtt_fini(void *arg) 173 { 174 struct xe_ggtt *ggtt = arg; 175 176 ggtt->scratch = NULL; 177 } 178 179 static void primelockdep(struct xe_ggtt *ggtt) 180 { 181 if (!IS_ENABLED(CONFIG_LOCKDEP)) 182 return; 183 184 fs_reclaim_acquire(GFP_KERNEL); 185 might_lock(&ggtt->lock); 186 fs_reclaim_release(GFP_KERNEL); 187 } 188 189 static const struct xe_ggtt_pt_ops xelp_pt_ops = { 190 .pte_encode_bo = xelp_ggtt_pte_encode_bo, 191 .ggtt_set_pte = xe_ggtt_set_pte, 192 }; 193 194 static const struct xe_ggtt_pt_ops xelpg_pt_ops = { 195 .pte_encode_bo = xelpg_ggtt_pte_encode_bo, 196 .ggtt_set_pte = xe_ggtt_set_pte, 197 }; 198 199 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { 200 .pte_encode_bo = xelpg_ggtt_pte_encode_bo, 201 .ggtt_set_pte = xe_ggtt_set_pte_and_flush, 202 }; 203 204 static void dev_fini_ggtt(void *arg) 205 { 206 struct xe_ggtt *ggtt = arg; 207 208 drain_workqueue(ggtt->wq); 209 } 210 211 /** 212 * xe_ggtt_init_early - Early GGTT initialization 213 * @ggtt: the &xe_ggtt to be initialized 214 * 215 * It allows to create new mappings usable by the GuC. 216 * Mappings are not usable by the HW engines, as it doesn't have scratch nor 217 * initial clear done to it yet. That will happen in the regular, non-early 218 * GGTT initialization. 219 * 220 * Return: 0 on success or a negative error code on failure. 221 */ 222 int xe_ggtt_init_early(struct xe_ggtt *ggtt) 223 { 224 struct xe_device *xe = tile_to_xe(ggtt->tile); 225 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 226 unsigned int gsm_size; 227 int err; 228 229 if (IS_SRIOV_VF(xe)) 230 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ 231 else 232 gsm_size = probe_gsm_size(pdev); 233 234 if (gsm_size == 0) { 235 drm_err(&xe->drm, "Hardware reported no preallocated GSM\n"); 236 return -ENOMEM; 237 } 238 239 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; 240 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; 241 242 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) 243 ggtt->flags |= XE_GGTT_FLAGS_64K; 244 245 if (ggtt->size > GUC_GGTT_TOP) 246 ggtt->size = GUC_GGTT_TOP; 247 248 if (GRAPHICS_VERx100(xe) >= 1270) 249 ggtt->pt_ops = (ggtt->tile->media_gt && 250 XE_WA(ggtt->tile->media_gt, 22019338487)) || 251 XE_WA(ggtt->tile->primary_gt, 22019338487) ? 252 &xelpg_pt_wa_ops : &xelpg_pt_ops; 253 else 254 ggtt->pt_ops = &xelp_pt_ops; 255 256 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM); 257 258 drm_mm_init(&ggtt->mm, xe_wopcm_size(xe), 259 ggtt->size - xe_wopcm_size(xe)); 260 mutex_init(&ggtt->lock); 261 primelockdep(ggtt); 262 263 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); 264 if (err) 265 return err; 266 267 err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt); 268 if (err) 269 return err; 270 271 if (IS_SRIOV_VF(xe)) { 272 err = xe_gt_sriov_vf_prepare_ggtt(xe_tile_get_gt(ggtt->tile, 0)); 273 if (err) 274 return err; 275 } 276 277 return 0; 278 } 279 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */ 280 281 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); 282 283 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) 284 { 285 struct drm_mm_node *hole; 286 u64 start, end; 287 288 /* Display may have allocated inside ggtt, so be careful with clearing here */ 289 mutex_lock(&ggtt->lock); 290 drm_mm_for_each_hole(hole, &ggtt->mm, start, end) 291 xe_ggtt_clear(ggtt, start, end - start); 292 293 xe_ggtt_invalidate(ggtt); 294 mutex_unlock(&ggtt->lock); 295 } 296 297 static void ggtt_node_remove(struct xe_ggtt_node *node) 298 { 299 struct xe_ggtt *ggtt = node->ggtt; 300 struct xe_device *xe = tile_to_xe(ggtt->tile); 301 bool bound; 302 int idx; 303 304 bound = drm_dev_enter(&xe->drm, &idx); 305 306 mutex_lock(&ggtt->lock); 307 if (bound) 308 xe_ggtt_clear(ggtt, node->base.start, node->base.size); 309 drm_mm_remove_node(&node->base); 310 node->base.size = 0; 311 mutex_unlock(&ggtt->lock); 312 313 if (!bound) 314 goto free_node; 315 316 if (node->invalidate_on_remove) 317 xe_ggtt_invalidate(ggtt); 318 319 drm_dev_exit(idx); 320 321 free_node: 322 xe_ggtt_node_fini(node); 323 } 324 325 static void ggtt_node_remove_work_func(struct work_struct *work) 326 { 327 struct xe_ggtt_node *node = container_of(work, typeof(*node), 328 delayed_removal_work); 329 struct xe_device *xe = tile_to_xe(node->ggtt->tile); 330 331 xe_pm_runtime_get(xe); 332 ggtt_node_remove(node); 333 xe_pm_runtime_put(xe); 334 } 335 336 /** 337 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT 338 * @node: the &xe_ggtt_node to be removed 339 * @invalidate: if node needs invalidation upon removal 340 */ 341 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate) 342 { 343 struct xe_ggtt *ggtt; 344 struct xe_device *xe; 345 346 if (!node || !node->ggtt) 347 return; 348 349 ggtt = node->ggtt; 350 xe = tile_to_xe(ggtt->tile); 351 352 node->invalidate_on_remove = invalidate; 353 354 if (xe_pm_runtime_get_if_active(xe)) { 355 ggtt_node_remove(node); 356 xe_pm_runtime_put(xe); 357 } else { 358 queue_work(ggtt->wq, &node->delayed_removal_work); 359 } 360 } 361 362 /** 363 * xe_ggtt_init - Regular non-early GGTT initialization 364 * @ggtt: the &xe_ggtt to be initialized 365 * 366 * Return: 0 on success or a negative error code on failure. 367 */ 368 int xe_ggtt_init(struct xe_ggtt *ggtt) 369 { 370 struct xe_device *xe = tile_to_xe(ggtt->tile); 371 unsigned int flags; 372 int err; 373 374 /* 375 * So we don't need to worry about 64K GGTT layout when dealing with 376 * scratch entries, rather keep the scratch page in system memory on 377 * platforms where 64K pages are needed for VRAM. 378 */ 379 flags = 0; 380 if (ggtt->flags & XE_GGTT_FLAGS_64K) 381 flags |= XE_BO_FLAG_SYSTEM; 382 else 383 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); 384 385 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); 386 if (IS_ERR(ggtt->scratch)) { 387 err = PTR_ERR(ggtt->scratch); 388 goto err; 389 } 390 391 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size); 392 393 xe_ggtt_initial_clear(ggtt); 394 395 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt); 396 err: 397 ggtt->scratch = NULL; 398 return err; 399 } 400 401 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) 402 { 403 int err; 404 405 if (!gt) 406 return; 407 408 err = xe_gt_tlb_invalidation_ggtt(gt); 409 if (err) 410 drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err); 411 } 412 413 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) 414 { 415 struct xe_device *xe = tile_to_xe(ggtt->tile); 416 417 /* 418 * XXX: Barrier for GGTT pages. Unsure exactly why this required but 419 * without this LNL is having issues with the GuC reading scratch page 420 * vs. correct GGTT page. Not particularly a hot code path so blindly 421 * do a mmio read here which results in GuC reading correct GGTT page. 422 */ 423 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG); 424 425 /* Each GT in a tile has its own TLB to cache GGTT lookups */ 426 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); 427 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); 428 } 429 430 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, 431 const struct drm_mm_node *node, const char *description) 432 { 433 char buf[10]; 434 435 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 436 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); 437 xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n", 438 node->start, node->start + node->size, buf, description); 439 } 440 } 441 442 /** 443 * xe_ggtt_node_insert_balloon - prevent allocation of specified GGTT addresses 444 * @node: the &xe_ggtt_node to hold reserved GGTT node 445 * @start: the starting GGTT address of the reserved region 446 * @end: then end GGTT address of the reserved region 447 * 448 * Use xe_ggtt_node_remove_balloon() to release a reserved GGTT node. 449 * 450 * Return: 0 on success or a negative error code on failure. 451 */ 452 int xe_ggtt_node_insert_balloon(struct xe_ggtt_node *node, u64 start, u64 end) 453 { 454 struct xe_ggtt *ggtt = node->ggtt; 455 int err; 456 457 xe_tile_assert(ggtt->tile, start < end); 458 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); 459 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); 460 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base)); 461 462 node->base.color = 0; 463 node->base.start = start; 464 node->base.size = end - start; 465 466 mutex_lock(&ggtt->lock); 467 err = drm_mm_reserve_node(&ggtt->mm, &node->base); 468 mutex_unlock(&ggtt->lock); 469 470 if (xe_gt_WARN(ggtt->tile->primary_gt, err, 471 "Failed to balloon GGTT %#llx-%#llx (%pe)\n", 472 node->base.start, node->base.start + node->base.size, ERR_PTR(err))) 473 return err; 474 475 xe_ggtt_dump_node(ggtt, &node->base, "balloon"); 476 return 0; 477 } 478 479 /** 480 * xe_ggtt_node_remove_balloon - release a reserved GGTT region 481 * @node: the &xe_ggtt_node with reserved GGTT region 482 * 483 * See xe_ggtt_node_insert_balloon() for details. 484 */ 485 void xe_ggtt_node_remove_balloon(struct xe_ggtt_node *node) 486 { 487 if (!node || !node->ggtt) 488 return; 489 490 if (!drm_mm_node_allocated(&node->base)) 491 goto free_node; 492 493 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon"); 494 495 mutex_lock(&node->ggtt->lock); 496 drm_mm_remove_node(&node->base); 497 mutex_unlock(&node->ggtt->lock); 498 499 free_node: 500 xe_ggtt_node_fini(node); 501 } 502 503 /** 504 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT 505 * @node: the &xe_ggtt_node to be inserted 506 * @size: size of the node 507 * @align: alignment constrain of the node 508 * @mm_flags: flags to control the node behavior 509 * 510 * It cannot be called without first having called xe_ggtt_init() once. 511 * To be used in cases where ggtt->lock is already taken. 512 * 513 * Return: 0 on success or a negative error code on failure. 514 */ 515 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node, 516 u32 size, u32 align, u32 mm_flags) 517 { 518 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0, 519 mm_flags); 520 } 521 522 /** 523 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT 524 * @node: the &xe_ggtt_node to be inserted 525 * @size: size of the node 526 * @align: alignment constrain of the node 527 * 528 * It cannot be called without first having called xe_ggtt_init() once. 529 * 530 * Return: 0 on success or a negative error code on failure. 531 */ 532 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align) 533 { 534 int ret; 535 536 if (!node || !node->ggtt) 537 return -ENOENT; 538 539 mutex_lock(&node->ggtt->lock); 540 ret = xe_ggtt_node_insert_locked(node, size, align, 541 DRM_MM_INSERT_HIGH); 542 mutex_unlock(&node->ggtt->lock); 543 544 return ret; 545 } 546 547 /** 548 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct 549 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved. 550 * 551 * This function will allocated the struct %xe_ggtt_node and return it's pointer. 552 * This struct will then be freed after the node removal upon xe_ggtt_node_remove() 553 * or xe_ggtt_node_remove_balloon(). 554 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated 555 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 556 * xe_ggtt_node_insert_balloon() will ensure the node is inserted or reserved in GGTT. 557 * 558 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise. 559 **/ 560 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt) 561 { 562 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS); 563 564 if (!node) 565 return ERR_PTR(-ENOMEM); 566 567 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func); 568 node->ggtt = ggtt; 569 570 return node; 571 } 572 573 /** 574 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct 575 * @node: the &xe_ggtt_node to be freed 576 * 577 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 578 * or xe_ggtt_node_insert_balloon(); and this @node is not going to be reused, then, 579 * this function needs to be called to free the %xe_ggtt_node struct 580 **/ 581 void xe_ggtt_node_fini(struct xe_ggtt_node *node) 582 { 583 kfree(node); 584 } 585 586 /** 587 * xe_ggtt_node_allocated - Check if node is allocated in GGTT 588 * @node: the &xe_ggtt_node to be inspected 589 * 590 * Return: True if allocated, False otherwise. 591 */ 592 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node) 593 { 594 if (!node || !node->ggtt) 595 return false; 596 597 return drm_mm_node_allocated(&node->base); 598 } 599 600 /** 601 * xe_ggtt_map_bo - Map the BO into GGTT 602 * @ggtt: the &xe_ggtt where node will be mapped 603 * @bo: the &xe_bo to be mapped 604 */ 605 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 606 { 607 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 608 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 609 u64 start; 610 u64 offset, pte; 611 612 if (XE_WARN_ON(!bo->ggtt_node[ggtt->tile->id])) 613 return; 614 615 start = bo->ggtt_node[ggtt->tile->id]->base.start; 616 617 for (offset = 0; offset < bo->size; offset += XE_PAGE_SIZE) { 618 pte = ggtt->pt_ops->pte_encode_bo(bo, offset, pat_index); 619 ggtt->pt_ops->ggtt_set_pte(ggtt, start + offset, pte); 620 } 621 } 622 623 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 624 u64 start, u64 end) 625 { 626 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE; 627 u8 tile_id = ggtt->tile->id; 628 int err; 629 630 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) 631 alignment = SZ_64K; 632 633 if (XE_WARN_ON(bo->ggtt_node[tile_id])) { 634 /* Someone's already inserted this BO in the GGTT */ 635 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == bo->size); 636 return 0; 637 } 638 639 err = xe_bo_validate(bo, NULL, false); 640 if (err) 641 return err; 642 643 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); 644 645 bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt); 646 if (IS_ERR(bo->ggtt_node[tile_id])) { 647 err = PTR_ERR(bo->ggtt_node[tile_id]); 648 bo->ggtt_node[tile_id] = NULL; 649 goto out; 650 } 651 652 mutex_lock(&ggtt->lock); 653 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base, 654 bo->size, alignment, 0, start, end, 0); 655 if (err) { 656 xe_ggtt_node_fini(bo->ggtt_node[tile_id]); 657 bo->ggtt_node[tile_id] = NULL; 658 } else { 659 xe_ggtt_map_bo(ggtt, bo); 660 } 661 mutex_unlock(&ggtt->lock); 662 663 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) 664 xe_ggtt_invalidate(ggtt); 665 666 out: 667 xe_pm_runtime_put(tile_to_xe(ggtt->tile)); 668 669 return err; 670 } 671 672 /** 673 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space 674 * @ggtt: the &xe_ggtt where bo will be inserted 675 * @bo: the &xe_bo to be inserted 676 * @start: address where it will be inserted 677 * @end: end of the range where it will be inserted 678 * 679 * Return: 0 on success or a negative error code on failure. 680 */ 681 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 682 u64 start, u64 end) 683 { 684 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end); 685 } 686 687 /** 688 * xe_ggtt_insert_bo - Insert BO into GGTT 689 * @ggtt: the &xe_ggtt where bo will be inserted 690 * @bo: the &xe_bo to be inserted 691 * 692 * Return: 0 on success or a negative error code on failure. 693 */ 694 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 695 { 696 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX); 697 } 698 699 /** 700 * xe_ggtt_remove_bo - Remove a BO from the GGTT 701 * @ggtt: the &xe_ggtt where node will be removed 702 * @bo: the &xe_bo to be removed 703 */ 704 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 705 { 706 u8 tile_id = ggtt->tile->id; 707 708 if (XE_WARN_ON(!bo->ggtt_node[tile_id])) 709 return; 710 711 /* This BO is not currently in the GGTT */ 712 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == bo->size); 713 714 xe_ggtt_node_remove(bo->ggtt_node[tile_id], 715 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); 716 } 717 718 /** 719 * xe_ggtt_largest_hole - Largest GGTT hole 720 * @ggtt: the &xe_ggtt that will be inspected 721 * @alignment: minimum alignment 722 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare 723 * 724 * Return: size of the largest continuous GGTT region 725 */ 726 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare) 727 { 728 const struct drm_mm *mm = &ggtt->mm; 729 const struct drm_mm_node *entry; 730 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 731 u64 hole_start, hole_end, hole_size; 732 u64 max_hole = 0; 733 734 mutex_lock(&ggtt->lock); 735 736 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 737 hole_start = max(hole_start, hole_min_start); 738 hole_start = ALIGN(hole_start, alignment); 739 hole_end = ALIGN_DOWN(hole_end, alignment); 740 if (hole_start >= hole_end) 741 continue; 742 hole_size = hole_end - hole_start; 743 if (spare) 744 *spare -= min3(*spare, hole_size, max_hole); 745 max_hole = max(max_hole, hole_size); 746 } 747 748 mutex_unlock(&ggtt->lock); 749 750 return max_hole; 751 } 752 753 #ifdef CONFIG_PCI_IOV 754 static u64 xe_encode_vfid_pte(u16 vfid) 755 { 756 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; 757 } 758 759 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) 760 { 761 u64 start = node->start; 762 u64 size = node->size; 763 u64 end = start + size - 1; 764 u64 pte = xe_encode_vfid_pte(vfid); 765 766 lockdep_assert_held(&ggtt->lock); 767 768 if (!drm_mm_node_allocated(node)) 769 return; 770 771 while (start < end) { 772 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); 773 start += XE_PAGE_SIZE; 774 } 775 776 xe_ggtt_invalidate(ggtt); 777 } 778 779 /** 780 * xe_ggtt_assign - assign a GGTT region to the VF 781 * @node: the &xe_ggtt_node to update 782 * @vfid: the VF identifier 783 * 784 * This function is used by the PF driver to assign a GGTT region to the VF. 785 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some 786 * platforms VFs can't modify that either. 787 */ 788 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid) 789 { 790 mutex_lock(&node->ggtt->lock); 791 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid); 792 mutex_unlock(&node->ggtt->lock); 793 } 794 #endif 795 796 /** 797 * xe_ggtt_dump - Dump GGTT for debug 798 * @ggtt: the &xe_ggtt to be dumped 799 * @p: the &drm_mm_printer helper handle to be used to dump the information 800 * 801 * Return: 0 on success or a negative error code on failure. 802 */ 803 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) 804 { 805 int err; 806 807 err = mutex_lock_interruptible(&ggtt->lock); 808 if (err) 809 return err; 810 811 drm_mm_print(&ggtt->mm, p); 812 mutex_unlock(&ggtt->lock); 813 return err; 814 } 815 816 /** 817 * xe_ggtt_print_holes - Print holes 818 * @ggtt: the &xe_ggtt to be inspected 819 * @alignment: min alignment 820 * @p: the &drm_printer 821 * 822 * Print GGTT ranges that are available and return total size available. 823 * 824 * Return: Total available size. 825 */ 826 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p) 827 { 828 const struct drm_mm *mm = &ggtt->mm; 829 const struct drm_mm_node *entry; 830 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 831 u64 hole_start, hole_end, hole_size; 832 u64 total = 0; 833 char buf[10]; 834 835 mutex_lock(&ggtt->lock); 836 837 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 838 hole_start = max(hole_start, hole_min_start); 839 hole_start = ALIGN(hole_start, alignment); 840 hole_end = ALIGN_DOWN(hole_end, alignment); 841 if (hole_start >= hole_end) 842 continue; 843 hole_size = hole_end - hole_start; 844 total += hole_size; 845 846 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf)); 847 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n", 848 hole_start, hole_end - 1, buf); 849 } 850 851 mutex_unlock(&ggtt->lock); 852 853 return total; 854 } 855