1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_ggtt.h" 7 8 #include <linux/io-64-nonatomic-lo-hi.h> 9 #include <linux/sizes.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_managed.h> 13 #include <drm/intel/i915_drm.h> 14 #include <generated/xe_wa_oob.h> 15 16 #include "regs/xe_gt_regs.h" 17 #include "regs/xe_gtt_defs.h" 18 #include "regs/xe_regs.h" 19 #include "xe_assert.h" 20 #include "xe_bo.h" 21 #include "xe_device.h" 22 #include "xe_gt.h" 23 #include "xe_gt_printk.h" 24 #include "xe_gt_sriov_vf.h" 25 #include "xe_gt_tlb_invalidation.h" 26 #include "xe_map.h" 27 #include "xe_mmio.h" 28 #include "xe_pm.h" 29 #include "xe_sriov.h" 30 #include "xe_wa.h" 31 #include "xe_wopcm.h" 32 33 static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, 34 u16 pat_index) 35 { 36 u64 pte; 37 38 pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE); 39 pte |= XE_PAGE_PRESENT; 40 41 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) 42 pte |= XE_GGTT_PTE_DM; 43 44 return pte; 45 } 46 47 static u64 xelpg_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, 48 u16 pat_index) 49 { 50 struct xe_device *xe = xe_bo_device(bo); 51 u64 pte; 52 53 pte = xelp_ggtt_pte_encode_bo(bo, bo_offset, pat_index); 54 55 xe_assert(xe, pat_index <= 3); 56 57 if (pat_index & BIT(0)) 58 pte |= XELPG_GGTT_PTE_PAT0; 59 60 if (pat_index & BIT(1)) 61 pte |= XELPG_GGTT_PTE_PAT1; 62 63 return pte; 64 } 65 66 static unsigned int probe_gsm_size(struct pci_dev *pdev) 67 { 68 u16 gmch_ctl, ggms; 69 70 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); 71 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; 72 return ggms ? SZ_1M << ggms : 0; 73 } 74 75 static void ggtt_update_access_counter(struct xe_ggtt *ggtt) 76 { 77 struct xe_gt *gt = XE_WA(ggtt->tile->primary_gt, 22019338487) ? ggtt->tile->primary_gt : 78 ggtt->tile->media_gt; 79 u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63; 80 /* 81 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit 82 * to wait for completion of prior GTT writes before letting this through. 83 * This needs to be done for all GGTT writes originating from the CPU. 84 */ 85 lockdep_assert_held(&ggtt->lock); 86 87 if ((++ggtt->access_count % max_gtt_writes) == 0) { 88 xe_mmio_write32(gt, GMD_ID, 0x0); 89 ggtt->access_count = 0; 90 } 91 } 92 93 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) 94 { 95 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); 96 xe_tile_assert(ggtt->tile, addr < ggtt->size); 97 98 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); 99 } 100 101 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) 102 { 103 xe_ggtt_set_pte(ggtt, addr, pte); 104 ggtt_update_access_counter(ggtt); 105 } 106 107 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) 108 { 109 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; 110 u64 end = start + size - 1; 111 u64 scratch_pte; 112 113 xe_tile_assert(ggtt->tile, start < end); 114 115 if (ggtt->scratch) 116 scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, 117 pat_index); 118 else 119 scratch_pte = 0; 120 121 while (start < end) { 122 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); 123 start += XE_PAGE_SIZE; 124 } 125 } 126 127 static void ggtt_fini_early(struct drm_device *drm, void *arg) 128 { 129 struct xe_ggtt *ggtt = arg; 130 131 mutex_destroy(&ggtt->lock); 132 drm_mm_takedown(&ggtt->mm); 133 } 134 135 static void ggtt_fini(struct drm_device *drm, void *arg) 136 { 137 struct xe_ggtt *ggtt = arg; 138 139 ggtt->scratch = NULL; 140 } 141 142 static void primelockdep(struct xe_ggtt *ggtt) 143 { 144 if (!IS_ENABLED(CONFIG_LOCKDEP)) 145 return; 146 147 fs_reclaim_acquire(GFP_KERNEL); 148 might_lock(&ggtt->lock); 149 fs_reclaim_release(GFP_KERNEL); 150 } 151 152 static const struct xe_ggtt_pt_ops xelp_pt_ops = { 153 .pte_encode_bo = xelp_ggtt_pte_encode_bo, 154 .ggtt_set_pte = xe_ggtt_set_pte, 155 }; 156 157 static const struct xe_ggtt_pt_ops xelpg_pt_ops = { 158 .pte_encode_bo = xelpg_ggtt_pte_encode_bo, 159 .ggtt_set_pte = xe_ggtt_set_pte, 160 }; 161 162 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { 163 .pte_encode_bo = xelpg_ggtt_pte_encode_bo, 164 .ggtt_set_pte = xe_ggtt_set_pte_and_flush, 165 }; 166 167 /* 168 * Early GGTT initialization, which allows to create new mappings usable by the 169 * GuC. 170 * Mappings are not usable by the HW engines, as it doesn't have scratch / 171 * initial clear done to it yet. That will happen in the regular, non-early 172 * GGTT init. 173 */ 174 int xe_ggtt_init_early(struct xe_ggtt *ggtt) 175 { 176 struct xe_device *xe = tile_to_xe(ggtt->tile); 177 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 178 unsigned int gsm_size; 179 int err; 180 181 if (IS_SRIOV_VF(xe)) 182 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ 183 else 184 gsm_size = probe_gsm_size(pdev); 185 186 if (gsm_size == 0) { 187 drm_err(&xe->drm, "Hardware reported no preallocated GSM\n"); 188 return -ENOMEM; 189 } 190 191 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; 192 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; 193 194 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) 195 ggtt->flags |= XE_GGTT_FLAGS_64K; 196 197 /* 198 * 8B per entry, each points to a 4KB page. 199 * 200 * The GuC address space is limited on both ends of the GGTT, because 201 * the GuC shim HW redirects accesses to those addresses to other HW 202 * areas instead of going through the GGTT. On the bottom end, the GuC 203 * can't access offsets below the WOPCM size, while on the top side the 204 * limit is fixed at GUC_GGTT_TOP. To keep things simple, instead of 205 * checking each object to see if they are accessed by GuC or not, we 206 * just exclude those areas from the allocator. Additionally, to 207 * simplify the driver load, we use the maximum WOPCM size in this logic 208 * instead of the programmed one, so we don't need to wait until the 209 * actual size to be programmed is determined (which requires FW fetch) 210 * before initializing the GGTT. These simplifications might waste space 211 * in the GGTT (about 20-25 MBs depending on the platform) but we can 212 * live with this. 213 * 214 * Another benifit of this is the GuC bootrom can't access anything 215 * below the WOPCM max size so anything the bootom needs to access (e.g. 216 * a RSA key) needs to be placed in the GGTT above the WOPCM max size. 217 * Starting the GGTT allocations above the WOPCM max give us the correct 218 * placement for free. 219 */ 220 if (ggtt->size > GUC_GGTT_TOP) 221 ggtt->size = GUC_GGTT_TOP; 222 223 if (GRAPHICS_VERx100(xe) >= 1270) 224 ggtt->pt_ops = (ggtt->tile->media_gt && 225 XE_WA(ggtt->tile->media_gt, 22019338487)) || 226 XE_WA(ggtt->tile->primary_gt, 22019338487) ? 227 &xelpg_pt_wa_ops : &xelpg_pt_ops; 228 else 229 ggtt->pt_ops = &xelp_pt_ops; 230 231 drm_mm_init(&ggtt->mm, xe_wopcm_size(xe), 232 ggtt->size - xe_wopcm_size(xe)); 233 mutex_init(&ggtt->lock); 234 primelockdep(ggtt); 235 236 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); 237 if (err) 238 return err; 239 240 if (IS_SRIOV_VF(xe)) { 241 err = xe_gt_sriov_vf_prepare_ggtt(xe_tile_get_gt(ggtt->tile, 0)); 242 if (err) 243 return err; 244 } 245 246 return 0; 247 } 248 249 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); 250 251 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) 252 { 253 struct drm_mm_node *hole; 254 u64 start, end; 255 256 /* Display may have allocated inside ggtt, so be careful with clearing here */ 257 mutex_lock(&ggtt->lock); 258 drm_mm_for_each_hole(hole, &ggtt->mm, start, end) 259 xe_ggtt_clear(ggtt, start, end - start); 260 261 xe_ggtt_invalidate(ggtt); 262 mutex_unlock(&ggtt->lock); 263 } 264 265 int xe_ggtt_init(struct xe_ggtt *ggtt) 266 { 267 struct xe_device *xe = tile_to_xe(ggtt->tile); 268 unsigned int flags; 269 int err; 270 271 /* 272 * So we don't need to worry about 64K GGTT layout when dealing with 273 * scratch entires, rather keep the scratch page in system memory on 274 * platforms where 64K pages are needed for VRAM. 275 */ 276 flags = XE_BO_FLAG_PINNED; 277 if (ggtt->flags & XE_GGTT_FLAGS_64K) 278 flags |= XE_BO_FLAG_SYSTEM; 279 else 280 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); 281 282 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); 283 if (IS_ERR(ggtt->scratch)) { 284 err = PTR_ERR(ggtt->scratch); 285 goto err; 286 } 287 288 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size); 289 290 xe_ggtt_initial_clear(ggtt); 291 292 return drmm_add_action_or_reset(&xe->drm, ggtt_fini, ggtt); 293 err: 294 ggtt->scratch = NULL; 295 return err; 296 } 297 298 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) 299 { 300 int err; 301 302 if (!gt) 303 return; 304 305 err = xe_gt_tlb_invalidation_ggtt(gt); 306 if (err) 307 drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err); 308 } 309 310 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) 311 { 312 /* Each GT in a tile has its own TLB to cache GGTT lookups */ 313 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); 314 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); 315 } 316 317 void xe_ggtt_printk(struct xe_ggtt *ggtt, const char *prefix) 318 { 319 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; 320 u64 addr, scratch_pte; 321 322 scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, pat_index); 323 324 printk("%sGlobal GTT:", prefix); 325 for (addr = 0; addr < ggtt->size; addr += XE_PAGE_SIZE) { 326 unsigned int i = addr / XE_PAGE_SIZE; 327 328 xe_tile_assert(ggtt->tile, addr <= U32_MAX); 329 if (ggtt->gsm[i] == scratch_pte) 330 continue; 331 332 printk("%s ggtt[0x%08x] = 0x%016llx", 333 prefix, (u32)addr, ggtt->gsm[i]); 334 } 335 } 336 337 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, 338 const struct drm_mm_node *node, const char *description) 339 { 340 char buf[10]; 341 342 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 343 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); 344 xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n", 345 node->start, node->start + node->size, buf, description); 346 } 347 } 348 349 /** 350 * xe_ggtt_balloon - prevent allocation of specified GGTT addresses 351 * @ggtt: the &xe_ggtt where we want to make reservation 352 * @start: the starting GGTT address of the reserved region 353 * @end: then end GGTT address of the reserved region 354 * @node: the &drm_mm_node to hold reserved GGTT node 355 * 356 * Use xe_ggtt_deballoon() to release a reserved GGTT node. 357 * 358 * Return: 0 on success or a negative error code on failure. 359 */ 360 int xe_ggtt_balloon(struct xe_ggtt *ggtt, u64 start, u64 end, struct drm_mm_node *node) 361 { 362 int err; 363 364 xe_tile_assert(ggtt->tile, start < end); 365 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); 366 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); 367 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(node)); 368 369 node->color = 0; 370 node->start = start; 371 node->size = end - start; 372 373 mutex_lock(&ggtt->lock); 374 err = drm_mm_reserve_node(&ggtt->mm, node); 375 mutex_unlock(&ggtt->lock); 376 377 if (xe_gt_WARN(ggtt->tile->primary_gt, err, 378 "Failed to balloon GGTT %#llx-%#llx (%pe)\n", 379 node->start, node->start + node->size, ERR_PTR(err))) 380 return err; 381 382 xe_ggtt_dump_node(ggtt, node, "balloon"); 383 return 0; 384 } 385 386 /** 387 * xe_ggtt_deballoon - release a reserved GGTT region 388 * @ggtt: the &xe_ggtt where reserved node belongs 389 * @node: the &drm_mm_node with reserved GGTT region 390 * 391 * See xe_ggtt_balloon() for details. 392 */ 393 void xe_ggtt_deballoon(struct xe_ggtt *ggtt, struct drm_mm_node *node) 394 { 395 if (!drm_mm_node_allocated(node)) 396 return; 397 398 xe_ggtt_dump_node(ggtt, node, "deballoon"); 399 400 mutex_lock(&ggtt->lock); 401 drm_mm_remove_node(node); 402 mutex_unlock(&ggtt->lock); 403 } 404 405 int xe_ggtt_insert_special_node_locked(struct xe_ggtt *ggtt, struct drm_mm_node *node, 406 u32 size, u32 align, u32 mm_flags) 407 { 408 return drm_mm_insert_node_generic(&ggtt->mm, node, size, align, 0, 409 mm_flags); 410 } 411 412 int xe_ggtt_insert_special_node(struct xe_ggtt *ggtt, struct drm_mm_node *node, 413 u32 size, u32 align) 414 { 415 int ret; 416 417 mutex_lock(&ggtt->lock); 418 ret = xe_ggtt_insert_special_node_locked(ggtt, node, size, 419 align, DRM_MM_INSERT_HIGH); 420 mutex_unlock(&ggtt->lock); 421 422 return ret; 423 } 424 425 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 426 { 427 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 428 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 429 u64 start = bo->ggtt_node.start; 430 u64 offset, pte; 431 432 for (offset = 0; offset < bo->size; offset += XE_PAGE_SIZE) { 433 pte = ggtt->pt_ops->pte_encode_bo(bo, offset, pat_index); 434 ggtt->pt_ops->ggtt_set_pte(ggtt, start + offset, pte); 435 } 436 } 437 438 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 439 u64 start, u64 end) 440 { 441 int err; 442 u64 alignment = XE_PAGE_SIZE; 443 444 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) 445 alignment = SZ_64K; 446 447 if (XE_WARN_ON(bo->ggtt_node.size)) { 448 /* Someone's already inserted this BO in the GGTT */ 449 xe_tile_assert(ggtt->tile, bo->ggtt_node.size == bo->size); 450 return 0; 451 } 452 453 err = xe_bo_validate(bo, NULL, false); 454 if (err) 455 return err; 456 457 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); 458 mutex_lock(&ggtt->lock); 459 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node, bo->size, 460 alignment, 0, start, end, 0); 461 if (!err) 462 xe_ggtt_map_bo(ggtt, bo); 463 mutex_unlock(&ggtt->lock); 464 465 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) 466 xe_ggtt_invalidate(ggtt); 467 xe_pm_runtime_put(tile_to_xe(ggtt->tile)); 468 469 return err; 470 } 471 472 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 473 u64 start, u64 end) 474 { 475 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end); 476 } 477 478 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 479 { 480 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX); 481 } 482 483 void xe_ggtt_remove_node(struct xe_ggtt *ggtt, struct drm_mm_node *node, 484 bool invalidate) 485 { 486 struct xe_device *xe = tile_to_xe(ggtt->tile); 487 bool bound; 488 int idx; 489 490 bound = drm_dev_enter(&xe->drm, &idx); 491 if (bound) 492 xe_pm_runtime_get_noresume(xe); 493 494 mutex_lock(&ggtt->lock); 495 if (bound) 496 xe_ggtt_clear(ggtt, node->start, node->size); 497 drm_mm_remove_node(node); 498 node->size = 0; 499 mutex_unlock(&ggtt->lock); 500 501 if (!bound) 502 return; 503 504 if (invalidate) 505 xe_ggtt_invalidate(ggtt); 506 507 xe_pm_runtime_put(xe); 508 drm_dev_exit(idx); 509 } 510 511 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 512 { 513 if (XE_WARN_ON(!bo->ggtt_node.size)) 514 return; 515 516 /* This BO is not currently in the GGTT */ 517 xe_tile_assert(ggtt->tile, bo->ggtt_node.size == bo->size); 518 519 xe_ggtt_remove_node(ggtt, &bo->ggtt_node, 520 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); 521 } 522 523 #ifdef CONFIG_PCI_IOV 524 static u64 xe_encode_vfid_pte(u16 vfid) 525 { 526 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; 527 } 528 529 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) 530 { 531 u64 start = node->start; 532 u64 size = node->size; 533 u64 end = start + size - 1; 534 u64 pte = xe_encode_vfid_pte(vfid); 535 536 lockdep_assert_held(&ggtt->lock); 537 538 if (!drm_mm_node_allocated(node)) 539 return; 540 541 while (start < end) { 542 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); 543 start += XE_PAGE_SIZE; 544 } 545 546 xe_ggtt_invalidate(ggtt); 547 } 548 549 /** 550 * xe_ggtt_assign - assign a GGTT region to the VF 551 * @ggtt: the &xe_ggtt where the node belongs 552 * @node: the &drm_mm_node to update 553 * @vfid: the VF identifier 554 * 555 * This function is used by the PF driver to assign a GGTT region to the VF. 556 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some 557 * platforms VFs can't modify that either. 558 */ 559 void xe_ggtt_assign(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) 560 { 561 mutex_lock(&ggtt->lock); 562 xe_ggtt_assign_locked(ggtt, node, vfid); 563 mutex_unlock(&ggtt->lock); 564 } 565 #endif 566 567 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) 568 { 569 int err; 570 571 err = mutex_lock_interruptible(&ggtt->lock); 572 if (err) 573 return err; 574 575 drm_mm_print(&ggtt->mm, p); 576 mutex_unlock(&ggtt->lock); 577 return err; 578 } 579