1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_exec_queue.h" 7 8 #include <linux/nospec.h> 9 10 #include <drm/drm_device.h> 11 #include <drm/drm_file.h> 12 #include <drm/xe_drm.h> 13 14 #include "xe_device.h" 15 #include "xe_gt.h" 16 #include "xe_hw_engine_class_sysfs.h" 17 #include "xe_hw_fence.h" 18 #include "xe_lrc.h" 19 #include "xe_macros.h" 20 #include "xe_migrate.h" 21 #include "xe_pm.h" 22 #include "xe_ring_ops_types.h" 23 #include "xe_trace.h" 24 #include "xe_vm.h" 25 26 enum xe_exec_queue_sched_prop { 27 XE_EXEC_QUEUE_JOB_TIMEOUT = 0, 28 XE_EXEC_QUEUE_TIMESLICE = 1, 29 XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2, 30 XE_EXEC_QUEUE_SCHED_PROP_MAX = 3, 31 }; 32 33 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q, 34 u64 extensions, int ext_number); 35 36 static void __xe_exec_queue_free(struct xe_exec_queue *q) 37 { 38 if (q->vm) 39 xe_vm_put(q->vm); 40 41 if (q->xef) 42 xe_file_put(q->xef); 43 44 kfree(q); 45 } 46 47 static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe, 48 struct xe_vm *vm, 49 u32 logical_mask, 50 u16 width, struct xe_hw_engine *hwe, 51 u32 flags, u64 extensions) 52 { 53 struct xe_exec_queue *q; 54 struct xe_gt *gt = hwe->gt; 55 int err; 56 57 /* only kernel queues can be permanent */ 58 XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL)); 59 60 q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL); 61 if (!q) 62 return ERR_PTR(-ENOMEM); 63 64 kref_init(&q->refcount); 65 q->flags = flags; 66 q->hwe = hwe; 67 q->gt = gt; 68 q->class = hwe->class; 69 q->width = width; 70 q->logical_mask = logical_mask; 71 q->fence_irq = >->fence_irq[hwe->class]; 72 q->ring_ops = gt->ring_ops[hwe->class]; 73 q->ops = gt->exec_queue_ops; 74 INIT_LIST_HEAD(&q->lr.link); 75 INIT_LIST_HEAD(&q->multi_gt_link); 76 77 q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us; 78 q->sched_props.preempt_timeout_us = 79 hwe->eclass->sched_props.preempt_timeout_us; 80 q->sched_props.job_timeout_ms = 81 hwe->eclass->sched_props.job_timeout_ms; 82 if (q->flags & EXEC_QUEUE_FLAG_KERNEL && 83 q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY) 84 q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL; 85 else 86 q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL; 87 88 if (vm) 89 q->vm = xe_vm_get(vm); 90 91 if (extensions) { 92 /* 93 * may set q->usm, must come before xe_lrc_create(), 94 * may overwrite q->sched_props, must come before q->ops->init() 95 */ 96 err = exec_queue_user_extensions(xe, q, extensions, 0); 97 if (err) { 98 __xe_exec_queue_free(q); 99 return ERR_PTR(err); 100 } 101 } 102 103 return q; 104 } 105 106 static int __xe_exec_queue_init(struct xe_exec_queue *q) 107 { 108 struct xe_vm *vm = q->vm; 109 int i, err; 110 111 if (vm) { 112 err = xe_vm_lock(vm, true); 113 if (err) 114 return err; 115 } 116 117 for (i = 0; i < q->width; ++i) { 118 q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K); 119 if (IS_ERR(q->lrc[i])) { 120 err = PTR_ERR(q->lrc[i]); 121 goto err_unlock; 122 } 123 } 124 125 if (vm) 126 xe_vm_unlock(vm); 127 128 err = q->ops->init(q); 129 if (err) 130 goto err_lrc; 131 132 return 0; 133 134 err_unlock: 135 if (vm) 136 xe_vm_unlock(vm); 137 err_lrc: 138 for (i = i - 1; i >= 0; --i) 139 xe_lrc_put(q->lrc[i]); 140 return err; 141 } 142 143 struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm, 144 u32 logical_mask, u16 width, 145 struct xe_hw_engine *hwe, u32 flags, 146 u64 extensions) 147 { 148 struct xe_exec_queue *q; 149 int err; 150 151 q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags, 152 extensions); 153 if (IS_ERR(q)) 154 return q; 155 156 err = __xe_exec_queue_init(q); 157 if (err) 158 goto err_post_alloc; 159 160 return q; 161 162 err_post_alloc: 163 __xe_exec_queue_free(q); 164 return ERR_PTR(err); 165 } 166 167 struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt, 168 struct xe_vm *vm, 169 enum xe_engine_class class, u32 flags) 170 { 171 struct xe_hw_engine *hwe, *hwe0 = NULL; 172 enum xe_hw_engine_id id; 173 u32 logical_mask = 0; 174 175 for_each_hw_engine(hwe, gt, id) { 176 if (xe_hw_engine_is_reserved(hwe)) 177 continue; 178 179 if (hwe->class == class) { 180 logical_mask |= BIT(hwe->logical_instance); 181 if (!hwe0) 182 hwe0 = hwe; 183 } 184 } 185 186 if (!logical_mask) 187 return ERR_PTR(-ENODEV); 188 189 return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, 0); 190 } 191 192 void xe_exec_queue_destroy(struct kref *ref) 193 { 194 struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount); 195 struct xe_exec_queue *eq, *next; 196 197 xe_exec_queue_last_fence_put_unlocked(q); 198 if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) { 199 list_for_each_entry_safe(eq, next, &q->multi_gt_list, 200 multi_gt_link) 201 xe_exec_queue_put(eq); 202 } 203 204 q->ops->fini(q); 205 } 206 207 void xe_exec_queue_fini(struct xe_exec_queue *q) 208 { 209 int i; 210 211 for (i = 0; i < q->width; ++i) 212 xe_lrc_put(q->lrc[i]); 213 __xe_exec_queue_free(q); 214 } 215 216 void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance) 217 { 218 switch (q->class) { 219 case XE_ENGINE_CLASS_RENDER: 220 snprintf(q->name, sizeof(q->name), "rcs%d", instance); 221 break; 222 case XE_ENGINE_CLASS_VIDEO_DECODE: 223 snprintf(q->name, sizeof(q->name), "vcs%d", instance); 224 break; 225 case XE_ENGINE_CLASS_VIDEO_ENHANCE: 226 snprintf(q->name, sizeof(q->name), "vecs%d", instance); 227 break; 228 case XE_ENGINE_CLASS_COPY: 229 snprintf(q->name, sizeof(q->name), "bcs%d", instance); 230 break; 231 case XE_ENGINE_CLASS_COMPUTE: 232 snprintf(q->name, sizeof(q->name), "ccs%d", instance); 233 break; 234 case XE_ENGINE_CLASS_OTHER: 235 snprintf(q->name, sizeof(q->name), "gsccs%d", instance); 236 break; 237 default: 238 XE_WARN_ON(q->class); 239 } 240 } 241 242 struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id) 243 { 244 struct xe_exec_queue *q; 245 246 mutex_lock(&xef->exec_queue.lock); 247 q = xa_load(&xef->exec_queue.xa, id); 248 if (q) 249 xe_exec_queue_get(q); 250 mutex_unlock(&xef->exec_queue.lock); 251 252 return q; 253 } 254 255 enum xe_exec_queue_priority 256 xe_exec_queue_device_get_max_priority(struct xe_device *xe) 257 { 258 return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH : 259 XE_EXEC_QUEUE_PRIORITY_NORMAL; 260 } 261 262 static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q, 263 u64 value) 264 { 265 if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH)) 266 return -EINVAL; 267 268 if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe))) 269 return -EPERM; 270 271 q->sched_props.priority = value; 272 return 0; 273 } 274 275 static bool xe_exec_queue_enforce_schedule_limit(void) 276 { 277 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT) 278 return true; 279 #else 280 return !capable(CAP_SYS_NICE); 281 #endif 282 } 283 284 static void 285 xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass, 286 enum xe_exec_queue_sched_prop prop, 287 u32 *min, u32 *max) 288 { 289 switch (prop) { 290 case XE_EXEC_QUEUE_JOB_TIMEOUT: 291 *min = eclass->sched_props.job_timeout_min; 292 *max = eclass->sched_props.job_timeout_max; 293 break; 294 case XE_EXEC_QUEUE_TIMESLICE: 295 *min = eclass->sched_props.timeslice_min; 296 *max = eclass->sched_props.timeslice_max; 297 break; 298 case XE_EXEC_QUEUE_PREEMPT_TIMEOUT: 299 *min = eclass->sched_props.preempt_timeout_min; 300 *max = eclass->sched_props.preempt_timeout_max; 301 break; 302 default: 303 break; 304 } 305 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT) 306 if (capable(CAP_SYS_NICE)) { 307 switch (prop) { 308 case XE_EXEC_QUEUE_JOB_TIMEOUT: 309 *min = XE_HW_ENGINE_JOB_TIMEOUT_MIN; 310 *max = XE_HW_ENGINE_JOB_TIMEOUT_MAX; 311 break; 312 case XE_EXEC_QUEUE_TIMESLICE: 313 *min = XE_HW_ENGINE_TIMESLICE_MIN; 314 *max = XE_HW_ENGINE_TIMESLICE_MAX; 315 break; 316 case XE_EXEC_QUEUE_PREEMPT_TIMEOUT: 317 *min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN; 318 *max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX; 319 break; 320 default: 321 break; 322 } 323 } 324 #endif 325 } 326 327 static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q, 328 u64 value) 329 { 330 u32 min = 0, max = 0; 331 332 xe_exec_queue_get_prop_minmax(q->hwe->eclass, 333 XE_EXEC_QUEUE_TIMESLICE, &min, &max); 334 335 if (xe_exec_queue_enforce_schedule_limit() && 336 !xe_hw_engine_timeout_in_range(value, min, max)) 337 return -EINVAL; 338 339 q->sched_props.timeslice_us = value; 340 return 0; 341 } 342 343 typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe, 344 struct xe_exec_queue *q, 345 u64 value); 346 347 static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = { 348 [DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority, 349 [DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice, 350 }; 351 352 static int exec_queue_user_ext_set_property(struct xe_device *xe, 353 struct xe_exec_queue *q, 354 u64 extension) 355 { 356 u64 __user *address = u64_to_user_ptr(extension); 357 struct drm_xe_ext_set_property ext; 358 int err; 359 u32 idx; 360 361 err = __copy_from_user(&ext, address, sizeof(ext)); 362 if (XE_IOCTL_DBG(xe, err)) 363 return -EFAULT; 364 365 if (XE_IOCTL_DBG(xe, ext.property >= 366 ARRAY_SIZE(exec_queue_set_property_funcs)) || 367 XE_IOCTL_DBG(xe, ext.pad) || 368 XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY && 369 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE)) 370 return -EINVAL; 371 372 idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs)); 373 if (!exec_queue_set_property_funcs[idx]) 374 return -EINVAL; 375 376 return exec_queue_set_property_funcs[idx](xe, q, ext.value); 377 } 378 379 typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe, 380 struct xe_exec_queue *q, 381 u64 extension); 382 383 static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = { 384 [DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property, 385 }; 386 387 #define MAX_USER_EXTENSIONS 16 388 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q, 389 u64 extensions, int ext_number) 390 { 391 u64 __user *address = u64_to_user_ptr(extensions); 392 struct drm_xe_user_extension ext; 393 int err; 394 u32 idx; 395 396 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) 397 return -E2BIG; 398 399 err = __copy_from_user(&ext, address, sizeof(ext)); 400 if (XE_IOCTL_DBG(xe, err)) 401 return -EFAULT; 402 403 if (XE_IOCTL_DBG(xe, ext.pad) || 404 XE_IOCTL_DBG(xe, ext.name >= 405 ARRAY_SIZE(exec_queue_user_extension_funcs))) 406 return -EINVAL; 407 408 idx = array_index_nospec(ext.name, 409 ARRAY_SIZE(exec_queue_user_extension_funcs)); 410 err = exec_queue_user_extension_funcs[idx](xe, q, extensions); 411 if (XE_IOCTL_DBG(xe, err)) 412 return err; 413 414 if (ext.next_extension) 415 return exec_queue_user_extensions(xe, q, ext.next_extension, 416 ++ext_number); 417 418 return 0; 419 } 420 421 static const enum xe_engine_class user_to_xe_engine_class[] = { 422 [DRM_XE_ENGINE_CLASS_RENDER] = XE_ENGINE_CLASS_RENDER, 423 [DRM_XE_ENGINE_CLASS_COPY] = XE_ENGINE_CLASS_COPY, 424 [DRM_XE_ENGINE_CLASS_VIDEO_DECODE] = XE_ENGINE_CLASS_VIDEO_DECODE, 425 [DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE] = XE_ENGINE_CLASS_VIDEO_ENHANCE, 426 [DRM_XE_ENGINE_CLASS_COMPUTE] = XE_ENGINE_CLASS_COMPUTE, 427 }; 428 429 static struct xe_hw_engine * 430 find_hw_engine(struct xe_device *xe, 431 struct drm_xe_engine_class_instance eci) 432 { 433 u32 idx; 434 435 if (eci.engine_class >= ARRAY_SIZE(user_to_xe_engine_class)) 436 return NULL; 437 438 if (eci.gt_id >= xe->info.gt_count) 439 return NULL; 440 441 idx = array_index_nospec(eci.engine_class, 442 ARRAY_SIZE(user_to_xe_engine_class)); 443 444 return xe_gt_hw_engine(xe_device_get_gt(xe, eci.gt_id), 445 user_to_xe_engine_class[idx], 446 eci.engine_instance, true); 447 } 448 449 static u32 bind_exec_queue_logical_mask(struct xe_device *xe, struct xe_gt *gt, 450 struct drm_xe_engine_class_instance *eci, 451 u16 width, u16 num_placements) 452 { 453 struct xe_hw_engine *hwe; 454 enum xe_hw_engine_id id; 455 u32 logical_mask = 0; 456 457 if (XE_IOCTL_DBG(xe, width != 1)) 458 return 0; 459 if (XE_IOCTL_DBG(xe, num_placements != 1)) 460 return 0; 461 if (XE_IOCTL_DBG(xe, eci[0].engine_instance != 0)) 462 return 0; 463 464 eci[0].engine_class = DRM_XE_ENGINE_CLASS_COPY; 465 466 for_each_hw_engine(hwe, gt, id) { 467 if (xe_hw_engine_is_reserved(hwe)) 468 continue; 469 470 if (hwe->class == 471 user_to_xe_engine_class[DRM_XE_ENGINE_CLASS_COPY]) 472 logical_mask |= BIT(hwe->logical_instance); 473 } 474 475 return logical_mask; 476 } 477 478 static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt, 479 struct drm_xe_engine_class_instance *eci, 480 u16 width, u16 num_placements) 481 { 482 int len = width * num_placements; 483 int i, j, n; 484 u16 class; 485 u16 gt_id; 486 u32 return_mask = 0, prev_mask; 487 488 if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) && 489 len > 1)) 490 return 0; 491 492 for (i = 0; i < width; ++i) { 493 u32 current_mask = 0; 494 495 for (j = 0; j < num_placements; ++j) { 496 struct xe_hw_engine *hwe; 497 498 n = j * width + i; 499 500 hwe = find_hw_engine(xe, eci[n]); 501 if (XE_IOCTL_DBG(xe, !hwe)) 502 return 0; 503 504 if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe))) 505 return 0; 506 507 if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) || 508 XE_IOCTL_DBG(xe, n && eci[n].engine_class != class)) 509 return 0; 510 511 class = eci[n].engine_class; 512 gt_id = eci[n].gt_id; 513 514 if (width == 1 || !i) 515 return_mask |= BIT(eci[n].engine_instance); 516 current_mask |= BIT(eci[n].engine_instance); 517 } 518 519 /* Parallel submissions must be logically contiguous */ 520 if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1)) 521 return 0; 522 523 prev_mask = current_mask; 524 } 525 526 return return_mask; 527 } 528 529 int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data, 530 struct drm_file *file) 531 { 532 struct xe_device *xe = to_xe_device(dev); 533 struct xe_file *xef = to_xe_file(file); 534 struct drm_xe_exec_queue_create *args = data; 535 struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE]; 536 struct drm_xe_engine_class_instance __user *user_eci = 537 u64_to_user_ptr(args->instances); 538 struct xe_hw_engine *hwe; 539 struct xe_vm *vm, *migrate_vm; 540 struct xe_gt *gt; 541 struct xe_exec_queue *q = NULL; 542 u32 logical_mask; 543 u32 id; 544 u32 len; 545 int err; 546 547 if (XE_IOCTL_DBG(xe, args->flags) || 548 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 549 return -EINVAL; 550 551 len = args->width * args->num_placements; 552 if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE)) 553 return -EINVAL; 554 555 err = __copy_from_user(eci, user_eci, 556 sizeof(struct drm_xe_engine_class_instance) * 557 len); 558 if (XE_IOCTL_DBG(xe, err)) 559 return -EFAULT; 560 561 if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count)) 562 return -EINVAL; 563 564 if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) { 565 for_each_gt(gt, xe, id) { 566 struct xe_exec_queue *new; 567 u32 flags; 568 569 if (xe_gt_is_media_type(gt)) 570 continue; 571 572 eci[0].gt_id = gt->info.id; 573 logical_mask = bind_exec_queue_logical_mask(xe, gt, eci, 574 args->width, 575 args->num_placements); 576 if (XE_IOCTL_DBG(xe, !logical_mask)) 577 return -EINVAL; 578 579 hwe = find_hw_engine(xe, eci[0]); 580 if (XE_IOCTL_DBG(xe, !hwe)) 581 return -EINVAL; 582 583 /* The migration vm doesn't hold rpm ref */ 584 xe_pm_runtime_get_noresume(xe); 585 586 flags = EXEC_QUEUE_FLAG_VM | (id ? EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD : 0); 587 588 migrate_vm = xe_migrate_get_vm(gt_to_tile(gt)->migrate); 589 new = xe_exec_queue_create(xe, migrate_vm, logical_mask, 590 args->width, hwe, flags, 591 args->extensions); 592 593 xe_pm_runtime_put(xe); /* now held by engine */ 594 595 xe_vm_put(migrate_vm); 596 if (IS_ERR(new)) { 597 err = PTR_ERR(new); 598 if (q) 599 goto put_exec_queue; 600 return err; 601 } 602 if (id == 0) 603 q = new; 604 else 605 list_add_tail(&new->multi_gt_list, 606 &q->multi_gt_link); 607 } 608 } else { 609 gt = xe_device_get_gt(xe, eci[0].gt_id); 610 logical_mask = calc_validate_logical_mask(xe, gt, eci, 611 args->width, 612 args->num_placements); 613 if (XE_IOCTL_DBG(xe, !logical_mask)) 614 return -EINVAL; 615 616 hwe = find_hw_engine(xe, eci[0]); 617 if (XE_IOCTL_DBG(xe, !hwe)) 618 return -EINVAL; 619 620 vm = xe_vm_lookup(xef, args->vm_id); 621 if (XE_IOCTL_DBG(xe, !vm)) 622 return -ENOENT; 623 624 err = down_read_interruptible(&vm->lock); 625 if (err) { 626 xe_vm_put(vm); 627 return err; 628 } 629 630 if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) { 631 up_read(&vm->lock); 632 xe_vm_put(vm); 633 return -ENOENT; 634 } 635 636 q = xe_exec_queue_create(xe, vm, logical_mask, 637 args->width, hwe, 0, 638 args->extensions); 639 up_read(&vm->lock); 640 xe_vm_put(vm); 641 if (IS_ERR(q)) 642 return PTR_ERR(q); 643 644 if (xe_vm_in_preempt_fence_mode(vm)) { 645 q->lr.context = dma_fence_context_alloc(1); 646 647 err = xe_vm_add_compute_exec_queue(vm, q); 648 if (XE_IOCTL_DBG(xe, err)) 649 goto put_exec_queue; 650 } 651 } 652 653 mutex_lock(&xef->exec_queue.lock); 654 err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL); 655 mutex_unlock(&xef->exec_queue.lock); 656 if (err) 657 goto kill_exec_queue; 658 659 args->exec_queue_id = id; 660 q->xef = xe_file_get(xef); 661 662 return 0; 663 664 kill_exec_queue: 665 xe_exec_queue_kill(q); 666 put_exec_queue: 667 xe_exec_queue_put(q); 668 return err; 669 } 670 671 int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data, 672 struct drm_file *file) 673 { 674 struct xe_device *xe = to_xe_device(dev); 675 struct xe_file *xef = to_xe_file(file); 676 struct drm_xe_exec_queue_get_property *args = data; 677 struct xe_exec_queue *q; 678 int ret; 679 680 if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 681 return -EINVAL; 682 683 q = xe_exec_queue_lookup(xef, args->exec_queue_id); 684 if (XE_IOCTL_DBG(xe, !q)) 685 return -ENOENT; 686 687 switch (args->property) { 688 case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN: 689 args->value = q->ops->reset_status(q); 690 ret = 0; 691 break; 692 default: 693 ret = -EINVAL; 694 } 695 696 xe_exec_queue_put(q); 697 698 return ret; 699 } 700 701 /** 702 * xe_exec_queue_is_lr() - Whether an exec_queue is long-running 703 * @q: The exec_queue 704 * 705 * Return: True if the exec_queue is long-running, false otherwise. 706 */ 707 bool xe_exec_queue_is_lr(struct xe_exec_queue *q) 708 { 709 return q->vm && xe_vm_in_lr_mode(q->vm) && 710 !(q->flags & EXEC_QUEUE_FLAG_VM); 711 } 712 713 static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q) 714 { 715 return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1; 716 } 717 718 /** 719 * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full 720 * @q: The exec_queue 721 * 722 * Return: True if the exec_queue's ring is full, false otherwise. 723 */ 724 bool xe_exec_queue_ring_full(struct xe_exec_queue *q) 725 { 726 struct xe_lrc *lrc = q->lrc[0]; 727 s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES; 728 729 return xe_exec_queue_num_job_inflight(q) >= max_job; 730 } 731 732 /** 733 * xe_exec_queue_is_idle() - Whether an exec_queue is idle. 734 * @q: The exec_queue 735 * 736 * FIXME: Need to determine what to use as the short-lived 737 * timeline lock for the exec_queues, so that the return value 738 * of this function becomes more than just an advisory 739 * snapshot in time. The timeline lock must protect the 740 * seqno from racing submissions on the same exec_queue. 741 * Typically vm->resv, but user-created timeline locks use the migrate vm 742 * and never grabs the migrate vm->resv so we have a race there. 743 * 744 * Return: True if the exec_queue is idle, false otherwise. 745 */ 746 bool xe_exec_queue_is_idle(struct xe_exec_queue *q) 747 { 748 if (xe_exec_queue_is_parallel(q)) { 749 int i; 750 751 for (i = 0; i < q->width; ++i) { 752 if (xe_lrc_seqno(q->lrc[i]) != 753 q->lrc[i]->fence_ctx.next_seqno - 1) 754 return false; 755 } 756 757 return true; 758 } 759 760 return xe_lrc_seqno(q->lrc[0]) == 761 q->lrc[0]->fence_ctx.next_seqno - 1; 762 } 763 764 /** 765 * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue 766 * from hw 767 * @q: The exec queue 768 * 769 * Update the timestamp saved by HW for this exec queue and save run ticks 770 * calculated by using the delta from last update. 771 */ 772 void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q) 773 { 774 struct xe_file *xef; 775 struct xe_lrc *lrc; 776 u32 old_ts, new_ts; 777 778 /* 779 * Jobs that are run during driver load may use an exec_queue, but are 780 * not associated with a user xe file, so avoid accumulating busyness 781 * for kernel specific work. 782 */ 783 if (!q->vm || !q->vm->xef) 784 return; 785 786 xef = q->vm->xef; 787 788 /* 789 * Only sample the first LRC. For parallel submission, all of them are 790 * scheduled together and we compensate that below by multiplying by 791 * width - this may introduce errors if that premise is not true and 792 * they don't exit 100% aligned. On the other hand, looping through 793 * the LRCs and reading them in different time could also introduce 794 * errors. 795 */ 796 lrc = q->lrc[0]; 797 new_ts = xe_lrc_update_timestamp(lrc, &old_ts); 798 xef->run_ticks[q->class] += (new_ts - old_ts) * q->width; 799 } 800 801 void xe_exec_queue_kill(struct xe_exec_queue *q) 802 { 803 struct xe_exec_queue *eq = q, *next; 804 805 list_for_each_entry_safe(eq, next, &eq->multi_gt_list, 806 multi_gt_link) { 807 q->ops->kill(eq); 808 xe_vm_remove_compute_exec_queue(q->vm, eq); 809 } 810 811 q->ops->kill(q); 812 xe_vm_remove_compute_exec_queue(q->vm, q); 813 } 814 815 int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data, 816 struct drm_file *file) 817 { 818 struct xe_device *xe = to_xe_device(dev); 819 struct xe_file *xef = to_xe_file(file); 820 struct drm_xe_exec_queue_destroy *args = data; 821 struct xe_exec_queue *q; 822 823 if (XE_IOCTL_DBG(xe, args->pad) || 824 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 825 return -EINVAL; 826 827 mutex_lock(&xef->exec_queue.lock); 828 q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id); 829 mutex_unlock(&xef->exec_queue.lock); 830 if (XE_IOCTL_DBG(xe, !q)) 831 return -ENOENT; 832 833 xe_exec_queue_kill(q); 834 835 trace_xe_exec_queue_close(q); 836 xe_exec_queue_put(q); 837 838 return 0; 839 } 840 841 static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q, 842 struct xe_vm *vm) 843 { 844 if (q->flags & EXEC_QUEUE_FLAG_VM) 845 lockdep_assert_held(&vm->lock); 846 else 847 xe_vm_assert_held(vm); 848 } 849 850 /** 851 * xe_exec_queue_last_fence_put() - Drop ref to last fence 852 * @q: The exec queue 853 * @vm: The VM the engine does a bind or exec for 854 */ 855 void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm) 856 { 857 xe_exec_queue_last_fence_lockdep_assert(q, vm); 858 859 if (q->last_fence) { 860 dma_fence_put(q->last_fence); 861 q->last_fence = NULL; 862 } 863 } 864 865 /** 866 * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked 867 * @q: The exec queue 868 * 869 * Only safe to be called from xe_exec_queue_destroy(). 870 */ 871 void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q) 872 { 873 if (q->last_fence) { 874 dma_fence_put(q->last_fence); 875 q->last_fence = NULL; 876 } 877 } 878 879 /** 880 * xe_exec_queue_last_fence_get() - Get last fence 881 * @q: The exec queue 882 * @vm: The VM the engine does a bind or exec for 883 * 884 * Get last fence, takes a ref 885 * 886 * Returns: last fence if not signaled, dma fence stub if signaled 887 */ 888 struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q, 889 struct xe_vm *vm) 890 { 891 struct dma_fence *fence; 892 893 xe_exec_queue_last_fence_lockdep_assert(q, vm); 894 895 if (q->last_fence && 896 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags)) 897 xe_exec_queue_last_fence_put(q, vm); 898 899 fence = q->last_fence ? q->last_fence : dma_fence_get_stub(); 900 dma_fence_get(fence); 901 return fence; 902 } 903 904 /** 905 * xe_exec_queue_last_fence_set() - Set last fence 906 * @q: The exec queue 907 * @vm: The VM the engine does a bind or exec for 908 * @fence: The fence 909 * 910 * Set the last fence for the engine. Increases reference count for fence, when 911 * closing engine xe_exec_queue_last_fence_put should be called. 912 */ 913 void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm, 914 struct dma_fence *fence) 915 { 916 xe_exec_queue_last_fence_lockdep_assert(q, vm); 917 918 xe_exec_queue_last_fence_put(q, vm); 919 q->last_fence = dma_fence_get(fence); 920 } 921