1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_ggtt.h" 7 8 #include <kunit/visibility.h> 9 #include <linux/fault-inject.h> 10 #include <linux/io-64-nonatomic-lo-hi.h> 11 #include <linux/sizes.h> 12 13 #include <drm/drm_drv.h> 14 #include <drm/drm_managed.h> 15 #include <drm/intel/i915_drm.h> 16 #include <generated/xe_wa_oob.h> 17 18 #include "regs/xe_gt_regs.h" 19 #include "regs/xe_gtt_defs.h" 20 #include "regs/xe_regs.h" 21 #include "xe_assert.h" 22 #include "xe_bo.h" 23 #include "xe_device.h" 24 #include "xe_gt.h" 25 #include "xe_gt_printk.h" 26 #include "xe_map.h" 27 #include "xe_mmio.h" 28 #include "xe_pm.h" 29 #include "xe_res_cursor.h" 30 #include "xe_sriov.h" 31 #include "xe_tile_printk.h" 32 #include "xe_tile_sriov_vf.h" 33 #include "xe_tlb_inval.h" 34 #include "xe_wa.h" 35 #include "xe_wopcm.h" 36 37 /** 38 * DOC: Global Graphics Translation Table (GGTT) 39 * 40 * Xe GGTT implements the support for a Global Virtual Address space that is used 41 * for resources that are accessible to privileged (i.e. kernel-mode) processes, 42 * and not tied to a specific user-level process. For example, the Graphics 43 * micro-Controller (GuC) and Display Engine (if present) utilize this Global 44 * address space. 45 * 46 * The Global GTT (GGTT) translates from the Global virtual address to a physical 47 * address that can be accessed by HW. The GGTT is a flat, single-level table. 48 * 49 * Xe implements a simplified version of the GGTT specifically managing only a 50 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM) 51 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to 52 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space 53 * is limited on both ends of the GGTT, because the GuC shim HW redirects 54 * accesses to those addresses to other HW areas instead of going through the 55 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size, 56 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things 57 * simple, instead of checking each object to see if they are accessed by GuC or 58 * not, we just exclude those areas from the allocator. Additionally, to simplify 59 * the driver load, we use the maximum WOPCM size in this logic instead of the 60 * programmed one, so we don't need to wait until the actual size to be 61 * programmed is determined (which requires FW fetch) before initializing the 62 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs 63 * depending on the platform) but we can live with this. Another benefit of this 64 * is the GuC bootrom can't access anything below the WOPCM max size so anything 65 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT 66 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max 67 * give us the correct placement for free. 68 */ 69 70 static u64 xelp_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index) 71 { 72 u64 pte = XE_PAGE_PRESENT; 73 74 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) 75 pte |= XE_GGTT_PTE_DM; 76 77 return pte; 78 } 79 80 static u64 xelpg_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index) 81 { 82 struct xe_device *xe = xe_bo_device(bo); 83 u64 pte; 84 85 pte = xelp_ggtt_pte_flags(bo, pat_index); 86 87 xe_assert(xe, pat_index <= 3); 88 89 if (pat_index & BIT(0)) 90 pte |= XELPG_GGTT_PTE_PAT0; 91 92 if (pat_index & BIT(1)) 93 pte |= XELPG_GGTT_PTE_PAT1; 94 95 return pte; 96 } 97 98 static unsigned int probe_gsm_size(struct pci_dev *pdev) 99 { 100 u16 gmch_ctl, ggms; 101 102 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); 103 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; 104 return ggms ? SZ_1M << ggms : 0; 105 } 106 107 static void ggtt_update_access_counter(struct xe_ggtt *ggtt) 108 { 109 struct xe_tile *tile = ggtt->tile; 110 struct xe_gt *affected_gt = XE_GT_WA(tile->primary_gt, 22019338487) ? 111 tile->primary_gt : tile->media_gt; 112 struct xe_mmio *mmio = &affected_gt->mmio; 113 u32 max_gtt_writes = XE_GT_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63; 114 /* 115 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit 116 * to wait for completion of prior GTT writes before letting this through. 117 * This needs to be done for all GGTT writes originating from the CPU. 118 */ 119 lockdep_assert_held(&ggtt->lock); 120 121 if ((++ggtt->access_count % max_gtt_writes) == 0) { 122 xe_mmio_write32(mmio, GMD_ID, 0x0); 123 ggtt->access_count = 0; 124 } 125 } 126 127 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) 128 { 129 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); 130 xe_tile_assert(ggtt->tile, addr < ggtt->size); 131 132 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); 133 } 134 135 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) 136 { 137 xe_ggtt_set_pte(ggtt, addr, pte); 138 ggtt_update_access_counter(ggtt); 139 } 140 141 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) 142 { 143 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; 144 u64 end = start + size - 1; 145 u64 scratch_pte; 146 147 xe_tile_assert(ggtt->tile, start < end); 148 149 if (ggtt->scratch) 150 scratch_pte = xe_bo_addr(ggtt->scratch, 0, XE_PAGE_SIZE) | 151 ggtt->pt_ops->pte_encode_flags(ggtt->scratch, 152 pat_index); 153 else 154 scratch_pte = 0; 155 156 while (start < end) { 157 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); 158 start += XE_PAGE_SIZE; 159 } 160 } 161 162 /** 163 * xe_ggtt_alloc - Allocate a GGTT for a given &xe_tile 164 * @tile: &xe_tile 165 * 166 * Allocates a &xe_ggtt for a given tile. 167 * 168 * Return: &xe_ggtt on success, or NULL when out of memory. 169 */ 170 struct xe_ggtt *xe_ggtt_alloc(struct xe_tile *tile) 171 { 172 struct xe_ggtt *ggtt = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*ggtt), GFP_KERNEL); 173 if (ggtt) 174 ggtt->tile = tile; 175 return ggtt; 176 } 177 178 static void ggtt_fini_early(struct drm_device *drm, void *arg) 179 { 180 struct xe_ggtt *ggtt = arg; 181 182 destroy_workqueue(ggtt->wq); 183 mutex_destroy(&ggtt->lock); 184 drm_mm_takedown(&ggtt->mm); 185 } 186 187 static void ggtt_fini(void *arg) 188 { 189 struct xe_ggtt *ggtt = arg; 190 191 ggtt->scratch = NULL; 192 } 193 194 #ifdef CONFIG_LOCKDEP 195 void xe_ggtt_might_lock(struct xe_ggtt *ggtt) 196 { 197 might_lock(&ggtt->lock); 198 } 199 #endif 200 201 static void primelockdep(struct xe_ggtt *ggtt) 202 { 203 if (!IS_ENABLED(CONFIG_LOCKDEP)) 204 return; 205 206 fs_reclaim_acquire(GFP_KERNEL); 207 might_lock(&ggtt->lock); 208 fs_reclaim_release(GFP_KERNEL); 209 } 210 211 static const struct xe_ggtt_pt_ops xelp_pt_ops = { 212 .pte_encode_flags = xelp_ggtt_pte_flags, 213 .ggtt_set_pte = xe_ggtt_set_pte, 214 }; 215 216 static const struct xe_ggtt_pt_ops xelpg_pt_ops = { 217 .pte_encode_flags = xelpg_ggtt_pte_flags, 218 .ggtt_set_pte = xe_ggtt_set_pte, 219 }; 220 221 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { 222 .pte_encode_flags = xelpg_ggtt_pte_flags, 223 .ggtt_set_pte = xe_ggtt_set_pte_and_flush, 224 }; 225 226 static void __xe_ggtt_init_early(struct xe_ggtt *ggtt, u32 reserved) 227 { 228 drm_mm_init(&ggtt->mm, reserved, 229 ggtt->size - reserved); 230 mutex_init(&ggtt->lock); 231 primelockdep(ggtt); 232 } 233 234 int xe_ggtt_init_kunit(struct xe_ggtt *ggtt, u32 reserved, u32 size) 235 { 236 ggtt->size = size; 237 __xe_ggtt_init_early(ggtt, reserved); 238 return 0; 239 } 240 EXPORT_SYMBOL_IF_KUNIT(xe_ggtt_init_kunit); 241 242 static void dev_fini_ggtt(void *arg) 243 { 244 struct xe_ggtt *ggtt = arg; 245 246 drain_workqueue(ggtt->wq); 247 } 248 249 /** 250 * xe_ggtt_init_early - Early GGTT initialization 251 * @ggtt: the &xe_ggtt to be initialized 252 * 253 * It allows to create new mappings usable by the GuC. 254 * Mappings are not usable by the HW engines, as it doesn't have scratch nor 255 * initial clear done to it yet. That will happen in the regular, non-early 256 * GGTT initialization. 257 * 258 * Return: 0 on success or a negative error code on failure. 259 */ 260 int xe_ggtt_init_early(struct xe_ggtt *ggtt) 261 { 262 struct xe_device *xe = tile_to_xe(ggtt->tile); 263 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 264 unsigned int gsm_size; 265 int err; 266 267 if (IS_SRIOV_VF(xe) || GRAPHICS_VERx100(xe) >= 1250) 268 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ 269 else 270 gsm_size = probe_gsm_size(pdev); 271 272 if (gsm_size == 0) { 273 xe_tile_err(ggtt->tile, "Hardware reported no preallocated GSM\n"); 274 return -ENOMEM; 275 } 276 277 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; 278 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; 279 280 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) 281 ggtt->flags |= XE_GGTT_FLAGS_64K; 282 283 if (ggtt->size > GUC_GGTT_TOP) 284 ggtt->size = GUC_GGTT_TOP; 285 286 if (GRAPHICS_VERx100(xe) >= 1270) 287 ggtt->pt_ops = (ggtt->tile->media_gt && 288 XE_GT_WA(ggtt->tile->media_gt, 22019338487)) || 289 XE_GT_WA(ggtt->tile->primary_gt, 22019338487) ? 290 &xelpg_pt_wa_ops : &xelpg_pt_ops; 291 else 292 ggtt->pt_ops = &xelp_pt_ops; 293 294 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM); 295 __xe_ggtt_init_early(ggtt, xe_wopcm_size(xe)); 296 297 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); 298 if (err) 299 return err; 300 301 err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt); 302 if (err) 303 return err; 304 305 if (IS_SRIOV_VF(xe)) { 306 err = xe_tile_sriov_vf_prepare_ggtt(ggtt->tile); 307 if (err) 308 return err; 309 } 310 311 return 0; 312 } 313 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */ 314 315 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); 316 317 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) 318 { 319 struct drm_mm_node *hole; 320 u64 start, end; 321 322 /* Display may have allocated inside ggtt, so be careful with clearing here */ 323 mutex_lock(&ggtt->lock); 324 drm_mm_for_each_hole(hole, &ggtt->mm, start, end) 325 xe_ggtt_clear(ggtt, start, end - start); 326 327 xe_ggtt_invalidate(ggtt); 328 mutex_unlock(&ggtt->lock); 329 } 330 331 static void ggtt_node_remove(struct xe_ggtt_node *node) 332 { 333 struct xe_ggtt *ggtt = node->ggtt; 334 struct xe_device *xe = tile_to_xe(ggtt->tile); 335 bool bound; 336 int idx; 337 338 bound = drm_dev_enter(&xe->drm, &idx); 339 340 mutex_lock(&ggtt->lock); 341 if (bound) 342 xe_ggtt_clear(ggtt, node->base.start, node->base.size); 343 drm_mm_remove_node(&node->base); 344 node->base.size = 0; 345 mutex_unlock(&ggtt->lock); 346 347 if (!bound) 348 goto free_node; 349 350 if (node->invalidate_on_remove) 351 xe_ggtt_invalidate(ggtt); 352 353 drm_dev_exit(idx); 354 355 free_node: 356 xe_ggtt_node_fini(node); 357 } 358 359 static void ggtt_node_remove_work_func(struct work_struct *work) 360 { 361 struct xe_ggtt_node *node = container_of(work, typeof(*node), 362 delayed_removal_work); 363 struct xe_device *xe = tile_to_xe(node->ggtt->tile); 364 365 xe_pm_runtime_get(xe); 366 ggtt_node_remove(node); 367 xe_pm_runtime_put(xe); 368 } 369 370 /** 371 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT 372 * @node: the &xe_ggtt_node to be removed 373 * @invalidate: if node needs invalidation upon removal 374 */ 375 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate) 376 { 377 struct xe_ggtt *ggtt; 378 struct xe_device *xe; 379 380 if (!node || !node->ggtt) 381 return; 382 383 ggtt = node->ggtt; 384 xe = tile_to_xe(ggtt->tile); 385 386 node->invalidate_on_remove = invalidate; 387 388 if (xe_pm_runtime_get_if_active(xe)) { 389 ggtt_node_remove(node); 390 xe_pm_runtime_put(xe); 391 } else { 392 queue_work(ggtt->wq, &node->delayed_removal_work); 393 } 394 } 395 396 /** 397 * xe_ggtt_init - Regular non-early GGTT initialization 398 * @ggtt: the &xe_ggtt to be initialized 399 * 400 * Return: 0 on success or a negative error code on failure. 401 */ 402 int xe_ggtt_init(struct xe_ggtt *ggtt) 403 { 404 struct xe_device *xe = tile_to_xe(ggtt->tile); 405 unsigned int flags; 406 int err; 407 408 /* 409 * So we don't need to worry about 64K GGTT layout when dealing with 410 * scratch entries, rather keep the scratch page in system memory on 411 * platforms where 64K pages are needed for VRAM. 412 */ 413 flags = 0; 414 if (ggtt->flags & XE_GGTT_FLAGS_64K) 415 flags |= XE_BO_FLAG_SYSTEM; 416 else 417 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); 418 419 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); 420 if (IS_ERR(ggtt->scratch)) { 421 err = PTR_ERR(ggtt->scratch); 422 goto err; 423 } 424 425 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, xe_bo_size(ggtt->scratch)); 426 427 xe_ggtt_initial_clear(ggtt); 428 429 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt); 430 err: 431 ggtt->scratch = NULL; 432 return err; 433 } 434 435 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) 436 { 437 int err; 438 439 if (!gt) 440 return; 441 442 err = xe_tlb_inval_ggtt(>->tlb_inval); 443 xe_gt_WARN(gt, err, "Failed to invalidate GGTT (%pe)", ERR_PTR(err)); 444 } 445 446 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) 447 { 448 struct xe_device *xe = tile_to_xe(ggtt->tile); 449 450 /* 451 * XXX: Barrier for GGTT pages. Unsure exactly why this required but 452 * without this LNL is having issues with the GuC reading scratch page 453 * vs. correct GGTT page. Not particularly a hot code path so blindly 454 * do a mmio read here which results in GuC reading correct GGTT page. 455 */ 456 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG); 457 458 /* Each GT in a tile has its own TLB to cache GGTT lookups */ 459 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); 460 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); 461 } 462 463 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, 464 const struct drm_mm_node *node, const char *description) 465 { 466 char buf[10]; 467 468 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 469 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); 470 xe_tile_dbg(ggtt->tile, "GGTT %#llx-%#llx (%s) %s\n", 471 node->start, node->start + node->size, buf, description); 472 } 473 } 474 475 /** 476 * xe_ggtt_node_insert_balloon_locked - prevent allocation of specified GGTT addresses 477 * @node: the &xe_ggtt_node to hold reserved GGTT node 478 * @start: the starting GGTT address of the reserved region 479 * @end: then end GGTT address of the reserved region 480 * 481 * To be used in cases where ggtt->lock is already taken. 482 * Use xe_ggtt_node_remove_balloon_locked() to release a reserved GGTT node. 483 * 484 * Return: 0 on success or a negative error code on failure. 485 */ 486 int xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node *node, u64 start, u64 end) 487 { 488 struct xe_ggtt *ggtt = node->ggtt; 489 int err; 490 491 xe_tile_assert(ggtt->tile, start < end); 492 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); 493 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); 494 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base)); 495 lockdep_assert_held(&ggtt->lock); 496 497 node->base.color = 0; 498 node->base.start = start; 499 node->base.size = end - start; 500 501 err = drm_mm_reserve_node(&ggtt->mm, &node->base); 502 503 if (xe_tile_WARN(ggtt->tile, err, "Failed to balloon GGTT %#llx-%#llx (%pe)\n", 504 node->base.start, node->base.start + node->base.size, ERR_PTR(err))) 505 return err; 506 507 xe_ggtt_dump_node(ggtt, &node->base, "balloon"); 508 return 0; 509 } 510 511 /** 512 * xe_ggtt_node_remove_balloon_locked - release a reserved GGTT region 513 * @node: the &xe_ggtt_node with reserved GGTT region 514 * 515 * To be used in cases where ggtt->lock is already taken. 516 * See xe_ggtt_node_insert_balloon_locked() for details. 517 */ 518 void xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node *node) 519 { 520 if (!xe_ggtt_node_allocated(node)) 521 return; 522 523 lockdep_assert_held(&node->ggtt->lock); 524 525 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon"); 526 527 drm_mm_remove_node(&node->base); 528 } 529 530 static void xe_ggtt_assert_fit(struct xe_ggtt *ggtt, u64 start, u64 size) 531 { 532 struct xe_tile *tile = ggtt->tile; 533 struct xe_device *xe = tile_to_xe(tile); 534 u64 __maybe_unused wopcm = xe_wopcm_size(xe); 535 536 xe_tile_assert(tile, start >= wopcm); 537 xe_tile_assert(tile, start + size < ggtt->size - wopcm); 538 } 539 540 /** 541 * xe_ggtt_shift_nodes_locked - Shift GGTT nodes to adjust for a change in usable address range. 542 * @ggtt: the &xe_ggtt struct instance 543 * @shift: change to the location of area provisioned for current VF 544 * 545 * This function moves all nodes from the GGTT VM, to a temp list. These nodes are expected 546 * to represent allocations in range formerly assigned to current VF, before the range changed. 547 * When the GGTT VM is completely clear of any nodes, they are re-added with shifted offsets. 548 * 549 * The function has no ability of failing - because it shifts existing nodes, without 550 * any additional processing. If the nodes were successfully existing at the old address, 551 * they will do the same at the new one. A fail inside this function would indicate that 552 * the list of nodes was either already damaged, or that the shift brings the address range 553 * outside of valid bounds. Both cases justify an assert rather than error code. 554 */ 555 void xe_ggtt_shift_nodes_locked(struct xe_ggtt *ggtt, s64 shift) 556 { 557 struct xe_tile *tile __maybe_unused = ggtt->tile; 558 struct drm_mm_node *node, *tmpn; 559 LIST_HEAD(temp_list_head); 560 561 lockdep_assert_held(&ggtt->lock); 562 563 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) 564 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) 565 xe_ggtt_assert_fit(ggtt, node->start + shift, node->size); 566 567 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) { 568 drm_mm_remove_node(node); 569 list_add(&node->node_list, &temp_list_head); 570 } 571 572 list_for_each_entry_safe(node, tmpn, &temp_list_head, node_list) { 573 list_del(&node->node_list); 574 node->start += shift; 575 drm_mm_reserve_node(&ggtt->mm, node); 576 xe_tile_assert(tile, drm_mm_node_allocated(node)); 577 } 578 } 579 580 /** 581 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT 582 * @node: the &xe_ggtt_node to be inserted 583 * @size: size of the node 584 * @align: alignment constrain of the node 585 * @mm_flags: flags to control the node behavior 586 * 587 * It cannot be called without first having called xe_ggtt_init() once. 588 * To be used in cases where ggtt->lock is already taken. 589 * 590 * Return: 0 on success or a negative error code on failure. 591 */ 592 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node, 593 u32 size, u32 align, u32 mm_flags) 594 { 595 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0, 596 mm_flags); 597 } 598 599 /** 600 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT 601 * @node: the &xe_ggtt_node to be inserted 602 * @size: size of the node 603 * @align: alignment constrain of the node 604 * 605 * It cannot be called without first having called xe_ggtt_init() once. 606 * 607 * Return: 0 on success or a negative error code on failure. 608 */ 609 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align) 610 { 611 int ret; 612 613 if (!node || !node->ggtt) 614 return -ENOENT; 615 616 mutex_lock(&node->ggtt->lock); 617 ret = xe_ggtt_node_insert_locked(node, size, align, 618 DRM_MM_INSERT_HIGH); 619 mutex_unlock(&node->ggtt->lock); 620 621 return ret; 622 } 623 624 /** 625 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct 626 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved. 627 * 628 * This function will allocate the struct %xe_ggtt_node and return its pointer. 629 * This struct will then be freed after the node removal upon xe_ggtt_node_remove() 630 * or xe_ggtt_node_remove_balloon_locked(). 631 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated 632 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 633 * xe_ggtt_node_insert_balloon_locked() will ensure the node is inserted or reserved in GGTT. 634 * 635 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise. 636 **/ 637 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt) 638 { 639 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS); 640 641 if (!node) 642 return ERR_PTR(-ENOMEM); 643 644 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func); 645 node->ggtt = ggtt; 646 647 return node; 648 } 649 650 /** 651 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct 652 * @node: the &xe_ggtt_node to be freed 653 * 654 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 655 * or xe_ggtt_node_insert_balloon_locked(); and this @node is not going to be reused, then, 656 * this function needs to be called to free the %xe_ggtt_node struct 657 **/ 658 void xe_ggtt_node_fini(struct xe_ggtt_node *node) 659 { 660 kfree(node); 661 } 662 663 /** 664 * xe_ggtt_node_allocated - Check if node is allocated in GGTT 665 * @node: the &xe_ggtt_node to be inspected 666 * 667 * Return: True if allocated, False otherwise. 668 */ 669 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node) 670 { 671 if (!node || !node->ggtt) 672 return false; 673 674 return drm_mm_node_allocated(&node->base); 675 } 676 677 /** 678 * xe_ggtt_map_bo - Map the BO into GGTT 679 * @ggtt: the &xe_ggtt where node will be mapped 680 * @node: the &xe_ggtt_node where this BO is mapped 681 * @bo: the &xe_bo to be mapped 682 * @pat_index: Which pat_index to use. 683 */ 684 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_ggtt_node *node, 685 struct xe_bo *bo, u16 pat_index) 686 { 687 688 u64 start, pte, end; 689 struct xe_res_cursor cur; 690 691 if (XE_WARN_ON(!node)) 692 return; 693 694 start = node->base.start; 695 end = start + xe_bo_size(bo); 696 697 pte = ggtt->pt_ops->pte_encode_flags(bo, pat_index); 698 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 699 xe_assert(xe_bo_device(bo), bo->ttm.ttm); 700 701 for (xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &cur); 702 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE)) 703 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining, 704 pte | xe_res_dma(&cur)); 705 } else { 706 /* Prepend GPU offset */ 707 pte |= vram_region_gpu_offset(bo->ttm.resource); 708 709 for (xe_res_first(bo->ttm.resource, 0, xe_bo_size(bo), &cur); 710 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE)) 711 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining, 712 pte + cur.start); 713 } 714 } 715 716 /** 717 * xe_ggtt_map_bo_unlocked - Restore a mapping of a BO into GGTT 718 * @ggtt: the &xe_ggtt where node will be mapped 719 * @bo: the &xe_bo to be mapped 720 * 721 * This is used to restore a GGTT mapping after suspend. 722 */ 723 void xe_ggtt_map_bo_unlocked(struct xe_ggtt *ggtt, struct xe_bo *bo) 724 { 725 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 726 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 727 728 mutex_lock(&ggtt->lock); 729 xe_ggtt_map_bo(ggtt, bo->ggtt_node[ggtt->tile->id], bo, pat_index); 730 mutex_unlock(&ggtt->lock); 731 } 732 733 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 734 u64 start, u64 end, struct drm_exec *exec) 735 { 736 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE; 737 u8 tile_id = ggtt->tile->id; 738 int err; 739 740 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) 741 alignment = SZ_64K; 742 743 if (XE_WARN_ON(bo->ggtt_node[tile_id])) { 744 /* Someone's already inserted this BO in the GGTT */ 745 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo)); 746 return 0; 747 } 748 749 err = xe_bo_validate(bo, NULL, false, exec); 750 if (err) 751 return err; 752 753 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); 754 755 bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt); 756 if (IS_ERR(bo->ggtt_node[tile_id])) { 757 err = PTR_ERR(bo->ggtt_node[tile_id]); 758 bo->ggtt_node[tile_id] = NULL; 759 goto out; 760 } 761 762 mutex_lock(&ggtt->lock); 763 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base, 764 xe_bo_size(bo), alignment, 0, start, end, 0); 765 if (err) { 766 xe_ggtt_node_fini(bo->ggtt_node[tile_id]); 767 bo->ggtt_node[tile_id] = NULL; 768 } else { 769 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 770 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 771 772 xe_ggtt_map_bo(ggtt, bo->ggtt_node[tile_id], bo, pat_index); 773 } 774 mutex_unlock(&ggtt->lock); 775 776 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) 777 xe_ggtt_invalidate(ggtt); 778 779 out: 780 xe_pm_runtime_put(tile_to_xe(ggtt->tile)); 781 782 return err; 783 } 784 785 /** 786 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space 787 * @ggtt: the &xe_ggtt where bo will be inserted 788 * @bo: the &xe_bo to be inserted 789 * @start: address where it will be inserted 790 * @end: end of the range where it will be inserted 791 * @exec: The drm_exec transaction to use for exhaustive eviction. 792 * 793 * Return: 0 on success or a negative error code on failure. 794 */ 795 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 796 u64 start, u64 end, struct drm_exec *exec) 797 { 798 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end, exec); 799 } 800 801 /** 802 * xe_ggtt_insert_bo - Insert BO into GGTT 803 * @ggtt: the &xe_ggtt where bo will be inserted 804 * @bo: the &xe_bo to be inserted 805 * @exec: The drm_exec transaction to use for exhaustive eviction. 806 * 807 * Return: 0 on success or a negative error code on failure. 808 */ 809 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo, 810 struct drm_exec *exec) 811 { 812 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX, exec); 813 } 814 815 /** 816 * xe_ggtt_remove_bo - Remove a BO from the GGTT 817 * @ggtt: the &xe_ggtt where node will be removed 818 * @bo: the &xe_bo to be removed 819 */ 820 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 821 { 822 u8 tile_id = ggtt->tile->id; 823 824 if (XE_WARN_ON(!bo->ggtt_node[tile_id])) 825 return; 826 827 /* This BO is not currently in the GGTT */ 828 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo)); 829 830 xe_ggtt_node_remove(bo->ggtt_node[tile_id], 831 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); 832 } 833 834 /** 835 * xe_ggtt_largest_hole - Largest GGTT hole 836 * @ggtt: the &xe_ggtt that will be inspected 837 * @alignment: minimum alignment 838 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare 839 * 840 * Return: size of the largest continuous GGTT region 841 */ 842 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare) 843 { 844 const struct drm_mm *mm = &ggtt->mm; 845 const struct drm_mm_node *entry; 846 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 847 u64 hole_start, hole_end, hole_size; 848 u64 max_hole = 0; 849 850 mutex_lock(&ggtt->lock); 851 852 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 853 hole_start = max(hole_start, hole_min_start); 854 hole_start = ALIGN(hole_start, alignment); 855 hole_end = ALIGN_DOWN(hole_end, alignment); 856 if (hole_start >= hole_end) 857 continue; 858 hole_size = hole_end - hole_start; 859 if (spare) 860 *spare -= min3(*spare, hole_size, max_hole); 861 max_hole = max(max_hole, hole_size); 862 } 863 864 mutex_unlock(&ggtt->lock); 865 866 return max_hole; 867 } 868 869 #ifdef CONFIG_PCI_IOV 870 static u64 xe_encode_vfid_pte(u16 vfid) 871 { 872 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; 873 } 874 875 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) 876 { 877 u64 start = node->start; 878 u64 size = node->size; 879 u64 end = start + size - 1; 880 u64 pte = xe_encode_vfid_pte(vfid); 881 882 lockdep_assert_held(&ggtt->lock); 883 884 if (!drm_mm_node_allocated(node)) 885 return; 886 887 while (start < end) { 888 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); 889 start += XE_PAGE_SIZE; 890 } 891 892 xe_ggtt_invalidate(ggtt); 893 } 894 895 /** 896 * xe_ggtt_assign - assign a GGTT region to the VF 897 * @node: the &xe_ggtt_node to update 898 * @vfid: the VF identifier 899 * 900 * This function is used by the PF driver to assign a GGTT region to the VF. 901 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some 902 * platforms VFs can't modify that either. 903 */ 904 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid) 905 { 906 mutex_lock(&node->ggtt->lock); 907 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid); 908 mutex_unlock(&node->ggtt->lock); 909 } 910 #endif 911 912 /** 913 * xe_ggtt_dump - Dump GGTT for debug 914 * @ggtt: the &xe_ggtt to be dumped 915 * @p: the &drm_mm_printer helper handle to be used to dump the information 916 * 917 * Return: 0 on success or a negative error code on failure. 918 */ 919 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) 920 { 921 int err; 922 923 err = mutex_lock_interruptible(&ggtt->lock); 924 if (err) 925 return err; 926 927 drm_mm_print(&ggtt->mm, p); 928 mutex_unlock(&ggtt->lock); 929 return err; 930 } 931 932 /** 933 * xe_ggtt_print_holes - Print holes 934 * @ggtt: the &xe_ggtt to be inspected 935 * @alignment: min alignment 936 * @p: the &drm_printer 937 * 938 * Print GGTT ranges that are available and return total size available. 939 * 940 * Return: Total available size. 941 */ 942 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p) 943 { 944 const struct drm_mm *mm = &ggtt->mm; 945 const struct drm_mm_node *entry; 946 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 947 u64 hole_start, hole_end, hole_size; 948 u64 total = 0; 949 char buf[10]; 950 951 mutex_lock(&ggtt->lock); 952 953 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 954 hole_start = max(hole_start, hole_min_start); 955 hole_start = ALIGN(hole_start, alignment); 956 hole_end = ALIGN_DOWN(hole_end, alignment); 957 if (hole_start >= hole_end) 958 continue; 959 hole_size = hole_end - hole_start; 960 total += hole_size; 961 962 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf)); 963 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n", 964 hole_start, hole_end - 1, buf); 965 } 966 967 mutex_unlock(&ggtt->lock); 968 969 return total; 970 } 971 972 /** 973 * xe_ggtt_encode_pte_flags - Get PTE encoding flags for BO 974 * @ggtt: &xe_ggtt 975 * @bo: &xe_bo 976 * @pat_index: The pat_index for the PTE. 977 * 978 * This function returns the pte_flags for a given BO, without address. 979 * It's used for DPT to fill a GGTT mapped BO with a linear lookup table. 980 */ 981 u64 xe_ggtt_encode_pte_flags(struct xe_ggtt *ggtt, 982 struct xe_bo *bo, u16 pat_index) 983 { 984 return ggtt->pt_ops->pte_encode_flags(bo, pat_index); 985 } 986 987 /** 988 * xe_ggtt_read_pte - Read a PTE from the GGTT 989 * @ggtt: &xe_ggtt 990 * @offset: the offset for which the mapping should be read. 991 * 992 * Used by testcases, and by display reading out an inherited bios FB. 993 */ 994 u64 xe_ggtt_read_pte(struct xe_ggtt *ggtt, u64 offset) 995 { 996 return ioread64(ggtt->gsm + (offset / XE_PAGE_SIZE)); 997 } 998