1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_ggtt.h" 7 8 #include <linux/fault-inject.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/sizes.h> 11 12 #include <drm/drm_drv.h> 13 #include <drm/drm_managed.h> 14 #include <drm/intel/i915_drm.h> 15 #include <generated/xe_wa_oob.h> 16 17 #include "regs/xe_gt_regs.h" 18 #include "regs/xe_gtt_defs.h" 19 #include "regs/xe_regs.h" 20 #include "xe_assert.h" 21 #include "xe_bo.h" 22 #include "xe_device.h" 23 #include "xe_gt.h" 24 #include "xe_gt_printk.h" 25 #include "xe_gt_sriov_vf.h" 26 #include "xe_gt_tlb_invalidation.h" 27 #include "xe_map.h" 28 #include "xe_mmio.h" 29 #include "xe_pm.h" 30 #include "xe_sriov.h" 31 #include "xe_wa.h" 32 #include "xe_wopcm.h" 33 34 /** 35 * DOC: Global Graphics Translation Table (GGTT) 36 * 37 * Xe GGTT implements the support for a Global Virtual Address space that is used 38 * for resources that are accessible to privileged (i.e. kernel-mode) processes, 39 * and not tied to a specific user-level process. For example, the Graphics 40 * micro-Controller (GuC) and Display Engine (if present) utilize this Global 41 * address space. 42 * 43 * The Global GTT (GGTT) translates from the Global virtual address to a physical 44 * address that can be accessed by HW. The GGTT is a flat, single-level table. 45 * 46 * Xe implements a simplified version of the GGTT specifically managing only a 47 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM) 48 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to 49 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space 50 * is limited on both ends of the GGTT, because the GuC shim HW redirects 51 * accesses to those addresses to other HW areas instead of going through the 52 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size, 53 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things 54 * simple, instead of checking each object to see if they are accessed by GuC or 55 * not, we just exclude those areas from the allocator. Additionally, to simplify 56 * the driver load, we use the maximum WOPCM size in this logic instead of the 57 * programmed one, so we don't need to wait until the actual size to be 58 * programmed is determined (which requires FW fetch) before initializing the 59 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs 60 * depending on the platform) but we can live with this. Another benefit of this 61 * is the GuC bootrom can't access anything below the WOPCM max size so anything 62 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT 63 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max 64 * give us the correct placement for free. 65 */ 66 67 static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, 68 u16 pat_index) 69 { 70 u64 pte; 71 72 pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE); 73 pte |= XE_PAGE_PRESENT; 74 75 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) 76 pte |= XE_GGTT_PTE_DM; 77 78 return pte; 79 } 80 81 static u64 xelpg_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, 82 u16 pat_index) 83 { 84 struct xe_device *xe = xe_bo_device(bo); 85 u64 pte; 86 87 pte = xelp_ggtt_pte_encode_bo(bo, bo_offset, pat_index); 88 89 xe_assert(xe, pat_index <= 3); 90 91 if (pat_index & BIT(0)) 92 pte |= XELPG_GGTT_PTE_PAT0; 93 94 if (pat_index & BIT(1)) 95 pte |= XELPG_GGTT_PTE_PAT1; 96 97 return pte; 98 } 99 100 static unsigned int probe_gsm_size(struct pci_dev *pdev) 101 { 102 u16 gmch_ctl, ggms; 103 104 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); 105 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; 106 return ggms ? SZ_1M << ggms : 0; 107 } 108 109 static void ggtt_update_access_counter(struct xe_ggtt *ggtt) 110 { 111 struct xe_tile *tile = ggtt->tile; 112 struct xe_gt *affected_gt = XE_WA(tile->primary_gt, 22019338487) ? 113 tile->primary_gt : tile->media_gt; 114 struct xe_mmio *mmio = &affected_gt->mmio; 115 u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63; 116 /* 117 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit 118 * to wait for completion of prior GTT writes before letting this through. 119 * This needs to be done for all GGTT writes originating from the CPU. 120 */ 121 lockdep_assert_held(&ggtt->lock); 122 123 if ((++ggtt->access_count % max_gtt_writes) == 0) { 124 xe_mmio_write32(mmio, GMD_ID, 0x0); 125 ggtt->access_count = 0; 126 } 127 } 128 129 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) 130 { 131 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); 132 xe_tile_assert(ggtt->tile, addr < ggtt->size); 133 134 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); 135 } 136 137 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) 138 { 139 xe_ggtt_set_pte(ggtt, addr, pte); 140 ggtt_update_access_counter(ggtt); 141 } 142 143 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) 144 { 145 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; 146 u64 end = start + size - 1; 147 u64 scratch_pte; 148 149 xe_tile_assert(ggtt->tile, start < end); 150 151 if (ggtt->scratch) 152 scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, 153 pat_index); 154 else 155 scratch_pte = 0; 156 157 while (start < end) { 158 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); 159 start += XE_PAGE_SIZE; 160 } 161 } 162 163 static void ggtt_fini_early(struct drm_device *drm, void *arg) 164 { 165 struct xe_ggtt *ggtt = arg; 166 167 destroy_workqueue(ggtt->wq); 168 mutex_destroy(&ggtt->lock); 169 drm_mm_takedown(&ggtt->mm); 170 } 171 172 static void ggtt_fini(void *arg) 173 { 174 struct xe_ggtt *ggtt = arg; 175 176 ggtt->scratch = NULL; 177 } 178 179 static void primelockdep(struct xe_ggtt *ggtt) 180 { 181 if (!IS_ENABLED(CONFIG_LOCKDEP)) 182 return; 183 184 fs_reclaim_acquire(GFP_KERNEL); 185 might_lock(&ggtt->lock); 186 fs_reclaim_release(GFP_KERNEL); 187 } 188 189 static const struct xe_ggtt_pt_ops xelp_pt_ops = { 190 .pte_encode_bo = xelp_ggtt_pte_encode_bo, 191 .ggtt_set_pte = xe_ggtt_set_pte, 192 }; 193 194 static const struct xe_ggtt_pt_ops xelpg_pt_ops = { 195 .pte_encode_bo = xelpg_ggtt_pte_encode_bo, 196 .ggtt_set_pte = xe_ggtt_set_pte, 197 }; 198 199 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { 200 .pte_encode_bo = xelpg_ggtt_pte_encode_bo, 201 .ggtt_set_pte = xe_ggtt_set_pte_and_flush, 202 }; 203 204 /** 205 * xe_ggtt_init_early - Early GGTT initialization 206 * @ggtt: the &xe_ggtt to be initialized 207 * 208 * It allows to create new mappings usable by the GuC. 209 * Mappings are not usable by the HW engines, as it doesn't have scratch nor 210 * initial clear done to it yet. That will happen in the regular, non-early 211 * GGTT initialization. 212 * 213 * Return: 0 on success or a negative error code on failure. 214 */ 215 int xe_ggtt_init_early(struct xe_ggtt *ggtt) 216 { 217 struct xe_device *xe = tile_to_xe(ggtt->tile); 218 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 219 unsigned int gsm_size; 220 int err; 221 222 if (IS_SRIOV_VF(xe)) 223 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ 224 else 225 gsm_size = probe_gsm_size(pdev); 226 227 if (gsm_size == 0) { 228 drm_err(&xe->drm, "Hardware reported no preallocated GSM\n"); 229 return -ENOMEM; 230 } 231 232 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; 233 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; 234 235 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) 236 ggtt->flags |= XE_GGTT_FLAGS_64K; 237 238 if (ggtt->size > GUC_GGTT_TOP) 239 ggtt->size = GUC_GGTT_TOP; 240 241 if (GRAPHICS_VERx100(xe) >= 1270) 242 ggtt->pt_ops = (ggtt->tile->media_gt && 243 XE_WA(ggtt->tile->media_gt, 22019338487)) || 244 XE_WA(ggtt->tile->primary_gt, 22019338487) ? 245 &xelpg_pt_wa_ops : &xelpg_pt_ops; 246 else 247 ggtt->pt_ops = &xelp_pt_ops; 248 249 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM); 250 251 drm_mm_init(&ggtt->mm, xe_wopcm_size(xe), 252 ggtt->size - xe_wopcm_size(xe)); 253 mutex_init(&ggtt->lock); 254 primelockdep(ggtt); 255 256 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); 257 if (err) 258 return err; 259 260 if (IS_SRIOV_VF(xe)) { 261 err = xe_gt_sriov_vf_prepare_ggtt(xe_tile_get_gt(ggtt->tile, 0)); 262 if (err) 263 return err; 264 } 265 266 return 0; 267 } 268 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */ 269 270 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); 271 272 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) 273 { 274 struct drm_mm_node *hole; 275 u64 start, end; 276 277 /* Display may have allocated inside ggtt, so be careful with clearing here */ 278 mutex_lock(&ggtt->lock); 279 drm_mm_for_each_hole(hole, &ggtt->mm, start, end) 280 xe_ggtt_clear(ggtt, start, end - start); 281 282 xe_ggtt_invalidate(ggtt); 283 mutex_unlock(&ggtt->lock); 284 } 285 286 static void ggtt_node_remove(struct xe_ggtt_node *node) 287 { 288 struct xe_ggtt *ggtt = node->ggtt; 289 struct xe_device *xe = tile_to_xe(ggtt->tile); 290 bool bound; 291 int idx; 292 293 bound = drm_dev_enter(&xe->drm, &idx); 294 295 mutex_lock(&ggtt->lock); 296 if (bound) 297 xe_ggtt_clear(ggtt, node->base.start, node->base.size); 298 drm_mm_remove_node(&node->base); 299 node->base.size = 0; 300 mutex_unlock(&ggtt->lock); 301 302 if (!bound) 303 goto free_node; 304 305 if (node->invalidate_on_remove) 306 xe_ggtt_invalidate(ggtt); 307 308 drm_dev_exit(idx); 309 310 free_node: 311 xe_ggtt_node_fini(node); 312 } 313 314 static void ggtt_node_remove_work_func(struct work_struct *work) 315 { 316 struct xe_ggtt_node *node = container_of(work, typeof(*node), 317 delayed_removal_work); 318 struct xe_device *xe = tile_to_xe(node->ggtt->tile); 319 320 xe_pm_runtime_get(xe); 321 ggtt_node_remove(node); 322 xe_pm_runtime_put(xe); 323 } 324 325 /** 326 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT 327 * @node: the &xe_ggtt_node to be removed 328 * @invalidate: if node needs invalidation upon removal 329 */ 330 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate) 331 { 332 struct xe_ggtt *ggtt; 333 struct xe_device *xe; 334 335 if (!node || !node->ggtt) 336 return; 337 338 ggtt = node->ggtt; 339 xe = tile_to_xe(ggtt->tile); 340 341 node->invalidate_on_remove = invalidate; 342 343 if (xe_pm_runtime_get_if_active(xe)) { 344 ggtt_node_remove(node); 345 xe_pm_runtime_put(xe); 346 } else { 347 queue_work(ggtt->wq, &node->delayed_removal_work); 348 } 349 } 350 351 /** 352 * xe_ggtt_init - Regular non-early GGTT initialization 353 * @ggtt: the &xe_ggtt to be initialized 354 * 355 * Return: 0 on success or a negative error code on failure. 356 */ 357 int xe_ggtt_init(struct xe_ggtt *ggtt) 358 { 359 struct xe_device *xe = tile_to_xe(ggtt->tile); 360 unsigned int flags; 361 int err; 362 363 /* 364 * So we don't need to worry about 64K GGTT layout when dealing with 365 * scratch entires, rather keep the scratch page in system memory on 366 * platforms where 64K pages are needed for VRAM. 367 */ 368 flags = XE_BO_FLAG_PINNED; 369 if (ggtt->flags & XE_GGTT_FLAGS_64K) 370 flags |= XE_BO_FLAG_SYSTEM; 371 else 372 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); 373 374 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); 375 if (IS_ERR(ggtt->scratch)) { 376 err = PTR_ERR(ggtt->scratch); 377 goto err; 378 } 379 380 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size); 381 382 xe_ggtt_initial_clear(ggtt); 383 384 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt); 385 err: 386 ggtt->scratch = NULL; 387 return err; 388 } 389 390 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) 391 { 392 int err; 393 394 if (!gt) 395 return; 396 397 err = xe_gt_tlb_invalidation_ggtt(gt); 398 if (err) 399 drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err); 400 } 401 402 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) 403 { 404 struct xe_device *xe = tile_to_xe(ggtt->tile); 405 406 /* 407 * XXX: Barrier for GGTT pages. Unsure exactly why this required but 408 * without this LNL is having issues with the GuC reading scratch page 409 * vs. correct GGTT page. Not particularly a hot code path so blindly 410 * do a mmio read here which results in GuC reading correct GGTT page. 411 */ 412 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG); 413 414 /* Each GT in a tile has its own TLB to cache GGTT lookups */ 415 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); 416 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); 417 } 418 419 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, 420 const struct drm_mm_node *node, const char *description) 421 { 422 char buf[10]; 423 424 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 425 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); 426 xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n", 427 node->start, node->start + node->size, buf, description); 428 } 429 } 430 431 /** 432 * xe_ggtt_node_insert_balloon - prevent allocation of specified GGTT addresses 433 * @node: the &xe_ggtt_node to hold reserved GGTT node 434 * @start: the starting GGTT address of the reserved region 435 * @end: then end GGTT address of the reserved region 436 * 437 * Use xe_ggtt_node_remove_balloon() to release a reserved GGTT node. 438 * 439 * Return: 0 on success or a negative error code on failure. 440 */ 441 int xe_ggtt_node_insert_balloon(struct xe_ggtt_node *node, u64 start, u64 end) 442 { 443 struct xe_ggtt *ggtt = node->ggtt; 444 int err; 445 446 xe_tile_assert(ggtt->tile, start < end); 447 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); 448 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); 449 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base)); 450 451 node->base.color = 0; 452 node->base.start = start; 453 node->base.size = end - start; 454 455 mutex_lock(&ggtt->lock); 456 err = drm_mm_reserve_node(&ggtt->mm, &node->base); 457 mutex_unlock(&ggtt->lock); 458 459 if (xe_gt_WARN(ggtt->tile->primary_gt, err, 460 "Failed to balloon GGTT %#llx-%#llx (%pe)\n", 461 node->base.start, node->base.start + node->base.size, ERR_PTR(err))) 462 return err; 463 464 xe_ggtt_dump_node(ggtt, &node->base, "balloon"); 465 return 0; 466 } 467 468 /** 469 * xe_ggtt_node_remove_balloon - release a reserved GGTT region 470 * @node: the &xe_ggtt_node with reserved GGTT region 471 * 472 * See xe_ggtt_node_insert_balloon() for details. 473 */ 474 void xe_ggtt_node_remove_balloon(struct xe_ggtt_node *node) 475 { 476 if (!node || !node->ggtt) 477 return; 478 479 if (!drm_mm_node_allocated(&node->base)) 480 goto free_node; 481 482 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon"); 483 484 mutex_lock(&node->ggtt->lock); 485 drm_mm_remove_node(&node->base); 486 mutex_unlock(&node->ggtt->lock); 487 488 free_node: 489 xe_ggtt_node_fini(node); 490 } 491 492 /** 493 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT 494 * @node: the &xe_ggtt_node to be inserted 495 * @size: size of the node 496 * @align: alignment constrain of the node 497 * @mm_flags: flags to control the node behavior 498 * 499 * It cannot be called without first having called xe_ggtt_init() once. 500 * To be used in cases where ggtt->lock is already taken. 501 * 502 * Return: 0 on success or a negative error code on failure. 503 */ 504 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node, 505 u32 size, u32 align, u32 mm_flags) 506 { 507 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0, 508 mm_flags); 509 } 510 511 /** 512 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT 513 * @node: the &xe_ggtt_node to be inserted 514 * @size: size of the node 515 * @align: alignment constrain of the node 516 * 517 * It cannot be called without first having called xe_ggtt_init() once. 518 * 519 * Return: 0 on success or a negative error code on failure. 520 */ 521 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align) 522 { 523 int ret; 524 525 if (!node || !node->ggtt) 526 return -ENOENT; 527 528 mutex_lock(&node->ggtt->lock); 529 ret = xe_ggtt_node_insert_locked(node, size, align, 530 DRM_MM_INSERT_HIGH); 531 mutex_unlock(&node->ggtt->lock); 532 533 return ret; 534 } 535 536 /** 537 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct 538 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved. 539 * 540 * This function will allocated the struct %xe_ggtt_node and return it's pointer. 541 * This struct will then be freed after the node removal upon xe_ggtt_node_remove() 542 * or xe_ggtt_node_remove_balloon(). 543 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated 544 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 545 * xe_ggtt_node_insert_balloon() will ensure the node is inserted or reserved in GGTT. 546 * 547 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise. 548 **/ 549 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt) 550 { 551 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS); 552 553 if (!node) 554 return ERR_PTR(-ENOMEM); 555 556 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func); 557 node->ggtt = ggtt; 558 559 return node; 560 } 561 562 /** 563 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct 564 * @node: the &xe_ggtt_node to be freed 565 * 566 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 567 * or xe_ggtt_node_insert_balloon(); and this @node is not going to be reused, then, 568 * this function needs to be called to free the %xe_ggtt_node struct 569 **/ 570 void xe_ggtt_node_fini(struct xe_ggtt_node *node) 571 { 572 kfree(node); 573 } 574 575 /** 576 * xe_ggtt_node_allocated - Check if node is allocated in GGTT 577 * @node: the &xe_ggtt_node to be inspected 578 * 579 * Return: True if allocated, False otherwise. 580 */ 581 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node) 582 { 583 if (!node || !node->ggtt) 584 return false; 585 586 return drm_mm_node_allocated(&node->base); 587 } 588 589 /** 590 * xe_ggtt_map_bo - Map the BO into GGTT 591 * @ggtt: the &xe_ggtt where node will be mapped 592 * @bo: the &xe_bo to be mapped 593 */ 594 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 595 { 596 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 597 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 598 u64 start; 599 u64 offset, pte; 600 601 if (XE_WARN_ON(!bo->ggtt_node)) 602 return; 603 604 start = bo->ggtt_node->base.start; 605 606 for (offset = 0; offset < bo->size; offset += XE_PAGE_SIZE) { 607 pte = ggtt->pt_ops->pte_encode_bo(bo, offset, pat_index); 608 ggtt->pt_ops->ggtt_set_pte(ggtt, start + offset, pte); 609 } 610 } 611 612 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 613 u64 start, u64 end) 614 { 615 int err; 616 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE; 617 618 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) 619 alignment = SZ_64K; 620 621 if (XE_WARN_ON(bo->ggtt_node)) { 622 /* Someone's already inserted this BO in the GGTT */ 623 xe_tile_assert(ggtt->tile, bo->ggtt_node->base.size == bo->size); 624 return 0; 625 } 626 627 err = xe_bo_validate(bo, NULL, false); 628 if (err) 629 return err; 630 631 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); 632 633 bo->ggtt_node = xe_ggtt_node_init(ggtt); 634 if (IS_ERR(bo->ggtt_node)) { 635 err = PTR_ERR(bo->ggtt_node); 636 bo->ggtt_node = NULL; 637 goto out; 638 } 639 640 mutex_lock(&ggtt->lock); 641 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node->base, bo->size, 642 alignment, 0, start, end, 0); 643 if (err) { 644 xe_ggtt_node_fini(bo->ggtt_node); 645 bo->ggtt_node = NULL; 646 } else { 647 xe_ggtt_map_bo(ggtt, bo); 648 } 649 mutex_unlock(&ggtt->lock); 650 651 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) 652 xe_ggtt_invalidate(ggtt); 653 654 out: 655 xe_pm_runtime_put(tile_to_xe(ggtt->tile)); 656 657 return err; 658 } 659 660 /** 661 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space 662 * @ggtt: the &xe_ggtt where bo will be inserted 663 * @bo: the &xe_bo to be inserted 664 * @start: address where it will be inserted 665 * @end: end of the range where it will be inserted 666 * 667 * Return: 0 on success or a negative error code on failure. 668 */ 669 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 670 u64 start, u64 end) 671 { 672 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end); 673 } 674 675 /** 676 * xe_ggtt_insert_bo - Insert BO into GGTT 677 * @ggtt: the &xe_ggtt where bo will be inserted 678 * @bo: the &xe_bo to be inserted 679 * 680 * Return: 0 on success or a negative error code on failure. 681 */ 682 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 683 { 684 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX); 685 } 686 687 /** 688 * xe_ggtt_remove_bo - Remove a BO from the GGTT 689 * @ggtt: the &xe_ggtt where node will be removed 690 * @bo: the &xe_bo to be removed 691 */ 692 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 693 { 694 if (XE_WARN_ON(!bo->ggtt_node)) 695 return; 696 697 /* This BO is not currently in the GGTT */ 698 xe_tile_assert(ggtt->tile, bo->ggtt_node->base.size == bo->size); 699 700 xe_ggtt_node_remove(bo->ggtt_node, 701 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); 702 } 703 704 /** 705 * xe_ggtt_largest_hole - Largest GGTT hole 706 * @ggtt: the &xe_ggtt that will be inspected 707 * @alignment: minimum alignment 708 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare 709 * 710 * Return: size of the largest continuous GGTT region 711 */ 712 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare) 713 { 714 const struct drm_mm *mm = &ggtt->mm; 715 const struct drm_mm_node *entry; 716 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 717 u64 hole_start, hole_end, hole_size; 718 u64 max_hole = 0; 719 720 mutex_lock(&ggtt->lock); 721 722 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 723 hole_start = max(hole_start, hole_min_start); 724 hole_start = ALIGN(hole_start, alignment); 725 hole_end = ALIGN_DOWN(hole_end, alignment); 726 if (hole_start >= hole_end) 727 continue; 728 hole_size = hole_end - hole_start; 729 if (spare) 730 *spare -= min3(*spare, hole_size, max_hole); 731 max_hole = max(max_hole, hole_size); 732 } 733 734 mutex_unlock(&ggtt->lock); 735 736 return max_hole; 737 } 738 739 #ifdef CONFIG_PCI_IOV 740 static u64 xe_encode_vfid_pte(u16 vfid) 741 { 742 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; 743 } 744 745 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) 746 { 747 u64 start = node->start; 748 u64 size = node->size; 749 u64 end = start + size - 1; 750 u64 pte = xe_encode_vfid_pte(vfid); 751 752 lockdep_assert_held(&ggtt->lock); 753 754 if (!drm_mm_node_allocated(node)) 755 return; 756 757 while (start < end) { 758 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); 759 start += XE_PAGE_SIZE; 760 } 761 762 xe_ggtt_invalidate(ggtt); 763 } 764 765 /** 766 * xe_ggtt_assign - assign a GGTT region to the VF 767 * @node: the &xe_ggtt_node to update 768 * @vfid: the VF identifier 769 * 770 * This function is used by the PF driver to assign a GGTT region to the VF. 771 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some 772 * platforms VFs can't modify that either. 773 */ 774 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid) 775 { 776 mutex_lock(&node->ggtt->lock); 777 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid); 778 mutex_unlock(&node->ggtt->lock); 779 } 780 #endif 781 782 /** 783 * xe_ggtt_dump - Dump GGTT for debug 784 * @ggtt: the &xe_ggtt to be dumped 785 * @p: the &drm_mm_printer helper handle to be used to dump the information 786 * 787 * Return: 0 on success or a negative error code on failure. 788 */ 789 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) 790 { 791 int err; 792 793 err = mutex_lock_interruptible(&ggtt->lock); 794 if (err) 795 return err; 796 797 drm_mm_print(&ggtt->mm, p); 798 mutex_unlock(&ggtt->lock); 799 return err; 800 } 801 802 /** 803 * xe_ggtt_print_holes - Print holes 804 * @ggtt: the &xe_ggtt to be inspected 805 * @alignment: min alignment 806 * @p: the &drm_printer 807 * 808 * Print GGTT ranges that are available and return total size available. 809 * 810 * Return: Total available size. 811 */ 812 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p) 813 { 814 const struct drm_mm *mm = &ggtt->mm; 815 const struct drm_mm_node *entry; 816 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 817 u64 hole_start, hole_end, hole_size; 818 u64 total = 0; 819 char buf[10]; 820 821 mutex_lock(&ggtt->lock); 822 823 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 824 hole_start = max(hole_start, hole_min_start); 825 hole_start = ALIGN(hole_start, alignment); 826 hole_end = ALIGN_DOWN(hole_end, alignment); 827 if (hole_start >= hole_end) 828 continue; 829 hole_size = hole_end - hole_start; 830 total += hole_size; 831 832 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf)); 833 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n", 834 hole_start, hole_end - 1, buf); 835 } 836 837 mutex_unlock(&ggtt->lock); 838 839 return total; 840 } 841