xref: /linux/drivers/gpu/drm/xe/xe_exec_queue.c (revision face6a3615a649456eb4549f6d474221d877d604)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_exec_queue.h"
7 
8 #include <linux/nospec.h>
9 
10 #include <drm/drm_device.h>
11 #include <drm/drm_drv.h>
12 #include <drm/drm_file.h>
13 #include <uapi/drm/xe_drm.h>
14 
15 #include "xe_dep_scheduler.h"
16 #include "xe_device.h"
17 #include "xe_gt.h"
18 #include "xe_gt_sriov_vf.h"
19 #include "xe_hw_engine_class_sysfs.h"
20 #include "xe_hw_engine_group.h"
21 #include "xe_hw_fence.h"
22 #include "xe_irq.h"
23 #include "xe_lrc.h"
24 #include "xe_macros.h"
25 #include "xe_migrate.h"
26 #include "xe_pm.h"
27 #include "xe_ring_ops_types.h"
28 #include "xe_trace.h"
29 #include "xe_vm.h"
30 #include "xe_pxp.h"
31 
32 /**
33  * DOC: Execution Queue
34  *
35  * An Execution queue is an interface for the HW context of execution.
36  * The user creates an execution queue, submits the GPU jobs through those
37  * queues and in the end destroys them.
38  *
39  * Execution queues can also be created by XeKMD itself for driver internal
40  * operations like object migration etc.
41  *
42  * An execution queue is associated with a specified HW engine or a group of
43  * engines (belonging to the same tile and engine class) and any GPU job
44  * submitted on the queue will be run on one of these engines.
45  *
46  * An execution queue is tied to an address space (VM). It holds a reference
47  * of the associated VM and the underlying Logical Ring Context/s (LRC/s)
48  * until the queue is destroyed.
49  *
50  * The execution queue sits on top of the submission backend. It opaquely
51  * handles the GuC and Execlist backends whichever the platform uses, and
52  * the ring operations the different engine classes support.
53  */
54 
55 enum xe_exec_queue_sched_prop {
56 	XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
57 	XE_EXEC_QUEUE_TIMESLICE = 1,
58 	XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
59 	XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
60 };
61 
62 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
63 				      u64 extensions, int ext_number);
64 
65 static void __xe_exec_queue_free(struct xe_exec_queue *q)
66 {
67 	int i;
68 
69 	for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i)
70 		if (q->tlb_inval[i].dep_scheduler)
71 			xe_dep_scheduler_fini(q->tlb_inval[i].dep_scheduler);
72 
73 	if (xe_exec_queue_uses_pxp(q))
74 		xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
75 	if (q->vm)
76 		xe_vm_put(q->vm);
77 
78 	if (q->xef)
79 		xe_file_put(q->xef);
80 
81 	kfree(q);
82 }
83 
84 static int alloc_dep_schedulers(struct xe_device *xe, struct xe_exec_queue *q)
85 {
86 	struct xe_tile *tile = gt_to_tile(q->gt);
87 	int i;
88 
89 	for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i) {
90 		struct xe_dep_scheduler *dep_scheduler;
91 		struct xe_gt *gt;
92 		struct workqueue_struct *wq;
93 
94 		if (i == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT)
95 			gt = tile->primary_gt;
96 		else
97 			gt = tile->media_gt;
98 
99 		if (!gt)
100 			continue;
101 
102 		wq = gt->tlb_inval.job_wq;
103 
104 #define MAX_TLB_INVAL_JOBS	16	/* Picking a reasonable value */
105 		dep_scheduler = xe_dep_scheduler_create(xe, wq, q->name,
106 							MAX_TLB_INVAL_JOBS);
107 		if (IS_ERR(dep_scheduler))
108 			return PTR_ERR(dep_scheduler);
109 
110 		q->tlb_inval[i].dep_scheduler = dep_scheduler;
111 	}
112 #undef MAX_TLB_INVAL_JOBS
113 
114 	return 0;
115 }
116 
117 static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
118 						   struct xe_vm *vm,
119 						   u32 logical_mask,
120 						   u16 width, struct xe_hw_engine *hwe,
121 						   u32 flags, u64 extensions)
122 {
123 	struct xe_exec_queue *q;
124 	struct xe_gt *gt = hwe->gt;
125 	int err;
126 
127 	/* only kernel queues can be permanent */
128 	XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
129 
130 	q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
131 	if (!q)
132 		return ERR_PTR(-ENOMEM);
133 
134 	kref_init(&q->refcount);
135 	q->flags = flags;
136 	q->hwe = hwe;
137 	q->gt = gt;
138 	q->class = hwe->class;
139 	q->width = width;
140 	q->msix_vec = XE_IRQ_DEFAULT_MSIX;
141 	q->logical_mask = logical_mask;
142 	q->fence_irq = &gt->fence_irq[hwe->class];
143 	q->ring_ops = gt->ring_ops[hwe->class];
144 	q->ops = gt->exec_queue_ops;
145 	INIT_LIST_HEAD(&q->lr.link);
146 	INIT_LIST_HEAD(&q->multi_gt_link);
147 	INIT_LIST_HEAD(&q->hw_engine_group_link);
148 	INIT_LIST_HEAD(&q->pxp.link);
149 
150 	q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
151 	q->sched_props.preempt_timeout_us =
152 				hwe->eclass->sched_props.preempt_timeout_us;
153 	q->sched_props.job_timeout_ms =
154 				hwe->eclass->sched_props.job_timeout_ms;
155 	if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
156 	    q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
157 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
158 	else
159 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
160 
161 	if (q->flags & (EXEC_QUEUE_FLAG_MIGRATE | EXEC_QUEUE_FLAG_VM)) {
162 		err = alloc_dep_schedulers(xe, q);
163 		if (err) {
164 			__xe_exec_queue_free(q);
165 			return ERR_PTR(err);
166 		}
167 	}
168 
169 	if (vm)
170 		q->vm = xe_vm_get(vm);
171 
172 	if (extensions) {
173 		/*
174 		 * may set q->usm, must come before xe_lrc_create(),
175 		 * may overwrite q->sched_props, must come before q->ops->init()
176 		 */
177 		err = exec_queue_user_extensions(xe, q, extensions, 0);
178 		if (err) {
179 			__xe_exec_queue_free(q);
180 			return ERR_PTR(err);
181 		}
182 	}
183 
184 	return q;
185 }
186 
187 static int __xe_exec_queue_init(struct xe_exec_queue *q, u32 exec_queue_flags)
188 {
189 	int i, err;
190 	u32 flags = 0;
191 
192 	/*
193 	 * PXP workloads executing on RCS or CCS must run in isolation (i.e. no
194 	 * other workload can use the EUs at the same time). On MTL this is done
195 	 * by setting the RUNALONE bit in the LRC, while starting on Xe2 there
196 	 * is a dedicated bit for it.
197 	 */
198 	if (xe_exec_queue_uses_pxp(q) &&
199 	    (q->class == XE_ENGINE_CLASS_RENDER || q->class == XE_ENGINE_CLASS_COMPUTE)) {
200 		if (GRAPHICS_VER(gt_to_xe(q->gt)) >= 20)
201 			flags |= XE_LRC_CREATE_PXP;
202 		else
203 			flags |= XE_LRC_CREATE_RUNALONE;
204 	}
205 
206 	if (!(exec_queue_flags & EXEC_QUEUE_FLAG_KERNEL))
207 		flags |= XE_LRC_CREATE_USER_CTX;
208 
209 	err = q->ops->init(q);
210 	if (err)
211 		return err;
212 
213 	/*
214 	 * This must occur after q->ops->init to avoid race conditions during VF
215 	 * post-migration recovery, as the fixups for the LRC GGTT addresses
216 	 * depend on the queue being present in the backend tracking structure.
217 	 *
218 	 * In addition to above, we must wait on inflight GGTT changes to avoid
219 	 * writing out stale values here. Such wait provides a solid solution
220 	 * (without a race) only if the function can detect migration instantly
221 	 * from the moment vCPU resumes execution.
222 	 */
223 	for (i = 0; i < q->width; ++i) {
224 		struct xe_lrc *lrc;
225 
226 		xe_gt_sriov_vf_wait_valid_ggtt(q->gt);
227 		lrc = xe_lrc_create(q->hwe, q->vm, xe_lrc_ring_size(),
228 				    q->msix_vec, flags);
229 		if (IS_ERR(lrc)) {
230 			err = PTR_ERR(lrc);
231 			goto err_lrc;
232 		}
233 
234 		/* Pairs with READ_ONCE to xe_exec_queue_contexts_hwsp_rebase */
235 		WRITE_ONCE(q->lrc[i], lrc);
236 	}
237 
238 	return 0;
239 
240 err_lrc:
241 	for (i = i - 1; i >= 0; --i)
242 		xe_lrc_put(q->lrc[i]);
243 	return err;
244 }
245 
246 static void __xe_exec_queue_fini(struct xe_exec_queue *q)
247 {
248 	int i;
249 
250 	q->ops->fini(q);
251 
252 	for (i = 0; i < q->width; ++i)
253 		xe_lrc_put(q->lrc[i]);
254 }
255 
256 struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
257 					   u32 logical_mask, u16 width,
258 					   struct xe_hw_engine *hwe, u32 flags,
259 					   u64 extensions)
260 {
261 	struct xe_exec_queue *q;
262 	int err;
263 
264 	/* VMs for GSCCS queues (and only those) must have the XE_VM_FLAG_GSC flag */
265 	xe_assert(xe, !vm || (!!(vm->flags & XE_VM_FLAG_GSC) == !!(hwe->engine_id == XE_HW_ENGINE_GSCCS0)));
266 
267 	q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
268 				  extensions);
269 	if (IS_ERR(q))
270 		return q;
271 
272 	err = __xe_exec_queue_init(q, flags);
273 	if (err)
274 		goto err_post_alloc;
275 
276 	/*
277 	 * We can only add the queue to the PXP list after the init is complete,
278 	 * because the PXP termination can call exec_queue_kill and that will
279 	 * go bad if the queue is only half-initialized. This means that we
280 	 * can't do it when we handle the PXP extension in __xe_exec_queue_alloc
281 	 * and we need to do it here instead.
282 	 */
283 	if (xe_exec_queue_uses_pxp(q)) {
284 		err = xe_pxp_exec_queue_add(xe->pxp, q);
285 		if (err)
286 			goto err_post_init;
287 	}
288 
289 	return q;
290 
291 err_post_init:
292 	__xe_exec_queue_fini(q);
293 err_post_alloc:
294 	__xe_exec_queue_free(q);
295 	return ERR_PTR(err);
296 }
297 ALLOW_ERROR_INJECTION(xe_exec_queue_create, ERRNO);
298 
299 struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
300 						 struct xe_vm *vm,
301 						 enum xe_engine_class class,
302 						 u32 flags, u64 extensions)
303 {
304 	struct xe_hw_engine *hwe, *hwe0 = NULL;
305 	enum xe_hw_engine_id id;
306 	u32 logical_mask = 0;
307 
308 	for_each_hw_engine(hwe, gt, id) {
309 		if (xe_hw_engine_is_reserved(hwe))
310 			continue;
311 
312 		if (hwe->class == class) {
313 			logical_mask |= BIT(hwe->logical_instance);
314 			if (!hwe0)
315 				hwe0 = hwe;
316 		}
317 	}
318 
319 	if (!logical_mask)
320 		return ERR_PTR(-ENODEV);
321 
322 	return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
323 }
324 
325 /**
326  * xe_exec_queue_create_bind() - Create bind exec queue.
327  * @xe: Xe device.
328  * @tile: tile which bind exec queue belongs to.
329  * @flags: exec queue creation flags
330  * @extensions: exec queue creation extensions
331  *
332  * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
333  * for access to physical memory required for page table programming. On a
334  * faulting devices the reserved copy engine instance must be used to avoid
335  * deadlocking (user binds cannot get stuck behind faults as kernel binds which
336  * resolve faults depend on user binds). On non-faulting devices any copy engine
337  * can be used.
338  *
339  * Returns exec queue on success, ERR_PTR on failure
340  */
341 struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
342 						struct xe_tile *tile,
343 						u32 flags, u64 extensions)
344 {
345 	struct xe_gt *gt = tile->primary_gt;
346 	struct xe_exec_queue *q;
347 	struct xe_vm *migrate_vm;
348 
349 	migrate_vm = xe_migrate_get_vm(tile->migrate);
350 	if (xe->info.has_usm) {
351 		struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
352 							   XE_ENGINE_CLASS_COPY,
353 							   gt->usm.reserved_bcs_instance,
354 							   false);
355 
356 		if (!hwe) {
357 			xe_vm_put(migrate_vm);
358 			return ERR_PTR(-EINVAL);
359 		}
360 
361 		q = xe_exec_queue_create(xe, migrate_vm,
362 					 BIT(hwe->logical_instance), 1, hwe,
363 					 flags, extensions);
364 	} else {
365 		q = xe_exec_queue_create_class(xe, gt, migrate_vm,
366 					       XE_ENGINE_CLASS_COPY, flags,
367 					       extensions);
368 	}
369 	xe_vm_put(migrate_vm);
370 
371 	return q;
372 }
373 ALLOW_ERROR_INJECTION(xe_exec_queue_create_bind, ERRNO);
374 
375 void xe_exec_queue_destroy(struct kref *ref)
376 {
377 	struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
378 	struct xe_exec_queue *eq, *next;
379 
380 	if (xe_exec_queue_uses_pxp(q))
381 		xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
382 
383 	xe_exec_queue_last_fence_put_unlocked(q);
384 	if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
385 		list_for_each_entry_safe(eq, next, &q->multi_gt_list,
386 					 multi_gt_link)
387 			xe_exec_queue_put(eq);
388 	}
389 
390 	q->ops->destroy(q);
391 }
392 
393 void xe_exec_queue_fini(struct xe_exec_queue *q)
394 {
395 	/*
396 	 * Before releasing our ref to lrc and xef, accumulate our run ticks
397 	 * and wakeup any waiters.
398 	 */
399 	xe_exec_queue_update_run_ticks(q);
400 	if (q->xef && atomic_dec_and_test(&q->xef->exec_queue.pending_removal))
401 		wake_up_var(&q->xef->exec_queue.pending_removal);
402 
403 	__xe_exec_queue_fini(q);
404 	__xe_exec_queue_free(q);
405 }
406 
407 void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
408 {
409 	switch (q->class) {
410 	case XE_ENGINE_CLASS_RENDER:
411 		snprintf(q->name, sizeof(q->name), "rcs%d", instance);
412 		break;
413 	case XE_ENGINE_CLASS_VIDEO_DECODE:
414 		snprintf(q->name, sizeof(q->name), "vcs%d", instance);
415 		break;
416 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
417 		snprintf(q->name, sizeof(q->name), "vecs%d", instance);
418 		break;
419 	case XE_ENGINE_CLASS_COPY:
420 		snprintf(q->name, sizeof(q->name), "bcs%d", instance);
421 		break;
422 	case XE_ENGINE_CLASS_COMPUTE:
423 		snprintf(q->name, sizeof(q->name), "ccs%d", instance);
424 		break;
425 	case XE_ENGINE_CLASS_OTHER:
426 		snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
427 		break;
428 	default:
429 		XE_WARN_ON(q->class);
430 	}
431 }
432 
433 struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
434 {
435 	struct xe_exec_queue *q;
436 
437 	mutex_lock(&xef->exec_queue.lock);
438 	q = xa_load(&xef->exec_queue.xa, id);
439 	if (q)
440 		xe_exec_queue_get(q);
441 	mutex_unlock(&xef->exec_queue.lock);
442 
443 	return q;
444 }
445 
446 enum xe_exec_queue_priority
447 xe_exec_queue_device_get_max_priority(struct xe_device *xe)
448 {
449 	return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
450 				       XE_EXEC_QUEUE_PRIORITY_NORMAL;
451 }
452 
453 static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
454 				   u64 value)
455 {
456 	if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
457 		return -EINVAL;
458 
459 	if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
460 		return -EPERM;
461 
462 	q->sched_props.priority = value;
463 	return 0;
464 }
465 
466 static bool xe_exec_queue_enforce_schedule_limit(void)
467 {
468 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
469 	return true;
470 #else
471 	return !capable(CAP_SYS_NICE);
472 #endif
473 }
474 
475 static void
476 xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
477 			      enum xe_exec_queue_sched_prop prop,
478 			      u32 *min, u32 *max)
479 {
480 	switch (prop) {
481 	case XE_EXEC_QUEUE_JOB_TIMEOUT:
482 		*min = eclass->sched_props.job_timeout_min;
483 		*max = eclass->sched_props.job_timeout_max;
484 		break;
485 	case XE_EXEC_QUEUE_TIMESLICE:
486 		*min = eclass->sched_props.timeslice_min;
487 		*max = eclass->sched_props.timeslice_max;
488 		break;
489 	case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
490 		*min = eclass->sched_props.preempt_timeout_min;
491 		*max = eclass->sched_props.preempt_timeout_max;
492 		break;
493 	default:
494 		break;
495 	}
496 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
497 	if (capable(CAP_SYS_NICE)) {
498 		switch (prop) {
499 		case XE_EXEC_QUEUE_JOB_TIMEOUT:
500 			*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
501 			*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
502 			break;
503 		case XE_EXEC_QUEUE_TIMESLICE:
504 			*min = XE_HW_ENGINE_TIMESLICE_MIN;
505 			*max = XE_HW_ENGINE_TIMESLICE_MAX;
506 			break;
507 		case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
508 			*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
509 			*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
510 			break;
511 		default:
512 			break;
513 		}
514 	}
515 #endif
516 }
517 
518 static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
519 				    u64 value)
520 {
521 	u32 min = 0, max = 0;
522 
523 	xe_exec_queue_get_prop_minmax(q->hwe->eclass,
524 				      XE_EXEC_QUEUE_TIMESLICE, &min, &max);
525 
526 	if (xe_exec_queue_enforce_schedule_limit() &&
527 	    !xe_hw_engine_timeout_in_range(value, min, max))
528 		return -EINVAL;
529 
530 	q->sched_props.timeslice_us = value;
531 	return 0;
532 }
533 
534 static int
535 exec_queue_set_pxp_type(struct xe_device *xe, struct xe_exec_queue *q, u64 value)
536 {
537 	if (value == DRM_XE_PXP_TYPE_NONE)
538 		return 0;
539 
540 	/* we only support HWDRM sessions right now */
541 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
542 		return -EINVAL;
543 
544 	if (!xe_pxp_is_enabled(xe->pxp))
545 		return -ENODEV;
546 
547 	return xe_pxp_exec_queue_set_type(xe->pxp, q, DRM_XE_PXP_TYPE_HWDRM);
548 }
549 
550 typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
551 					     struct xe_exec_queue *q,
552 					     u64 value);
553 
554 static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
555 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
556 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
557 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE] = exec_queue_set_pxp_type,
558 };
559 
560 static int exec_queue_user_ext_set_property(struct xe_device *xe,
561 					    struct xe_exec_queue *q,
562 					    u64 extension)
563 {
564 	u64 __user *address = u64_to_user_ptr(extension);
565 	struct drm_xe_ext_set_property ext;
566 	int err;
567 	u32 idx;
568 
569 	err = copy_from_user(&ext, address, sizeof(ext));
570 	if (XE_IOCTL_DBG(xe, err))
571 		return -EFAULT;
572 
573 	if (XE_IOCTL_DBG(xe, ext.property >=
574 			 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
575 	    XE_IOCTL_DBG(xe, ext.pad) ||
576 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
577 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE &&
578 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE))
579 		return -EINVAL;
580 
581 	idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
582 	if (!exec_queue_set_property_funcs[idx])
583 		return -EINVAL;
584 
585 	return exec_queue_set_property_funcs[idx](xe, q, ext.value);
586 }
587 
588 typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
589 					       struct xe_exec_queue *q,
590 					       u64 extension);
591 
592 static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
593 	[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
594 };
595 
596 #define MAX_USER_EXTENSIONS	16
597 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
598 				      u64 extensions, int ext_number)
599 {
600 	u64 __user *address = u64_to_user_ptr(extensions);
601 	struct drm_xe_user_extension ext;
602 	int err;
603 	u32 idx;
604 
605 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
606 		return -E2BIG;
607 
608 	err = copy_from_user(&ext, address, sizeof(ext));
609 	if (XE_IOCTL_DBG(xe, err))
610 		return -EFAULT;
611 
612 	if (XE_IOCTL_DBG(xe, ext.pad) ||
613 	    XE_IOCTL_DBG(xe, ext.name >=
614 			 ARRAY_SIZE(exec_queue_user_extension_funcs)))
615 		return -EINVAL;
616 
617 	idx = array_index_nospec(ext.name,
618 				 ARRAY_SIZE(exec_queue_user_extension_funcs));
619 	err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
620 	if (XE_IOCTL_DBG(xe, err))
621 		return err;
622 
623 	if (ext.next_extension)
624 		return exec_queue_user_extensions(xe, q, ext.next_extension,
625 						  ++ext_number);
626 
627 	return 0;
628 }
629 
630 static u32 calc_validate_logical_mask(struct xe_device *xe,
631 				      struct drm_xe_engine_class_instance *eci,
632 				      u16 width, u16 num_placements)
633 {
634 	int len = width * num_placements;
635 	int i, j, n;
636 	u16 class;
637 	u16 gt_id;
638 	u32 return_mask = 0, prev_mask;
639 
640 	if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
641 			 len > 1))
642 		return 0;
643 
644 	for (i = 0; i < width; ++i) {
645 		u32 current_mask = 0;
646 
647 		for (j = 0; j < num_placements; ++j) {
648 			struct xe_hw_engine *hwe;
649 
650 			n = j * width + i;
651 
652 			hwe = xe_hw_engine_lookup(xe, eci[n]);
653 			if (XE_IOCTL_DBG(xe, !hwe))
654 				return 0;
655 
656 			if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
657 				return 0;
658 
659 			if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
660 			    XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
661 				return 0;
662 
663 			class = eci[n].engine_class;
664 			gt_id = eci[n].gt_id;
665 
666 			if (width == 1 || !i)
667 				return_mask |= BIT(eci[n].engine_instance);
668 			current_mask |= BIT(eci[n].engine_instance);
669 		}
670 
671 		/* Parallel submissions must be logically contiguous */
672 		if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
673 			return 0;
674 
675 		prev_mask = current_mask;
676 	}
677 
678 	return return_mask;
679 }
680 
681 int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
682 			       struct drm_file *file)
683 {
684 	struct xe_device *xe = to_xe_device(dev);
685 	struct xe_file *xef = to_xe_file(file);
686 	struct drm_xe_exec_queue_create *args = data;
687 	struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
688 	struct drm_xe_engine_class_instance __user *user_eci =
689 		u64_to_user_ptr(args->instances);
690 	struct xe_hw_engine *hwe;
691 	struct xe_vm *vm;
692 	struct xe_tile *tile;
693 	struct xe_exec_queue *q = NULL;
694 	u32 logical_mask;
695 	u32 flags = 0;
696 	u32 id;
697 	u32 len;
698 	int err;
699 
700 	if (XE_IOCTL_DBG(xe, args->flags & ~DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT) ||
701 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
702 		return -EINVAL;
703 
704 	len = args->width * args->num_placements;
705 	if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
706 		return -EINVAL;
707 
708 	err = copy_from_user(eci, user_eci,
709 			     sizeof(struct drm_xe_engine_class_instance) * len);
710 	if (XE_IOCTL_DBG(xe, err))
711 		return -EFAULT;
712 
713 	if (XE_IOCTL_DBG(xe, !xe_device_get_gt(xe, eci[0].gt_id)))
714 		return -EINVAL;
715 
716 	if (args->flags & DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT)
717 		flags |= EXEC_QUEUE_FLAG_LOW_LATENCY;
718 
719 	if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
720 		if (XE_IOCTL_DBG(xe, args->width != 1) ||
721 		    XE_IOCTL_DBG(xe, args->num_placements != 1) ||
722 		    XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
723 			return -EINVAL;
724 
725 		for_each_tile(tile, xe, id) {
726 			struct xe_exec_queue *new;
727 
728 			flags |= EXEC_QUEUE_FLAG_VM;
729 			if (id)
730 				flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
731 
732 			new = xe_exec_queue_create_bind(xe, tile, flags,
733 							args->extensions);
734 			if (IS_ERR(new)) {
735 				err = PTR_ERR(new);
736 				if (q)
737 					goto put_exec_queue;
738 				return err;
739 			}
740 			if (id == 0)
741 				q = new;
742 			else
743 				list_add_tail(&new->multi_gt_list,
744 					      &q->multi_gt_link);
745 		}
746 	} else {
747 		logical_mask = calc_validate_logical_mask(xe, eci,
748 							  args->width,
749 							  args->num_placements);
750 		if (XE_IOCTL_DBG(xe, !logical_mask))
751 			return -EINVAL;
752 
753 		hwe = xe_hw_engine_lookup(xe, eci[0]);
754 		if (XE_IOCTL_DBG(xe, !hwe))
755 			return -EINVAL;
756 
757 		vm = xe_vm_lookup(xef, args->vm_id);
758 		if (XE_IOCTL_DBG(xe, !vm))
759 			return -ENOENT;
760 
761 		err = down_read_interruptible(&vm->lock);
762 		if (err) {
763 			xe_vm_put(vm);
764 			return err;
765 		}
766 
767 		if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
768 			up_read(&vm->lock);
769 			xe_vm_put(vm);
770 			return -ENOENT;
771 		}
772 
773 		q = xe_exec_queue_create(xe, vm, logical_mask,
774 					 args->width, hwe, flags,
775 					 args->extensions);
776 		up_read(&vm->lock);
777 		xe_vm_put(vm);
778 		if (IS_ERR(q))
779 			return PTR_ERR(q);
780 
781 		if (xe_vm_in_preempt_fence_mode(vm)) {
782 			q->lr.context = dma_fence_context_alloc(1);
783 
784 			err = xe_vm_add_compute_exec_queue(vm, q);
785 			if (XE_IOCTL_DBG(xe, err))
786 				goto put_exec_queue;
787 		}
788 
789 		if (q->vm && q->hwe->hw_engine_group) {
790 			err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
791 			if (err)
792 				goto put_exec_queue;
793 		}
794 	}
795 
796 	q->xef = xe_file_get(xef);
797 
798 	/* user id alloc must always be last in ioctl to prevent UAF */
799 	err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
800 	if (err)
801 		goto kill_exec_queue;
802 
803 	args->exec_queue_id = id;
804 
805 	return 0;
806 
807 kill_exec_queue:
808 	xe_exec_queue_kill(q);
809 put_exec_queue:
810 	xe_exec_queue_put(q);
811 	return err;
812 }
813 
814 int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
815 				     struct drm_file *file)
816 {
817 	struct xe_device *xe = to_xe_device(dev);
818 	struct xe_file *xef = to_xe_file(file);
819 	struct drm_xe_exec_queue_get_property *args = data;
820 	struct xe_exec_queue *q;
821 	int ret;
822 
823 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
824 		return -EINVAL;
825 
826 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
827 	if (XE_IOCTL_DBG(xe, !q))
828 		return -ENOENT;
829 
830 	switch (args->property) {
831 	case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
832 		args->value = q->ops->reset_status(q);
833 		ret = 0;
834 		break;
835 	default:
836 		ret = -EINVAL;
837 	}
838 
839 	xe_exec_queue_put(q);
840 
841 	return ret;
842 }
843 
844 /**
845  * xe_exec_queue_lrc() - Get the LRC from exec queue.
846  * @q: The exec_queue.
847  *
848  * Retrieves the primary LRC for the exec queue. Note that this function
849  * returns only the first LRC instance, even when multiple parallel LRCs
850  * are configured.
851  *
852  * Return: Pointer to LRC on success, error on failure
853  */
854 struct xe_lrc *xe_exec_queue_lrc(struct xe_exec_queue *q)
855 {
856 	return q->lrc[0];
857 }
858 
859 /**
860  * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
861  * @q: The exec_queue
862  *
863  * Return: True if the exec_queue is long-running, false otherwise.
864  */
865 bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
866 {
867 	return q->vm && xe_vm_in_lr_mode(q->vm) &&
868 		!(q->flags & EXEC_QUEUE_FLAG_VM);
869 }
870 
871 /**
872  * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
873  * @q: The exec_queue
874  *
875  * FIXME: Need to determine what to use as the short-lived
876  * timeline lock for the exec_queues, so that the return value
877  * of this function becomes more than just an advisory
878  * snapshot in time. The timeline lock must protect the
879  * seqno from racing submissions on the same exec_queue.
880  * Typically vm->resv, but user-created timeline locks use the migrate vm
881  * and never grabs the migrate vm->resv so we have a race there.
882  *
883  * Return: True if the exec_queue is idle, false otherwise.
884  */
885 bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
886 {
887 	if (xe_exec_queue_is_parallel(q)) {
888 		int i;
889 
890 		for (i = 0; i < q->width; ++i) {
891 			if (xe_lrc_seqno(q->lrc[i]) !=
892 			    q->lrc[i]->fence_ctx.next_seqno - 1)
893 				return false;
894 		}
895 
896 		return true;
897 	}
898 
899 	return xe_lrc_seqno(q->lrc[0]) ==
900 		q->lrc[0]->fence_ctx.next_seqno - 1;
901 }
902 
903 /**
904  * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
905  * from hw
906  * @q: The exec queue
907  *
908  * Update the timestamp saved by HW for this exec queue and save run ticks
909  * calculated by using the delta from last update.
910  */
911 void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
912 {
913 	struct xe_device *xe = gt_to_xe(q->gt);
914 	struct xe_lrc *lrc;
915 	u64 old_ts, new_ts;
916 	int idx;
917 
918 	/*
919 	 * Jobs that are executed by kernel doesn't have a corresponding xe_file
920 	 * and thus are not accounted.
921 	 */
922 	if (!q->xef)
923 		return;
924 
925 	/* Synchronize with unbind while holding the xe file open */
926 	if (!drm_dev_enter(&xe->drm, &idx))
927 		return;
928 	/*
929 	 * Only sample the first LRC. For parallel submission, all of them are
930 	 * scheduled together and we compensate that below by multiplying by
931 	 * width - this may introduce errors if that premise is not true and
932 	 * they don't exit 100% aligned. On the other hand, looping through
933 	 * the LRCs and reading them in different time could also introduce
934 	 * errors.
935 	 */
936 	lrc = q->lrc[0];
937 	new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
938 	q->xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
939 
940 	drm_dev_exit(idx);
941 }
942 
943 /**
944  * xe_exec_queue_kill - permanently stop all execution from an exec queue
945  * @q: The exec queue
946  *
947  * This function permanently stops all activity on an exec queue. If the queue
948  * is actively executing on the HW, it will be kicked off the engine; any
949  * pending jobs are discarded and all future submissions are rejected.
950  * This function is safe to call multiple times.
951  */
952 void xe_exec_queue_kill(struct xe_exec_queue *q)
953 {
954 	struct xe_exec_queue *eq = q, *next;
955 
956 	list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
957 				 multi_gt_link) {
958 		q->ops->kill(eq);
959 		xe_vm_remove_compute_exec_queue(q->vm, eq);
960 	}
961 
962 	q->ops->kill(q);
963 	xe_vm_remove_compute_exec_queue(q->vm, q);
964 }
965 
966 int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
967 				struct drm_file *file)
968 {
969 	struct xe_device *xe = to_xe_device(dev);
970 	struct xe_file *xef = to_xe_file(file);
971 	struct drm_xe_exec_queue_destroy *args = data;
972 	struct xe_exec_queue *q;
973 
974 	if (XE_IOCTL_DBG(xe, args->pad) ||
975 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
976 		return -EINVAL;
977 
978 	mutex_lock(&xef->exec_queue.lock);
979 	q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
980 	if (q)
981 		atomic_inc(&xef->exec_queue.pending_removal);
982 	mutex_unlock(&xef->exec_queue.lock);
983 
984 	if (XE_IOCTL_DBG(xe, !q))
985 		return -ENOENT;
986 
987 	if (q->vm && q->hwe->hw_engine_group)
988 		xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
989 
990 	xe_exec_queue_kill(q);
991 
992 	trace_xe_exec_queue_close(q);
993 	xe_exec_queue_put(q);
994 
995 	return 0;
996 }
997 
998 static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
999 						    struct xe_vm *vm)
1000 {
1001 	if (q->flags & EXEC_QUEUE_FLAG_VM) {
1002 		lockdep_assert_held(&vm->lock);
1003 	} else {
1004 		xe_vm_assert_held(vm);
1005 		lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
1006 	}
1007 }
1008 
1009 /**
1010  * xe_exec_queue_last_fence_put() - Drop ref to last fence
1011  * @q: The exec queue
1012  * @vm: The VM the engine does a bind or exec for
1013  */
1014 void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
1015 {
1016 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1017 
1018 	xe_exec_queue_last_fence_put_unlocked(q);
1019 }
1020 
1021 /**
1022  * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
1023  * @q: The exec queue
1024  *
1025  * Only safe to be called from xe_exec_queue_destroy().
1026  */
1027 void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
1028 {
1029 	if (q->last_fence) {
1030 		dma_fence_put(q->last_fence);
1031 		q->last_fence = NULL;
1032 	}
1033 }
1034 
1035 /**
1036  * xe_exec_queue_last_fence_get() - Get last fence
1037  * @q: The exec queue
1038  * @vm: The VM the engine does a bind or exec for
1039  *
1040  * Get last fence, takes a ref
1041  *
1042  * Returns: last fence if not signaled, dma fence stub if signaled
1043  */
1044 struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
1045 					       struct xe_vm *vm)
1046 {
1047 	struct dma_fence *fence;
1048 
1049 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1050 
1051 	if (q->last_fence &&
1052 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
1053 		xe_exec_queue_last_fence_put(q, vm);
1054 
1055 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
1056 	dma_fence_get(fence);
1057 	return fence;
1058 }
1059 
1060 /**
1061  * xe_exec_queue_last_fence_get_for_resume() - Get last fence
1062  * @q: The exec queue
1063  * @vm: The VM the engine does a bind or exec for
1064  *
1065  * Get last fence, takes a ref. Only safe to be called in the context of
1066  * resuming the hw engine group's long-running exec queue, when the group
1067  * semaphore is held.
1068  *
1069  * Returns: last fence if not signaled, dma fence stub if signaled
1070  */
1071 struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
1072 							  struct xe_vm *vm)
1073 {
1074 	struct dma_fence *fence;
1075 
1076 	lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
1077 
1078 	if (q->last_fence &&
1079 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
1080 		xe_exec_queue_last_fence_put_unlocked(q);
1081 
1082 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
1083 	dma_fence_get(fence);
1084 	return fence;
1085 }
1086 
1087 /**
1088  * xe_exec_queue_last_fence_set() - Set last fence
1089  * @q: The exec queue
1090  * @vm: The VM the engine does a bind or exec for
1091  * @fence: The fence
1092  *
1093  * Set the last fence for the engine. Increases reference count for fence, when
1094  * closing engine xe_exec_queue_last_fence_put should be called.
1095  */
1096 void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
1097 				  struct dma_fence *fence)
1098 {
1099 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1100 
1101 	xe_exec_queue_last_fence_put(q, vm);
1102 	q->last_fence = dma_fence_get(fence);
1103 }
1104 
1105 /**
1106  * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue
1107  * @q: The exec queue
1108  * @vm: The VM the engine does a bind or exec for
1109  *
1110  * Returns:
1111  * -ETIME if there exists an unsignalled last fence dependency, zero otherwise.
1112  */
1113 int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm)
1114 {
1115 	struct dma_fence *fence;
1116 	int err = 0;
1117 
1118 	fence = xe_exec_queue_last_fence_get(q, vm);
1119 	if (fence) {
1120 		err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ?
1121 			0 : -ETIME;
1122 		dma_fence_put(fence);
1123 	}
1124 
1125 	return err;
1126 }
1127 
1128 /**
1129  * xe_exec_queue_contexts_hwsp_rebase - Re-compute GGTT references
1130  * within all LRCs of a queue.
1131  * @q: the &xe_exec_queue struct instance containing target LRCs
1132  * @scratch: scratch buffer to be used as temporary storage
1133  *
1134  * Returns: zero on success, negative error code on failure
1135  */
1136 int xe_exec_queue_contexts_hwsp_rebase(struct xe_exec_queue *q, void *scratch)
1137 {
1138 	int i;
1139 	int err = 0;
1140 
1141 	for (i = 0; i < q->width; ++i) {
1142 		struct xe_lrc *lrc;
1143 
1144 		/* Pairs with WRITE_ONCE in __xe_exec_queue_init  */
1145 		lrc = READ_ONCE(q->lrc[i]);
1146 		if (!lrc)
1147 			continue;
1148 
1149 		xe_lrc_update_memirq_regs_with_address(lrc, q->hwe, scratch);
1150 		xe_lrc_update_hwctx_regs_with_address(lrc);
1151 		err = xe_lrc_setup_wa_bb_with_scratch(lrc, q->hwe, scratch);
1152 		if (err)
1153 			break;
1154 	}
1155 
1156 	return err;
1157 }
1158