1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_ggtt.h" 7 8 #include <kunit/visibility.h> 9 #include <linux/fault-inject.h> 10 #include <linux/io-64-nonatomic-lo-hi.h> 11 #include <linux/sizes.h> 12 13 #include <drm/drm_drv.h> 14 #include <drm/drm_managed.h> 15 #include <drm/intel/i915_drm.h> 16 #include <generated/xe_wa_oob.h> 17 18 #include "regs/xe_gt_regs.h" 19 #include "regs/xe_gtt_defs.h" 20 #include "regs/xe_regs.h" 21 #include "xe_assert.h" 22 #include "xe_bo.h" 23 #include "xe_device.h" 24 #include "xe_gt.h" 25 #include "xe_gt_printk.h" 26 #include "xe_gt_tlb_invalidation.h" 27 #include "xe_map.h" 28 #include "xe_mmio.h" 29 #include "xe_pm.h" 30 #include "xe_res_cursor.h" 31 #include "xe_sriov.h" 32 #include "xe_tile_sriov_vf.h" 33 #include "xe_wa.h" 34 #include "xe_wopcm.h" 35 36 /** 37 * DOC: Global Graphics Translation Table (GGTT) 38 * 39 * Xe GGTT implements the support for a Global Virtual Address space that is used 40 * for resources that are accessible to privileged (i.e. kernel-mode) processes, 41 * and not tied to a specific user-level process. For example, the Graphics 42 * micro-Controller (GuC) and Display Engine (if present) utilize this Global 43 * address space. 44 * 45 * The Global GTT (GGTT) translates from the Global virtual address to a physical 46 * address that can be accessed by HW. The GGTT is a flat, single-level table. 47 * 48 * Xe implements a simplified version of the GGTT specifically managing only a 49 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM) 50 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to 51 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space 52 * is limited on both ends of the GGTT, because the GuC shim HW redirects 53 * accesses to those addresses to other HW areas instead of going through the 54 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size, 55 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things 56 * simple, instead of checking each object to see if they are accessed by GuC or 57 * not, we just exclude those areas from the allocator. Additionally, to simplify 58 * the driver load, we use the maximum WOPCM size in this logic instead of the 59 * programmed one, so we don't need to wait until the actual size to be 60 * programmed is determined (which requires FW fetch) before initializing the 61 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs 62 * depending on the platform) but we can live with this. Another benefit of this 63 * is the GuC bootrom can't access anything below the WOPCM max size so anything 64 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT 65 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max 66 * give us the correct placement for free. 67 */ 68 69 static u64 xelp_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index) 70 { 71 u64 pte = XE_PAGE_PRESENT; 72 73 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) 74 pte |= XE_GGTT_PTE_DM; 75 76 return pte; 77 } 78 79 static u64 xelpg_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index) 80 { 81 struct xe_device *xe = xe_bo_device(bo); 82 u64 pte; 83 84 pte = xelp_ggtt_pte_flags(bo, pat_index); 85 86 xe_assert(xe, pat_index <= 3); 87 88 if (pat_index & BIT(0)) 89 pte |= XELPG_GGTT_PTE_PAT0; 90 91 if (pat_index & BIT(1)) 92 pte |= XELPG_GGTT_PTE_PAT1; 93 94 return pte; 95 } 96 97 static unsigned int probe_gsm_size(struct pci_dev *pdev) 98 { 99 u16 gmch_ctl, ggms; 100 101 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); 102 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; 103 return ggms ? SZ_1M << ggms : 0; 104 } 105 106 static void ggtt_update_access_counter(struct xe_ggtt *ggtt) 107 { 108 struct xe_tile *tile = ggtt->tile; 109 struct xe_gt *affected_gt = XE_WA(tile->primary_gt, 22019338487) ? 110 tile->primary_gt : tile->media_gt; 111 struct xe_mmio *mmio = &affected_gt->mmio; 112 u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63; 113 /* 114 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit 115 * to wait for completion of prior GTT writes before letting this through. 116 * This needs to be done for all GGTT writes originating from the CPU. 117 */ 118 lockdep_assert_held(&ggtt->lock); 119 120 if ((++ggtt->access_count % max_gtt_writes) == 0) { 121 xe_mmio_write32(mmio, GMD_ID, 0x0); 122 ggtt->access_count = 0; 123 } 124 } 125 126 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) 127 { 128 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); 129 xe_tile_assert(ggtt->tile, addr < ggtt->size); 130 131 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); 132 } 133 134 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) 135 { 136 xe_ggtt_set_pte(ggtt, addr, pte); 137 ggtt_update_access_counter(ggtt); 138 } 139 140 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) 141 { 142 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; 143 u64 end = start + size - 1; 144 u64 scratch_pte; 145 146 xe_tile_assert(ggtt->tile, start < end); 147 148 if (ggtt->scratch) 149 scratch_pte = xe_bo_addr(ggtt->scratch, 0, XE_PAGE_SIZE) | 150 ggtt->pt_ops->pte_encode_flags(ggtt->scratch, 151 pat_index); 152 else 153 scratch_pte = 0; 154 155 while (start < end) { 156 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); 157 start += XE_PAGE_SIZE; 158 } 159 } 160 161 /** 162 * xe_ggtt_alloc - Allocate a GGTT for a given &xe_tile 163 * @tile: &xe_tile 164 * 165 * Allocates a &xe_ggtt for a given tile. 166 * 167 * Return: &xe_ggtt on success, or NULL when out of memory. 168 */ 169 struct xe_ggtt *xe_ggtt_alloc(struct xe_tile *tile) 170 { 171 struct xe_ggtt *ggtt = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*ggtt), GFP_KERNEL); 172 if (ggtt) 173 ggtt->tile = tile; 174 return ggtt; 175 } 176 177 static void ggtt_fini_early(struct drm_device *drm, void *arg) 178 { 179 struct xe_ggtt *ggtt = arg; 180 181 destroy_workqueue(ggtt->wq); 182 mutex_destroy(&ggtt->lock); 183 drm_mm_takedown(&ggtt->mm); 184 } 185 186 static void ggtt_fini(void *arg) 187 { 188 struct xe_ggtt *ggtt = arg; 189 190 ggtt->scratch = NULL; 191 } 192 193 #ifdef CONFIG_LOCKDEP 194 void xe_ggtt_might_lock(struct xe_ggtt *ggtt) 195 { 196 might_lock(&ggtt->lock); 197 } 198 #endif 199 200 static void primelockdep(struct xe_ggtt *ggtt) 201 { 202 if (!IS_ENABLED(CONFIG_LOCKDEP)) 203 return; 204 205 fs_reclaim_acquire(GFP_KERNEL); 206 might_lock(&ggtt->lock); 207 fs_reclaim_release(GFP_KERNEL); 208 } 209 210 static const struct xe_ggtt_pt_ops xelp_pt_ops = { 211 .pte_encode_flags = xelp_ggtt_pte_flags, 212 .ggtt_set_pte = xe_ggtt_set_pte, 213 }; 214 215 static const struct xe_ggtt_pt_ops xelpg_pt_ops = { 216 .pte_encode_flags = xelpg_ggtt_pte_flags, 217 .ggtt_set_pte = xe_ggtt_set_pte, 218 }; 219 220 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { 221 .pte_encode_flags = xelpg_ggtt_pte_flags, 222 .ggtt_set_pte = xe_ggtt_set_pte_and_flush, 223 }; 224 225 static void __xe_ggtt_init_early(struct xe_ggtt *ggtt, u32 reserved) 226 { 227 drm_mm_init(&ggtt->mm, reserved, 228 ggtt->size - reserved); 229 mutex_init(&ggtt->lock); 230 primelockdep(ggtt); 231 } 232 233 int xe_ggtt_init_kunit(struct xe_ggtt *ggtt, u32 reserved, u32 size) 234 { 235 ggtt->size = size; 236 __xe_ggtt_init_early(ggtt, reserved); 237 return 0; 238 } 239 EXPORT_SYMBOL_IF_KUNIT(xe_ggtt_init_kunit); 240 241 /** 242 * xe_ggtt_init_early - Early GGTT initialization 243 * @ggtt: the &xe_ggtt to be initialized 244 * 245 * It allows to create new mappings usable by the GuC. 246 * Mappings are not usable by the HW engines, as it doesn't have scratch nor 247 * initial clear done to it yet. That will happen in the regular, non-early 248 * GGTT initialization. 249 * 250 * Return: 0 on success or a negative error code on failure. 251 */ 252 int xe_ggtt_init_early(struct xe_ggtt *ggtt) 253 { 254 struct xe_device *xe = tile_to_xe(ggtt->tile); 255 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 256 unsigned int gsm_size; 257 int err; 258 259 if (IS_SRIOV_VF(xe) || GRAPHICS_VERx100(xe) >= 1250) 260 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ 261 else 262 gsm_size = probe_gsm_size(pdev); 263 264 if (gsm_size == 0) { 265 drm_err(&xe->drm, "Hardware reported no preallocated GSM\n"); 266 return -ENOMEM; 267 } 268 269 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; 270 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; 271 272 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) 273 ggtt->flags |= XE_GGTT_FLAGS_64K; 274 275 if (ggtt->size > GUC_GGTT_TOP) 276 ggtt->size = GUC_GGTT_TOP; 277 278 if (GRAPHICS_VERx100(xe) >= 1270) 279 ggtt->pt_ops = (ggtt->tile->media_gt && 280 XE_WA(ggtt->tile->media_gt, 22019338487)) || 281 XE_WA(ggtt->tile->primary_gt, 22019338487) ? 282 &xelpg_pt_wa_ops : &xelpg_pt_ops; 283 else 284 ggtt->pt_ops = &xelp_pt_ops; 285 286 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM); 287 __xe_ggtt_init_early(ggtt, xe_wopcm_size(xe)); 288 289 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); 290 if (err) 291 return err; 292 293 if (IS_SRIOV_VF(xe)) { 294 err = xe_tile_sriov_vf_prepare_ggtt(ggtt->tile); 295 if (err) 296 return err; 297 } 298 299 return 0; 300 } 301 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */ 302 303 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); 304 305 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) 306 { 307 struct drm_mm_node *hole; 308 u64 start, end; 309 310 /* Display may have allocated inside ggtt, so be careful with clearing here */ 311 mutex_lock(&ggtt->lock); 312 drm_mm_for_each_hole(hole, &ggtt->mm, start, end) 313 xe_ggtt_clear(ggtt, start, end - start); 314 315 xe_ggtt_invalidate(ggtt); 316 mutex_unlock(&ggtt->lock); 317 } 318 319 static void ggtt_node_remove(struct xe_ggtt_node *node) 320 { 321 struct xe_ggtt *ggtt = node->ggtt; 322 struct xe_device *xe = tile_to_xe(ggtt->tile); 323 bool bound; 324 int idx; 325 326 bound = drm_dev_enter(&xe->drm, &idx); 327 328 mutex_lock(&ggtt->lock); 329 if (bound) 330 xe_ggtt_clear(ggtt, node->base.start, node->base.size); 331 drm_mm_remove_node(&node->base); 332 node->base.size = 0; 333 mutex_unlock(&ggtt->lock); 334 335 if (!bound) 336 goto free_node; 337 338 if (node->invalidate_on_remove) 339 xe_ggtt_invalidate(ggtt); 340 341 drm_dev_exit(idx); 342 343 free_node: 344 xe_ggtt_node_fini(node); 345 } 346 347 static void ggtt_node_remove_work_func(struct work_struct *work) 348 { 349 struct xe_ggtt_node *node = container_of(work, typeof(*node), 350 delayed_removal_work); 351 struct xe_device *xe = tile_to_xe(node->ggtt->tile); 352 353 xe_pm_runtime_get(xe); 354 ggtt_node_remove(node); 355 xe_pm_runtime_put(xe); 356 } 357 358 /** 359 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT 360 * @node: the &xe_ggtt_node to be removed 361 * @invalidate: if node needs invalidation upon removal 362 */ 363 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate) 364 { 365 struct xe_ggtt *ggtt; 366 struct xe_device *xe; 367 368 if (!node || !node->ggtt) 369 return; 370 371 ggtt = node->ggtt; 372 xe = tile_to_xe(ggtt->tile); 373 374 node->invalidate_on_remove = invalidate; 375 376 if (xe_pm_runtime_get_if_active(xe)) { 377 ggtt_node_remove(node); 378 xe_pm_runtime_put(xe); 379 } else { 380 queue_work(ggtt->wq, &node->delayed_removal_work); 381 } 382 } 383 384 /** 385 * xe_ggtt_init - Regular non-early GGTT initialization 386 * @ggtt: the &xe_ggtt to be initialized 387 * 388 * Return: 0 on success or a negative error code on failure. 389 */ 390 int xe_ggtt_init(struct xe_ggtt *ggtt) 391 { 392 struct xe_device *xe = tile_to_xe(ggtt->tile); 393 unsigned int flags; 394 int err; 395 396 /* 397 * So we don't need to worry about 64K GGTT layout when dealing with 398 * scratch entries, rather keep the scratch page in system memory on 399 * platforms where 64K pages are needed for VRAM. 400 */ 401 flags = 0; 402 if (ggtt->flags & XE_GGTT_FLAGS_64K) 403 flags |= XE_BO_FLAG_SYSTEM; 404 else 405 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); 406 407 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); 408 if (IS_ERR(ggtt->scratch)) { 409 err = PTR_ERR(ggtt->scratch); 410 goto err; 411 } 412 413 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size); 414 415 xe_ggtt_initial_clear(ggtt); 416 417 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt); 418 err: 419 ggtt->scratch = NULL; 420 return err; 421 } 422 423 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) 424 { 425 int err; 426 427 if (!gt) 428 return; 429 430 err = xe_gt_tlb_invalidation_ggtt(gt); 431 if (err) 432 drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err); 433 } 434 435 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) 436 { 437 struct xe_device *xe = tile_to_xe(ggtt->tile); 438 439 /* 440 * XXX: Barrier for GGTT pages. Unsure exactly why this required but 441 * without this LNL is having issues with the GuC reading scratch page 442 * vs. correct GGTT page. Not particularly a hot code path so blindly 443 * do a mmio read here which results in GuC reading correct GGTT page. 444 */ 445 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG); 446 447 /* Each GT in a tile has its own TLB to cache GGTT lookups */ 448 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); 449 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); 450 } 451 452 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, 453 const struct drm_mm_node *node, const char *description) 454 { 455 char buf[10]; 456 457 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 458 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); 459 xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n", 460 node->start, node->start + node->size, buf, description); 461 } 462 } 463 464 /** 465 * xe_ggtt_node_insert_balloon_locked - prevent allocation of specified GGTT addresses 466 * @node: the &xe_ggtt_node to hold reserved GGTT node 467 * @start: the starting GGTT address of the reserved region 468 * @end: then end GGTT address of the reserved region 469 * 470 * To be used in cases where ggtt->lock is already taken. 471 * Use xe_ggtt_node_remove_balloon_locked() to release a reserved GGTT node. 472 * 473 * Return: 0 on success or a negative error code on failure. 474 */ 475 int xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node *node, u64 start, u64 end) 476 { 477 struct xe_ggtt *ggtt = node->ggtt; 478 int err; 479 480 xe_tile_assert(ggtt->tile, start < end); 481 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); 482 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); 483 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base)); 484 lockdep_assert_held(&ggtt->lock); 485 486 node->base.color = 0; 487 node->base.start = start; 488 node->base.size = end - start; 489 490 err = drm_mm_reserve_node(&ggtt->mm, &node->base); 491 492 if (xe_gt_WARN(ggtt->tile->primary_gt, err, 493 "Failed to balloon GGTT %#llx-%#llx (%pe)\n", 494 node->base.start, node->base.start + node->base.size, ERR_PTR(err))) 495 return err; 496 497 xe_ggtt_dump_node(ggtt, &node->base, "balloon"); 498 return 0; 499 } 500 501 /** 502 * xe_ggtt_node_remove_balloon_locked - release a reserved GGTT region 503 * @node: the &xe_ggtt_node with reserved GGTT region 504 * 505 * To be used in cases where ggtt->lock is already taken. 506 * See xe_ggtt_node_insert_balloon_locked() for details. 507 */ 508 void xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node *node) 509 { 510 if (!xe_ggtt_node_allocated(node)) 511 return; 512 513 lockdep_assert_held(&node->ggtt->lock); 514 515 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon"); 516 517 drm_mm_remove_node(&node->base); 518 } 519 520 static void xe_ggtt_assert_fit(struct xe_ggtt *ggtt, u64 start, u64 size) 521 { 522 struct xe_tile *tile = ggtt->tile; 523 struct xe_device *xe = tile_to_xe(tile); 524 u64 __maybe_unused wopcm = xe_wopcm_size(xe); 525 526 xe_tile_assert(tile, start >= wopcm); 527 xe_tile_assert(tile, start + size < ggtt->size - wopcm); 528 } 529 530 /** 531 * xe_ggtt_shift_nodes_locked - Shift GGTT nodes to adjust for a change in usable address range. 532 * @ggtt: the &xe_ggtt struct instance 533 * @shift: change to the location of area provisioned for current VF 534 * 535 * This function moves all nodes from the GGTT VM, to a temp list. These nodes are expected 536 * to represent allocations in range formerly assigned to current VF, before the range changed. 537 * When the GGTT VM is completely clear of any nodes, they are re-added with shifted offsets. 538 * 539 * The function has no ability of failing - because it shifts existing nodes, without 540 * any additional processing. If the nodes were successfully existing at the old address, 541 * they will do the same at the new one. A fail inside this function would indicate that 542 * the list of nodes was either already damaged, or that the shift brings the address range 543 * outside of valid bounds. Both cases justify an assert rather than error code. 544 */ 545 void xe_ggtt_shift_nodes_locked(struct xe_ggtt *ggtt, s64 shift) 546 { 547 struct xe_tile *tile __maybe_unused = ggtt->tile; 548 struct drm_mm_node *node, *tmpn; 549 LIST_HEAD(temp_list_head); 550 551 lockdep_assert_held(&ggtt->lock); 552 553 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) 554 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) 555 xe_ggtt_assert_fit(ggtt, node->start + shift, node->size); 556 557 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) { 558 drm_mm_remove_node(node); 559 list_add(&node->node_list, &temp_list_head); 560 } 561 562 list_for_each_entry_safe(node, tmpn, &temp_list_head, node_list) { 563 list_del(&node->node_list); 564 node->start += shift; 565 drm_mm_reserve_node(&ggtt->mm, node); 566 xe_tile_assert(tile, drm_mm_node_allocated(node)); 567 } 568 } 569 570 /** 571 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT 572 * @node: the &xe_ggtt_node to be inserted 573 * @size: size of the node 574 * @align: alignment constrain of the node 575 * @mm_flags: flags to control the node behavior 576 * 577 * It cannot be called without first having called xe_ggtt_init() once. 578 * To be used in cases where ggtt->lock is already taken. 579 * 580 * Return: 0 on success or a negative error code on failure. 581 */ 582 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node, 583 u32 size, u32 align, u32 mm_flags) 584 { 585 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0, 586 mm_flags); 587 } 588 589 /** 590 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT 591 * @node: the &xe_ggtt_node to be inserted 592 * @size: size of the node 593 * @align: alignment constrain of the node 594 * 595 * It cannot be called without first having called xe_ggtt_init() once. 596 * 597 * Return: 0 on success or a negative error code on failure. 598 */ 599 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align) 600 { 601 int ret; 602 603 if (!node || !node->ggtt) 604 return -ENOENT; 605 606 mutex_lock(&node->ggtt->lock); 607 ret = xe_ggtt_node_insert_locked(node, size, align, 608 DRM_MM_INSERT_HIGH); 609 mutex_unlock(&node->ggtt->lock); 610 611 return ret; 612 } 613 614 /** 615 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct 616 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved. 617 * 618 * This function will allocate the struct %xe_ggtt_node and return its pointer. 619 * This struct will then be freed after the node removal upon xe_ggtt_node_remove() 620 * or xe_ggtt_node_remove_balloon_locked(). 621 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated 622 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 623 * xe_ggtt_node_insert_balloon_locked() will ensure the node is inserted or reserved in GGTT. 624 * 625 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise. 626 **/ 627 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt) 628 { 629 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS); 630 631 if (!node) 632 return ERR_PTR(-ENOMEM); 633 634 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func); 635 node->ggtt = ggtt; 636 637 return node; 638 } 639 640 /** 641 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct 642 * @node: the &xe_ggtt_node to be freed 643 * 644 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), 645 * or xe_ggtt_node_insert_balloon_locked(); and this @node is not going to be reused, then, 646 * this function needs to be called to free the %xe_ggtt_node struct 647 **/ 648 void xe_ggtt_node_fini(struct xe_ggtt_node *node) 649 { 650 kfree(node); 651 } 652 653 /** 654 * xe_ggtt_node_allocated - Check if node is allocated in GGTT 655 * @node: the &xe_ggtt_node to be inspected 656 * 657 * Return: True if allocated, False otherwise. 658 */ 659 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node) 660 { 661 if (!node || !node->ggtt) 662 return false; 663 664 return drm_mm_node_allocated(&node->base); 665 } 666 667 /** 668 * xe_ggtt_map_bo - Map the BO into GGTT 669 * @ggtt: the &xe_ggtt where node will be mapped 670 * @node: the &xe_ggtt_node where this BO is mapped 671 * @bo: the &xe_bo to be mapped 672 * @pat_index: Which pat_index to use. 673 */ 674 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_ggtt_node *node, 675 struct xe_bo *bo, u16 pat_index) 676 { 677 678 u64 start, pte, end; 679 struct xe_res_cursor cur; 680 681 if (XE_WARN_ON(!node)) 682 return; 683 684 start = node->base.start; 685 end = start + bo->size; 686 687 pte = ggtt->pt_ops->pte_encode_flags(bo, pat_index); 688 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 689 xe_assert(xe_bo_device(bo), bo->ttm.ttm); 690 691 for (xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &cur); 692 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE)) 693 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining, 694 pte | xe_res_dma(&cur)); 695 } else { 696 /* Prepend GPU offset */ 697 pte |= vram_region_gpu_offset(bo->ttm.resource); 698 699 for (xe_res_first(bo->ttm.resource, 0, bo->size, &cur); 700 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE)) 701 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining, 702 pte + cur.start); 703 } 704 } 705 706 /** 707 * xe_ggtt_map_bo_unlocked - Restore a mapping of a BO into GGTT 708 * @ggtt: the &xe_ggtt where node will be mapped 709 * @bo: the &xe_bo to be mapped 710 * 711 * This is used to restore a GGTT mapping after suspend. 712 */ 713 void xe_ggtt_map_bo_unlocked(struct xe_ggtt *ggtt, struct xe_bo *bo) 714 { 715 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 716 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 717 718 mutex_lock(&ggtt->lock); 719 xe_ggtt_map_bo(ggtt, bo->ggtt_node[ggtt->tile->id], bo, pat_index); 720 mutex_unlock(&ggtt->lock); 721 } 722 723 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 724 u64 start, u64 end) 725 { 726 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE; 727 u8 tile_id = ggtt->tile->id; 728 int err; 729 730 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) 731 alignment = SZ_64K; 732 733 if (XE_WARN_ON(bo->ggtt_node[tile_id])) { 734 /* Someone's already inserted this BO in the GGTT */ 735 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == bo->size); 736 return 0; 737 } 738 739 err = xe_bo_validate(bo, NULL, false); 740 if (err) 741 return err; 742 743 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); 744 745 bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt); 746 if (IS_ERR(bo->ggtt_node[tile_id])) { 747 err = PTR_ERR(bo->ggtt_node[tile_id]); 748 bo->ggtt_node[tile_id] = NULL; 749 goto out; 750 } 751 752 mutex_lock(&ggtt->lock); 753 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base, 754 bo->size, alignment, 0, start, end, 0); 755 if (err) { 756 xe_ggtt_node_fini(bo->ggtt_node[tile_id]); 757 bo->ggtt_node[tile_id] = NULL; 758 } else { 759 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; 760 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; 761 762 xe_ggtt_map_bo(ggtt, bo->ggtt_node[tile_id], bo, pat_index); 763 } 764 mutex_unlock(&ggtt->lock); 765 766 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) 767 xe_ggtt_invalidate(ggtt); 768 769 out: 770 xe_pm_runtime_put(tile_to_xe(ggtt->tile)); 771 772 return err; 773 } 774 775 /** 776 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space 777 * @ggtt: the &xe_ggtt where bo will be inserted 778 * @bo: the &xe_bo to be inserted 779 * @start: address where it will be inserted 780 * @end: end of the range where it will be inserted 781 * 782 * Return: 0 on success or a negative error code on failure. 783 */ 784 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, 785 u64 start, u64 end) 786 { 787 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end); 788 } 789 790 /** 791 * xe_ggtt_insert_bo - Insert BO into GGTT 792 * @ggtt: the &xe_ggtt where bo will be inserted 793 * @bo: the &xe_bo to be inserted 794 * 795 * Return: 0 on success or a negative error code on failure. 796 */ 797 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 798 { 799 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX); 800 } 801 802 /** 803 * xe_ggtt_remove_bo - Remove a BO from the GGTT 804 * @ggtt: the &xe_ggtt where node will be removed 805 * @bo: the &xe_bo to be removed 806 */ 807 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) 808 { 809 u8 tile_id = ggtt->tile->id; 810 811 if (XE_WARN_ON(!bo->ggtt_node[tile_id])) 812 return; 813 814 /* This BO is not currently in the GGTT */ 815 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == bo->size); 816 817 xe_ggtt_node_remove(bo->ggtt_node[tile_id], 818 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); 819 } 820 821 /** 822 * xe_ggtt_largest_hole - Largest GGTT hole 823 * @ggtt: the &xe_ggtt that will be inspected 824 * @alignment: minimum alignment 825 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare 826 * 827 * Return: size of the largest continuous GGTT region 828 */ 829 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare) 830 { 831 const struct drm_mm *mm = &ggtt->mm; 832 const struct drm_mm_node *entry; 833 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 834 u64 hole_start, hole_end, hole_size; 835 u64 max_hole = 0; 836 837 mutex_lock(&ggtt->lock); 838 839 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 840 hole_start = max(hole_start, hole_min_start); 841 hole_start = ALIGN(hole_start, alignment); 842 hole_end = ALIGN_DOWN(hole_end, alignment); 843 if (hole_start >= hole_end) 844 continue; 845 hole_size = hole_end - hole_start; 846 if (spare) 847 *spare -= min3(*spare, hole_size, max_hole); 848 max_hole = max(max_hole, hole_size); 849 } 850 851 mutex_unlock(&ggtt->lock); 852 853 return max_hole; 854 } 855 856 #ifdef CONFIG_PCI_IOV 857 static u64 xe_encode_vfid_pte(u16 vfid) 858 { 859 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; 860 } 861 862 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) 863 { 864 u64 start = node->start; 865 u64 size = node->size; 866 u64 end = start + size - 1; 867 u64 pte = xe_encode_vfid_pte(vfid); 868 869 lockdep_assert_held(&ggtt->lock); 870 871 if (!drm_mm_node_allocated(node)) 872 return; 873 874 while (start < end) { 875 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); 876 start += XE_PAGE_SIZE; 877 } 878 879 xe_ggtt_invalidate(ggtt); 880 } 881 882 /** 883 * xe_ggtt_assign - assign a GGTT region to the VF 884 * @node: the &xe_ggtt_node to update 885 * @vfid: the VF identifier 886 * 887 * This function is used by the PF driver to assign a GGTT region to the VF. 888 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some 889 * platforms VFs can't modify that either. 890 */ 891 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid) 892 { 893 mutex_lock(&node->ggtt->lock); 894 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid); 895 mutex_unlock(&node->ggtt->lock); 896 } 897 #endif 898 899 /** 900 * xe_ggtt_dump - Dump GGTT for debug 901 * @ggtt: the &xe_ggtt to be dumped 902 * @p: the &drm_mm_printer helper handle to be used to dump the information 903 * 904 * Return: 0 on success or a negative error code on failure. 905 */ 906 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) 907 { 908 int err; 909 910 err = mutex_lock_interruptible(&ggtt->lock); 911 if (err) 912 return err; 913 914 drm_mm_print(&ggtt->mm, p); 915 mutex_unlock(&ggtt->lock); 916 return err; 917 } 918 919 /** 920 * xe_ggtt_print_holes - Print holes 921 * @ggtt: the &xe_ggtt to be inspected 922 * @alignment: min alignment 923 * @p: the &drm_printer 924 * 925 * Print GGTT ranges that are available and return total size available. 926 * 927 * Return: Total available size. 928 */ 929 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p) 930 { 931 const struct drm_mm *mm = &ggtt->mm; 932 const struct drm_mm_node *entry; 933 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); 934 u64 hole_start, hole_end, hole_size; 935 u64 total = 0; 936 char buf[10]; 937 938 mutex_lock(&ggtt->lock); 939 940 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { 941 hole_start = max(hole_start, hole_min_start); 942 hole_start = ALIGN(hole_start, alignment); 943 hole_end = ALIGN_DOWN(hole_end, alignment); 944 if (hole_start >= hole_end) 945 continue; 946 hole_size = hole_end - hole_start; 947 total += hole_size; 948 949 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf)); 950 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n", 951 hole_start, hole_end - 1, buf); 952 } 953 954 mutex_unlock(&ggtt->lock); 955 956 return total; 957 } 958 959 /** 960 * xe_ggtt_encode_pte_flags - Get PTE encoding flags for BO 961 * @ggtt: &xe_ggtt 962 * @bo: &xe_bo 963 * @pat_index: The pat_index for the PTE. 964 * 965 * This function returns the pte_flags for a given BO, without address. 966 * It's used for DPT to fill a GGTT mapped BO with a linear lookup table. 967 */ 968 u64 xe_ggtt_encode_pte_flags(struct xe_ggtt *ggtt, 969 struct xe_bo *bo, u16 pat_index) 970 { 971 return ggtt->pt_ops->pte_encode_flags(bo, pat_index); 972 } 973 974 /** 975 * xe_ggtt_read_pte - Read a PTE from the GGTT 976 * @ggtt: &xe_ggtt 977 * @offset: the offset for which the mapping should be read. 978 * 979 * Used by testcases, and by display reading out an inherited bios FB. 980 */ 981 u64 xe_ggtt_read_pte(struct xe_ggtt *ggtt, u64 offset) 982 { 983 return ioread64(ggtt->gsm + (offset / XE_PAGE_SIZE)); 984 } 985