xref: /linux/drivers/gpu/drm/xe/xe_ggtt.c (revision 9fd2da71c301184d98fe37674ca8d017d1ce6600)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_ggtt.h"
7 
8 #include <kunit/visibility.h>
9 #include <linux/fault-inject.h>
10 #include <linux/io-64-nonatomic-lo-hi.h>
11 #include <linux/sizes.h>
12 
13 #include <drm/drm_drv.h>
14 #include <drm/drm_managed.h>
15 #include <drm/intel/i915_drm.h>
16 #include <generated/xe_wa_oob.h>
17 
18 #include "regs/xe_gt_regs.h"
19 #include "regs/xe_gtt_defs.h"
20 #include "regs/xe_regs.h"
21 #include "xe_assert.h"
22 #include "xe_bo.h"
23 #include "xe_device.h"
24 #include "xe_gt.h"
25 #include "xe_gt_printk.h"
26 #include "xe_map.h"
27 #include "xe_mmio.h"
28 #include "xe_pm.h"
29 #include "xe_res_cursor.h"
30 #include "xe_sriov.h"
31 #include "xe_tile_sriov_vf.h"
32 #include "xe_tlb_inval.h"
33 #include "xe_wa.h"
34 #include "xe_wopcm.h"
35 
36 /**
37  * DOC: Global Graphics Translation Table (GGTT)
38  *
39  * Xe GGTT implements the support for a Global Virtual Address space that is used
40  * for resources that are accessible to privileged (i.e. kernel-mode) processes,
41  * and not tied to a specific user-level process. For example, the Graphics
42  * micro-Controller (GuC) and Display Engine (if present) utilize this Global
43  * address space.
44  *
45  * The Global GTT (GGTT) translates from the Global virtual address to a physical
46  * address that can be accessed by HW. The GGTT is a flat, single-level table.
47  *
48  * Xe implements a simplified version of the GGTT specifically managing only a
49  * certain range of it that goes from the Write Once Protected Content Memory (WOPCM)
50  * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to
51  * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space
52  * is limited on both ends of the GGTT, because the GuC shim HW redirects
53  * accesses to those addresses to other HW areas instead of going through the
54  * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size,
55  * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things
56  * simple, instead of checking each object to see if they are accessed by GuC or
57  * not, we just exclude those areas from the allocator. Additionally, to simplify
58  * the driver load, we use the maximum WOPCM size in this logic instead of the
59  * programmed one, so we don't need to wait until the actual size to be
60  * programmed is determined (which requires FW fetch) before initializing the
61  * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs
62  * depending on the platform) but we can live with this. Another benefit of this
63  * is the GuC bootrom can't access anything below the WOPCM max size so anything
64  * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT
65  * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max
66  * give us the correct placement for free.
67  */
68 
69 static u64 xelp_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
70 {
71 	u64 pte = XE_PAGE_PRESENT;
72 
73 	if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
74 		pte |= XE_GGTT_PTE_DM;
75 
76 	return pte;
77 }
78 
79 static u64 xelpg_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
80 {
81 	struct xe_device *xe = xe_bo_device(bo);
82 	u64 pte;
83 
84 	pte = xelp_ggtt_pte_flags(bo, pat_index);
85 
86 	xe_assert(xe, pat_index <= 3);
87 
88 	if (pat_index & BIT(0))
89 		pte |= XELPG_GGTT_PTE_PAT0;
90 
91 	if (pat_index & BIT(1))
92 		pte |= XELPG_GGTT_PTE_PAT1;
93 
94 	return pte;
95 }
96 
97 static unsigned int probe_gsm_size(struct pci_dev *pdev)
98 {
99 	u16 gmch_ctl, ggms;
100 
101 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl);
102 	ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK;
103 	return ggms ? SZ_1M << ggms : 0;
104 }
105 
106 static void ggtt_update_access_counter(struct xe_ggtt *ggtt)
107 {
108 	struct xe_tile *tile = ggtt->tile;
109 	struct xe_gt *affected_gt = XE_GT_WA(tile->primary_gt, 22019338487) ?
110 		tile->primary_gt : tile->media_gt;
111 	struct xe_mmio *mmio = &affected_gt->mmio;
112 	u32 max_gtt_writes = XE_GT_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63;
113 	/*
114 	 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit
115 	 * to wait for completion of prior GTT writes before letting this through.
116 	 * This needs to be done for all GGTT writes originating from the CPU.
117 	 */
118 	lockdep_assert_held(&ggtt->lock);
119 
120 	if ((++ggtt->access_count % max_gtt_writes) == 0) {
121 		xe_mmio_write32(mmio, GMD_ID, 0x0);
122 		ggtt->access_count = 0;
123 	}
124 }
125 
126 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte)
127 {
128 	xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK));
129 	xe_tile_assert(ggtt->tile, addr < ggtt->size);
130 
131 	writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]);
132 }
133 
134 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte)
135 {
136 	xe_ggtt_set_pte(ggtt, addr, pte);
137 	ggtt_update_access_counter(ggtt);
138 }
139 
140 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size)
141 {
142 	u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB];
143 	u64 end = start + size - 1;
144 	u64 scratch_pte;
145 
146 	xe_tile_assert(ggtt->tile, start < end);
147 
148 	if (ggtt->scratch)
149 		scratch_pte = xe_bo_addr(ggtt->scratch, 0, XE_PAGE_SIZE) |
150 			      ggtt->pt_ops->pte_encode_flags(ggtt->scratch,
151 							     pat_index);
152 	else
153 		scratch_pte = 0;
154 
155 	while (start < end) {
156 		ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte);
157 		start += XE_PAGE_SIZE;
158 	}
159 }
160 
161 /**
162  * xe_ggtt_alloc - Allocate a GGTT for a given &xe_tile
163  * @tile: &xe_tile
164  *
165  * Allocates a &xe_ggtt for a given tile.
166  *
167  * Return: &xe_ggtt on success, or NULL when out of memory.
168  */
169 struct xe_ggtt *xe_ggtt_alloc(struct xe_tile *tile)
170 {
171 	struct xe_ggtt *ggtt = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*ggtt), GFP_KERNEL);
172 	if (ggtt)
173 		ggtt->tile = tile;
174 	return ggtt;
175 }
176 
177 static void ggtt_fini_early(struct drm_device *drm, void *arg)
178 {
179 	struct xe_ggtt *ggtt = arg;
180 
181 	destroy_workqueue(ggtt->wq);
182 	mutex_destroy(&ggtt->lock);
183 	drm_mm_takedown(&ggtt->mm);
184 }
185 
186 static void ggtt_fini(void *arg)
187 {
188 	struct xe_ggtt *ggtt = arg;
189 
190 	ggtt->scratch = NULL;
191 }
192 
193 #ifdef CONFIG_LOCKDEP
194 void xe_ggtt_might_lock(struct xe_ggtt *ggtt)
195 {
196 	might_lock(&ggtt->lock);
197 }
198 #endif
199 
200 static void primelockdep(struct xe_ggtt *ggtt)
201 {
202 	if (!IS_ENABLED(CONFIG_LOCKDEP))
203 		return;
204 
205 	fs_reclaim_acquire(GFP_KERNEL);
206 	might_lock(&ggtt->lock);
207 	fs_reclaim_release(GFP_KERNEL);
208 }
209 
210 static const struct xe_ggtt_pt_ops xelp_pt_ops = {
211 	.pte_encode_flags = xelp_ggtt_pte_flags,
212 	.ggtt_set_pte = xe_ggtt_set_pte,
213 };
214 
215 static const struct xe_ggtt_pt_ops xelpg_pt_ops = {
216 	.pte_encode_flags = xelpg_ggtt_pte_flags,
217 	.ggtt_set_pte = xe_ggtt_set_pte,
218 };
219 
220 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = {
221 	.pte_encode_flags = xelpg_ggtt_pte_flags,
222 	.ggtt_set_pte = xe_ggtt_set_pte_and_flush,
223 };
224 
225 static void __xe_ggtt_init_early(struct xe_ggtt *ggtt, u32 reserved)
226 {
227 	drm_mm_init(&ggtt->mm, reserved,
228 		    ggtt->size - reserved);
229 	mutex_init(&ggtt->lock);
230 	primelockdep(ggtt);
231 }
232 
233 int xe_ggtt_init_kunit(struct xe_ggtt *ggtt, u32 reserved, u32 size)
234 {
235 	ggtt->size = size;
236 	__xe_ggtt_init_early(ggtt, reserved);
237 	return 0;
238 }
239 EXPORT_SYMBOL_IF_KUNIT(xe_ggtt_init_kunit);
240 
241 static void dev_fini_ggtt(void *arg)
242 {
243 	struct xe_ggtt *ggtt = arg;
244 
245 	drain_workqueue(ggtt->wq);
246 }
247 
248 /**
249  * xe_ggtt_init_early - Early GGTT initialization
250  * @ggtt: the &xe_ggtt to be initialized
251  *
252  * It allows to create new mappings usable by the GuC.
253  * Mappings are not usable by the HW engines, as it doesn't have scratch nor
254  * initial clear done to it yet. That will happen in the regular, non-early
255  * GGTT initialization.
256  *
257  * Return: 0 on success or a negative error code on failure.
258  */
259 int xe_ggtt_init_early(struct xe_ggtt *ggtt)
260 {
261 	struct xe_device *xe = tile_to_xe(ggtt->tile);
262 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
263 	unsigned int gsm_size;
264 	int err;
265 
266 	if (IS_SRIOV_VF(xe) || GRAPHICS_VERx100(xe) >= 1250)
267 		gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */
268 	else
269 		gsm_size = probe_gsm_size(pdev);
270 
271 	if (gsm_size == 0) {
272 		drm_err(&xe->drm, "Hardware reported no preallocated GSM\n");
273 		return -ENOMEM;
274 	}
275 
276 	ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M;
277 	ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE;
278 
279 	if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
280 		ggtt->flags |= XE_GGTT_FLAGS_64K;
281 
282 	if (ggtt->size > GUC_GGTT_TOP)
283 		ggtt->size = GUC_GGTT_TOP;
284 
285 	if (GRAPHICS_VERx100(xe) >= 1270)
286 		ggtt->pt_ops = (ggtt->tile->media_gt &&
287 			       XE_GT_WA(ggtt->tile->media_gt, 22019338487)) ||
288 			       XE_GT_WA(ggtt->tile->primary_gt, 22019338487) ?
289 			       &xelpg_pt_wa_ops : &xelpg_pt_ops;
290 	else
291 		ggtt->pt_ops = &xelp_pt_ops;
292 
293 	ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM);
294 	__xe_ggtt_init_early(ggtt, xe_wopcm_size(xe));
295 
296 	err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt);
297 	if (err)
298 		return err;
299 
300 	err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt);
301 	if (err)
302 		return err;
303 
304 	if (IS_SRIOV_VF(xe)) {
305 		err = xe_tile_sriov_vf_prepare_ggtt(ggtt->tile);
306 		if (err)
307 			return err;
308 	}
309 
310 	return 0;
311 }
312 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */
313 
314 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt);
315 
316 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt)
317 {
318 	struct drm_mm_node *hole;
319 	u64 start, end;
320 
321 	/* Display may have allocated inside ggtt, so be careful with clearing here */
322 	mutex_lock(&ggtt->lock);
323 	drm_mm_for_each_hole(hole, &ggtt->mm, start, end)
324 		xe_ggtt_clear(ggtt, start, end - start);
325 
326 	xe_ggtt_invalidate(ggtt);
327 	mutex_unlock(&ggtt->lock);
328 }
329 
330 static void ggtt_node_remove(struct xe_ggtt_node *node)
331 {
332 	struct xe_ggtt *ggtt = node->ggtt;
333 	struct xe_device *xe = tile_to_xe(ggtt->tile);
334 	bool bound;
335 	int idx;
336 
337 	bound = drm_dev_enter(&xe->drm, &idx);
338 
339 	mutex_lock(&ggtt->lock);
340 	if (bound)
341 		xe_ggtt_clear(ggtt, node->base.start, node->base.size);
342 	drm_mm_remove_node(&node->base);
343 	node->base.size = 0;
344 	mutex_unlock(&ggtt->lock);
345 
346 	if (!bound)
347 		goto free_node;
348 
349 	if (node->invalidate_on_remove)
350 		xe_ggtt_invalidate(ggtt);
351 
352 	drm_dev_exit(idx);
353 
354 free_node:
355 	xe_ggtt_node_fini(node);
356 }
357 
358 static void ggtt_node_remove_work_func(struct work_struct *work)
359 {
360 	struct xe_ggtt_node *node = container_of(work, typeof(*node),
361 						 delayed_removal_work);
362 	struct xe_device *xe = tile_to_xe(node->ggtt->tile);
363 
364 	xe_pm_runtime_get(xe);
365 	ggtt_node_remove(node);
366 	xe_pm_runtime_put(xe);
367 }
368 
369 /**
370  * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT
371  * @node: the &xe_ggtt_node to be removed
372  * @invalidate: if node needs invalidation upon removal
373  */
374 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate)
375 {
376 	struct xe_ggtt *ggtt;
377 	struct xe_device *xe;
378 
379 	if (!node || !node->ggtt)
380 		return;
381 
382 	ggtt = node->ggtt;
383 	xe = tile_to_xe(ggtt->tile);
384 
385 	node->invalidate_on_remove = invalidate;
386 
387 	if (xe_pm_runtime_get_if_active(xe)) {
388 		ggtt_node_remove(node);
389 		xe_pm_runtime_put(xe);
390 	} else {
391 		queue_work(ggtt->wq, &node->delayed_removal_work);
392 	}
393 }
394 
395 /**
396  * xe_ggtt_init - Regular non-early GGTT initialization
397  * @ggtt: the &xe_ggtt to be initialized
398  *
399  * Return: 0 on success or a negative error code on failure.
400  */
401 int xe_ggtt_init(struct xe_ggtt *ggtt)
402 {
403 	struct xe_device *xe = tile_to_xe(ggtt->tile);
404 	unsigned int flags;
405 	int err;
406 
407 	/*
408 	 * So we don't need to worry about 64K GGTT layout when dealing with
409 	 * scratch entries, rather keep the scratch page in system memory on
410 	 * platforms where 64K pages are needed for VRAM.
411 	 */
412 	flags = 0;
413 	if (ggtt->flags & XE_GGTT_FLAGS_64K)
414 		flags |= XE_BO_FLAG_SYSTEM;
415 	else
416 		flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile);
417 
418 	ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags);
419 	if (IS_ERR(ggtt->scratch)) {
420 		err = PTR_ERR(ggtt->scratch);
421 		goto err;
422 	}
423 
424 	xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, xe_bo_size(ggtt->scratch));
425 
426 	xe_ggtt_initial_clear(ggtt);
427 
428 	return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt);
429 err:
430 	ggtt->scratch = NULL;
431 	return err;
432 }
433 
434 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt)
435 {
436 	int err;
437 
438 	if (!gt)
439 		return;
440 
441 	err = xe_tlb_inval_ggtt(&gt->tlb_inval);
442 	xe_gt_WARN(gt, err, "Failed to invalidate GGTT (%pe)", ERR_PTR(err));
443 }
444 
445 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt)
446 {
447 	struct xe_device *xe = tile_to_xe(ggtt->tile);
448 
449 	/*
450 	 * XXX: Barrier for GGTT pages. Unsure exactly why this required but
451 	 * without this LNL is having issues with the GuC reading scratch page
452 	 * vs. correct GGTT page. Not particularly a hot code path so blindly
453 	 * do a mmio read here which results in GuC reading correct GGTT page.
454 	 */
455 	xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG);
456 
457 	/* Each GT in a tile has its own TLB to cache GGTT lookups */
458 	ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt);
459 	ggtt_invalidate_gt_tlb(ggtt->tile->media_gt);
460 }
461 
462 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt,
463 			      const struct drm_mm_node *node, const char *description)
464 {
465 	char buf[10];
466 
467 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
468 		string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf));
469 		xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n",
470 			  node->start, node->start + node->size, buf, description);
471 	}
472 }
473 
474 /**
475  * xe_ggtt_node_insert_balloon_locked - prevent allocation of specified GGTT addresses
476  * @node: the &xe_ggtt_node to hold reserved GGTT node
477  * @start: the starting GGTT address of the reserved region
478  * @end: then end GGTT address of the reserved region
479  *
480  * To be used in cases where ggtt->lock is already taken.
481  * Use xe_ggtt_node_remove_balloon_locked() to release a reserved GGTT node.
482  *
483  * Return: 0 on success or a negative error code on failure.
484  */
485 int xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node *node, u64 start, u64 end)
486 {
487 	struct xe_ggtt *ggtt = node->ggtt;
488 	int err;
489 
490 	xe_tile_assert(ggtt->tile, start < end);
491 	xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE));
492 	xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE));
493 	xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base));
494 	lockdep_assert_held(&ggtt->lock);
495 
496 	node->base.color = 0;
497 	node->base.start = start;
498 	node->base.size = end - start;
499 
500 	err = drm_mm_reserve_node(&ggtt->mm, &node->base);
501 
502 	if (xe_gt_WARN(ggtt->tile->primary_gt, err,
503 		       "Failed to balloon GGTT %#llx-%#llx (%pe)\n",
504 		       node->base.start, node->base.start + node->base.size, ERR_PTR(err)))
505 		return err;
506 
507 	xe_ggtt_dump_node(ggtt, &node->base, "balloon");
508 	return 0;
509 }
510 
511 /**
512  * xe_ggtt_node_remove_balloon_locked - release a reserved GGTT region
513  * @node: the &xe_ggtt_node with reserved GGTT region
514  *
515  * To be used in cases where ggtt->lock is already taken.
516  * See xe_ggtt_node_insert_balloon_locked() for details.
517  */
518 void xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node *node)
519 {
520 	if (!xe_ggtt_node_allocated(node))
521 		return;
522 
523 	lockdep_assert_held(&node->ggtt->lock);
524 
525 	xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon");
526 
527 	drm_mm_remove_node(&node->base);
528 }
529 
530 static void xe_ggtt_assert_fit(struct xe_ggtt *ggtt, u64 start, u64 size)
531 {
532 	struct xe_tile *tile = ggtt->tile;
533 	struct xe_device *xe = tile_to_xe(tile);
534 	u64 __maybe_unused wopcm = xe_wopcm_size(xe);
535 
536 	xe_tile_assert(tile, start >= wopcm);
537 	xe_tile_assert(tile, start + size < ggtt->size - wopcm);
538 }
539 
540 /**
541  * xe_ggtt_shift_nodes_locked - Shift GGTT nodes to adjust for a change in usable address range.
542  * @ggtt: the &xe_ggtt struct instance
543  * @shift: change to the location of area provisioned for current VF
544  *
545  * This function moves all nodes from the GGTT VM, to a temp list. These nodes are expected
546  * to represent allocations in range formerly assigned to current VF, before the range changed.
547  * When the GGTT VM is completely clear of any nodes, they are re-added with shifted offsets.
548  *
549  * The function has no ability of failing - because it shifts existing nodes, without
550  * any additional processing. If the nodes were successfully existing at the old address,
551  * they will do the same at the new one. A fail inside this function would indicate that
552  * the list of nodes was either already damaged, or that the shift brings the address range
553  * outside of valid bounds. Both cases justify an assert rather than error code.
554  */
555 void xe_ggtt_shift_nodes_locked(struct xe_ggtt *ggtt, s64 shift)
556 {
557 	struct xe_tile *tile __maybe_unused = ggtt->tile;
558 	struct drm_mm_node *node, *tmpn;
559 	LIST_HEAD(temp_list_head);
560 
561 	lockdep_assert_held(&ggtt->lock);
562 
563 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG))
564 		drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm)
565 			xe_ggtt_assert_fit(ggtt, node->start + shift, node->size);
566 
567 	drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) {
568 		drm_mm_remove_node(node);
569 		list_add(&node->node_list, &temp_list_head);
570 	}
571 
572 	list_for_each_entry_safe(node, tmpn, &temp_list_head, node_list) {
573 		list_del(&node->node_list);
574 		node->start += shift;
575 		drm_mm_reserve_node(&ggtt->mm, node);
576 		xe_tile_assert(tile, drm_mm_node_allocated(node));
577 	}
578 }
579 
580 /**
581  * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT
582  * @node: the &xe_ggtt_node to be inserted
583  * @size: size of the node
584  * @align: alignment constrain of the node
585  * @mm_flags: flags to control the node behavior
586  *
587  * It cannot be called without first having called xe_ggtt_init() once.
588  * To be used in cases where ggtt->lock is already taken.
589  *
590  * Return: 0 on success or a negative error code on failure.
591  */
592 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node,
593 			       u32 size, u32 align, u32 mm_flags)
594 {
595 	return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0,
596 					  mm_flags);
597 }
598 
599 /**
600  * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT
601  * @node: the &xe_ggtt_node to be inserted
602  * @size: size of the node
603  * @align: alignment constrain of the node
604  *
605  * It cannot be called without first having called xe_ggtt_init() once.
606  *
607  * Return: 0 on success or a negative error code on failure.
608  */
609 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align)
610 {
611 	int ret;
612 
613 	if (!node || !node->ggtt)
614 		return -ENOENT;
615 
616 	mutex_lock(&node->ggtt->lock);
617 	ret = xe_ggtt_node_insert_locked(node, size, align,
618 					 DRM_MM_INSERT_HIGH);
619 	mutex_unlock(&node->ggtt->lock);
620 
621 	return ret;
622 }
623 
624 /**
625  * xe_ggtt_node_init - Initialize %xe_ggtt_node struct
626  * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved.
627  *
628  * This function will allocate the struct %xe_ggtt_node and return its pointer.
629  * This struct will then be freed after the node removal upon xe_ggtt_node_remove()
630  * or xe_ggtt_node_remove_balloon_locked().
631  * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated
632  * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
633  * xe_ggtt_node_insert_balloon_locked() will ensure the node is inserted or reserved in GGTT.
634  *
635  * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise.
636  **/
637 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt)
638 {
639 	struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS);
640 
641 	if (!node)
642 		return ERR_PTR(-ENOMEM);
643 
644 	INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func);
645 	node->ggtt = ggtt;
646 
647 	return node;
648 }
649 
650 /**
651  * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct
652  * @node: the &xe_ggtt_node to be freed
653  *
654  * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
655  * or xe_ggtt_node_insert_balloon_locked(); and this @node is not going to be reused, then,
656  * this function needs to be called to free the %xe_ggtt_node struct
657  **/
658 void xe_ggtt_node_fini(struct xe_ggtt_node *node)
659 {
660 	kfree(node);
661 }
662 
663 /**
664  * xe_ggtt_node_allocated - Check if node is allocated in GGTT
665  * @node: the &xe_ggtt_node to be inspected
666  *
667  * Return: True if allocated, False otherwise.
668  */
669 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node)
670 {
671 	if (!node || !node->ggtt)
672 		return false;
673 
674 	return drm_mm_node_allocated(&node->base);
675 }
676 
677 /**
678  * xe_ggtt_map_bo - Map the BO into GGTT
679  * @ggtt: the &xe_ggtt where node will be mapped
680  * @node: the &xe_ggtt_node where this BO is mapped
681  * @bo: the &xe_bo to be mapped
682  * @pat_index: Which pat_index to use.
683  */
684 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_ggtt_node *node,
685 		    struct xe_bo *bo, u16 pat_index)
686 {
687 
688 	u64 start, pte, end;
689 	struct xe_res_cursor cur;
690 
691 	if (XE_WARN_ON(!node))
692 		return;
693 
694 	start = node->base.start;
695 	end = start + xe_bo_size(bo);
696 
697 	pte = ggtt->pt_ops->pte_encode_flags(bo, pat_index);
698 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
699 		xe_assert(xe_bo_device(bo), bo->ttm.ttm);
700 
701 		for (xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &cur);
702 		     cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
703 			ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
704 						   pte | xe_res_dma(&cur));
705 	} else {
706 		/* Prepend GPU offset */
707 		pte |= vram_region_gpu_offset(bo->ttm.resource);
708 
709 		for (xe_res_first(bo->ttm.resource, 0, xe_bo_size(bo), &cur);
710 		     cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
711 			ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
712 						   pte + cur.start);
713 	}
714 }
715 
716 /**
717  * xe_ggtt_map_bo_unlocked - Restore a mapping of a BO into GGTT
718  * @ggtt: the &xe_ggtt where node will be mapped
719  * @bo: the &xe_bo to be mapped
720  *
721  * This is used to restore a GGTT mapping after suspend.
722  */
723 void xe_ggtt_map_bo_unlocked(struct xe_ggtt *ggtt, struct xe_bo *bo)
724 {
725 	u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
726 	u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
727 
728 	mutex_lock(&ggtt->lock);
729 	xe_ggtt_map_bo(ggtt, bo->ggtt_node[ggtt->tile->id], bo, pat_index);
730 	mutex_unlock(&ggtt->lock);
731 }
732 
733 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
734 				  u64 start, u64 end)
735 {
736 	u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE;
737 	u8 tile_id = ggtt->tile->id;
738 	int err;
739 
740 	if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K)
741 		alignment = SZ_64K;
742 
743 	if (XE_WARN_ON(bo->ggtt_node[tile_id])) {
744 		/* Someone's already inserted this BO in the GGTT */
745 		xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
746 		return 0;
747 	}
748 
749 	err = xe_bo_validate(bo, NULL, false);
750 	if (err)
751 		return err;
752 
753 	xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile));
754 
755 	bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt);
756 	if (IS_ERR(bo->ggtt_node[tile_id])) {
757 		err = PTR_ERR(bo->ggtt_node[tile_id]);
758 		bo->ggtt_node[tile_id] = NULL;
759 		goto out;
760 	}
761 
762 	mutex_lock(&ggtt->lock);
763 	err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base,
764 					  xe_bo_size(bo), alignment, 0, start, end, 0);
765 	if (err) {
766 		xe_ggtt_node_fini(bo->ggtt_node[tile_id]);
767 		bo->ggtt_node[tile_id] = NULL;
768 	} else {
769 		u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
770 		u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
771 
772 		xe_ggtt_map_bo(ggtt, bo->ggtt_node[tile_id], bo, pat_index);
773 	}
774 	mutex_unlock(&ggtt->lock);
775 
776 	if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE)
777 		xe_ggtt_invalidate(ggtt);
778 
779 out:
780 	xe_pm_runtime_put(tile_to_xe(ggtt->tile));
781 
782 	return err;
783 }
784 
785 /**
786  * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space
787  * @ggtt: the &xe_ggtt where bo will be inserted
788  * @bo: the &xe_bo to be inserted
789  * @start: address where it will be inserted
790  * @end: end of the range where it will be inserted
791  *
792  * Return: 0 on success or a negative error code on failure.
793  */
794 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
795 			 u64 start, u64 end)
796 {
797 	return __xe_ggtt_insert_bo_at(ggtt, bo, start, end);
798 }
799 
800 /**
801  * xe_ggtt_insert_bo - Insert BO into GGTT
802  * @ggtt: the &xe_ggtt where bo will be inserted
803  * @bo: the &xe_bo to be inserted
804  *
805  * Return: 0 on success or a negative error code on failure.
806  */
807 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
808 {
809 	return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX);
810 }
811 
812 /**
813  * xe_ggtt_remove_bo - Remove a BO from the GGTT
814  * @ggtt: the &xe_ggtt where node will be removed
815  * @bo: the &xe_bo to be removed
816  */
817 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
818 {
819 	u8 tile_id = ggtt->tile->id;
820 
821 	if (XE_WARN_ON(!bo->ggtt_node[tile_id]))
822 		return;
823 
824 	/* This BO is not currently in the GGTT */
825 	xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
826 
827 	xe_ggtt_node_remove(bo->ggtt_node[tile_id],
828 			    bo->flags & XE_BO_FLAG_GGTT_INVALIDATE);
829 }
830 
831 /**
832  * xe_ggtt_largest_hole - Largest GGTT hole
833  * @ggtt: the &xe_ggtt that will be inspected
834  * @alignment: minimum alignment
835  * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare
836  *
837  * Return: size of the largest continuous GGTT region
838  */
839 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare)
840 {
841 	const struct drm_mm *mm = &ggtt->mm;
842 	const struct drm_mm_node *entry;
843 	u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
844 	u64 hole_start, hole_end, hole_size;
845 	u64 max_hole = 0;
846 
847 	mutex_lock(&ggtt->lock);
848 
849 	drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
850 		hole_start = max(hole_start, hole_min_start);
851 		hole_start = ALIGN(hole_start, alignment);
852 		hole_end = ALIGN_DOWN(hole_end, alignment);
853 		if (hole_start >= hole_end)
854 			continue;
855 		hole_size = hole_end - hole_start;
856 		if (spare)
857 			*spare -= min3(*spare, hole_size, max_hole);
858 		max_hole = max(max_hole, hole_size);
859 	}
860 
861 	mutex_unlock(&ggtt->lock);
862 
863 	return max_hole;
864 }
865 
866 #ifdef CONFIG_PCI_IOV
867 static u64 xe_encode_vfid_pte(u16 vfid)
868 {
869 	return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT;
870 }
871 
872 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid)
873 {
874 	u64 start = node->start;
875 	u64 size = node->size;
876 	u64 end = start + size - 1;
877 	u64 pte = xe_encode_vfid_pte(vfid);
878 
879 	lockdep_assert_held(&ggtt->lock);
880 
881 	if (!drm_mm_node_allocated(node))
882 		return;
883 
884 	while (start < end) {
885 		ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte);
886 		start += XE_PAGE_SIZE;
887 	}
888 
889 	xe_ggtt_invalidate(ggtt);
890 }
891 
892 /**
893  * xe_ggtt_assign - assign a GGTT region to the VF
894  * @node: the &xe_ggtt_node to update
895  * @vfid: the VF identifier
896  *
897  * This function is used by the PF driver to assign a GGTT region to the VF.
898  * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some
899  * platforms VFs can't modify that either.
900  */
901 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid)
902 {
903 	mutex_lock(&node->ggtt->lock);
904 	xe_ggtt_assign_locked(node->ggtt, &node->base, vfid);
905 	mutex_unlock(&node->ggtt->lock);
906 }
907 #endif
908 
909 /**
910  * xe_ggtt_dump - Dump GGTT for debug
911  * @ggtt: the &xe_ggtt to be dumped
912  * @p: the &drm_mm_printer helper handle to be used to dump the information
913  *
914  * Return: 0 on success or a negative error code on failure.
915  */
916 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p)
917 {
918 	int err;
919 
920 	err = mutex_lock_interruptible(&ggtt->lock);
921 	if (err)
922 		return err;
923 
924 	drm_mm_print(&ggtt->mm, p);
925 	mutex_unlock(&ggtt->lock);
926 	return err;
927 }
928 
929 /**
930  * xe_ggtt_print_holes - Print holes
931  * @ggtt: the &xe_ggtt to be inspected
932  * @alignment: min alignment
933  * @p: the &drm_printer
934  *
935  * Print GGTT ranges that are available and return total size available.
936  *
937  * Return: Total available size.
938  */
939 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p)
940 {
941 	const struct drm_mm *mm = &ggtt->mm;
942 	const struct drm_mm_node *entry;
943 	u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
944 	u64 hole_start, hole_end, hole_size;
945 	u64 total = 0;
946 	char buf[10];
947 
948 	mutex_lock(&ggtt->lock);
949 
950 	drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
951 		hole_start = max(hole_start, hole_min_start);
952 		hole_start = ALIGN(hole_start, alignment);
953 		hole_end = ALIGN_DOWN(hole_end, alignment);
954 		if (hole_start >= hole_end)
955 			continue;
956 		hole_size = hole_end - hole_start;
957 		total += hole_size;
958 
959 		string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf));
960 		drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n",
961 			   hole_start, hole_end - 1, buf);
962 	}
963 
964 	mutex_unlock(&ggtt->lock);
965 
966 	return total;
967 }
968 
969 /**
970  * xe_ggtt_encode_pte_flags - Get PTE encoding flags for BO
971  * @ggtt: &xe_ggtt
972  * @bo: &xe_bo
973  * @pat_index: The pat_index for the PTE.
974  *
975  * This function returns the pte_flags for a given BO, without  address.
976  * It's used for DPT to fill a GGTT mapped BO with a linear lookup table.
977  */
978 u64 xe_ggtt_encode_pte_flags(struct xe_ggtt *ggtt,
979 			     struct xe_bo *bo, u16 pat_index)
980 {
981 	return ggtt->pt_ops->pte_encode_flags(bo, pat_index);
982 }
983 
984 /**
985  * xe_ggtt_read_pte - Read a PTE from the GGTT
986  * @ggtt: &xe_ggtt
987  * @offset: the offset for which the mapping should be read.
988  *
989  * Used by testcases, and by display reading out an inherited bios FB.
990  */
991 u64 xe_ggtt_read_pte(struct xe_ggtt *ggtt, u64 offset)
992 {
993 	return ioread64(ggtt->gsm + (offset / XE_PAGE_SIZE));
994 }
995