xref: /linux/drivers/gpu/drm/xe/xe_exec_queue.c (revision c156ef573efe4230ef3dc1ff2ec0038fe0eb217f)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_exec_queue.h"
7 
8 #include <linux/nospec.h>
9 
10 #include <drm/drm_device.h>
11 #include <drm/drm_file.h>
12 #include <uapi/drm/xe_drm.h>
13 
14 #include "xe_device.h"
15 #include "xe_gt.h"
16 #include "xe_hw_engine_class_sysfs.h"
17 #include "xe_hw_engine_group.h"
18 #include "xe_hw_fence.h"
19 #include "xe_lrc.h"
20 #include "xe_macros.h"
21 #include "xe_migrate.h"
22 #include "xe_pm.h"
23 #include "xe_ring_ops_types.h"
24 #include "xe_trace.h"
25 #include "xe_vm.h"
26 
27 enum xe_exec_queue_sched_prop {
28 	XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
29 	XE_EXEC_QUEUE_TIMESLICE = 1,
30 	XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
31 	XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
32 };
33 
34 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
35 				      u64 extensions, int ext_number);
36 
37 static void __xe_exec_queue_free(struct xe_exec_queue *q)
38 {
39 	if (q->vm)
40 		xe_vm_put(q->vm);
41 
42 	if (q->xef)
43 		xe_file_put(q->xef);
44 
45 	kfree(q);
46 }
47 
48 static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
49 						   struct xe_vm *vm,
50 						   u32 logical_mask,
51 						   u16 width, struct xe_hw_engine *hwe,
52 						   u32 flags, u64 extensions)
53 {
54 	struct xe_exec_queue *q;
55 	struct xe_gt *gt = hwe->gt;
56 	int err;
57 
58 	/* only kernel queues can be permanent */
59 	XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
60 
61 	q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
62 	if (!q)
63 		return ERR_PTR(-ENOMEM);
64 
65 	kref_init(&q->refcount);
66 	q->flags = flags;
67 	q->hwe = hwe;
68 	q->gt = gt;
69 	q->class = hwe->class;
70 	q->width = width;
71 	q->logical_mask = logical_mask;
72 	q->fence_irq = &gt->fence_irq[hwe->class];
73 	q->ring_ops = gt->ring_ops[hwe->class];
74 	q->ops = gt->exec_queue_ops;
75 	INIT_LIST_HEAD(&q->lr.link);
76 	INIT_LIST_HEAD(&q->multi_gt_link);
77 	INIT_LIST_HEAD(&q->hw_engine_group_link);
78 
79 	q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
80 	q->sched_props.preempt_timeout_us =
81 				hwe->eclass->sched_props.preempt_timeout_us;
82 	q->sched_props.job_timeout_ms =
83 				hwe->eclass->sched_props.job_timeout_ms;
84 	if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
85 	    q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
86 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
87 	else
88 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
89 
90 	if (vm)
91 		q->vm = xe_vm_get(vm);
92 
93 	if (extensions) {
94 		/*
95 		 * may set q->usm, must come before xe_lrc_create(),
96 		 * may overwrite q->sched_props, must come before q->ops->init()
97 		 */
98 		err = exec_queue_user_extensions(xe, q, extensions, 0);
99 		if (err) {
100 			__xe_exec_queue_free(q);
101 			return ERR_PTR(err);
102 		}
103 	}
104 
105 	return q;
106 }
107 
108 static int __xe_exec_queue_init(struct xe_exec_queue *q)
109 {
110 	struct xe_vm *vm = q->vm;
111 	int i, err;
112 
113 	if (vm) {
114 		err = xe_vm_lock(vm, true);
115 		if (err)
116 			return err;
117 	}
118 
119 	for (i = 0; i < q->width; ++i) {
120 		q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K);
121 		if (IS_ERR(q->lrc[i])) {
122 			err = PTR_ERR(q->lrc[i]);
123 			goto err_unlock;
124 		}
125 	}
126 
127 	if (vm)
128 		xe_vm_unlock(vm);
129 
130 	err = q->ops->init(q);
131 	if (err)
132 		goto err_lrc;
133 
134 	return 0;
135 
136 err_unlock:
137 	if (vm)
138 		xe_vm_unlock(vm);
139 err_lrc:
140 	for (i = i - 1; i >= 0; --i)
141 		xe_lrc_put(q->lrc[i]);
142 	return err;
143 }
144 
145 struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
146 					   u32 logical_mask, u16 width,
147 					   struct xe_hw_engine *hwe, u32 flags,
148 					   u64 extensions)
149 {
150 	struct xe_exec_queue *q;
151 	int err;
152 
153 	q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
154 				  extensions);
155 	if (IS_ERR(q))
156 		return q;
157 
158 	err = __xe_exec_queue_init(q);
159 	if (err)
160 		goto err_post_alloc;
161 
162 	return q;
163 
164 err_post_alloc:
165 	__xe_exec_queue_free(q);
166 	return ERR_PTR(err);
167 }
168 
169 struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
170 						 struct xe_vm *vm,
171 						 enum xe_engine_class class,
172 						 u32 flags, u64 extensions)
173 {
174 	struct xe_hw_engine *hwe, *hwe0 = NULL;
175 	enum xe_hw_engine_id id;
176 	u32 logical_mask = 0;
177 
178 	for_each_hw_engine(hwe, gt, id) {
179 		if (xe_hw_engine_is_reserved(hwe))
180 			continue;
181 
182 		if (hwe->class == class) {
183 			logical_mask |= BIT(hwe->logical_instance);
184 			if (!hwe0)
185 				hwe0 = hwe;
186 		}
187 	}
188 
189 	if (!logical_mask)
190 		return ERR_PTR(-ENODEV);
191 
192 	return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
193 }
194 
195 /**
196  * xe_exec_queue_create_bind() - Create bind exec queue.
197  * @xe: Xe device.
198  * @tile: tile which bind exec queue belongs to.
199  * @flags: exec queue creation flags
200  * @extensions: exec queue creation extensions
201  *
202  * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
203  * for access to physical memory required for page table programming. On a
204  * faulting devices the reserved copy engine instance must be used to avoid
205  * deadlocking (user binds cannot get stuck behind faults as kernel binds which
206  * resolve faults depend on user binds). On non-faulting devices any copy engine
207  * can be used.
208  *
209  * Returns exec queue on success, ERR_PTR on failure
210  */
211 struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
212 						struct xe_tile *tile,
213 						u32 flags, u64 extensions)
214 {
215 	struct xe_gt *gt = tile->primary_gt;
216 	struct xe_exec_queue *q;
217 	struct xe_vm *migrate_vm;
218 
219 	migrate_vm = xe_migrate_get_vm(tile->migrate);
220 	if (xe->info.has_usm) {
221 		struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
222 							   XE_ENGINE_CLASS_COPY,
223 							   gt->usm.reserved_bcs_instance,
224 							   false);
225 
226 		if (!hwe) {
227 			xe_vm_put(migrate_vm);
228 			return ERR_PTR(-EINVAL);
229 		}
230 
231 		q = xe_exec_queue_create(xe, migrate_vm,
232 					 BIT(hwe->logical_instance), 1, hwe,
233 					 flags, extensions);
234 	} else {
235 		q = xe_exec_queue_create_class(xe, gt, migrate_vm,
236 					       XE_ENGINE_CLASS_COPY, flags,
237 					       extensions);
238 	}
239 	xe_vm_put(migrate_vm);
240 
241 	return q;
242 }
243 ALLOW_ERROR_INJECTION(xe_exec_queue_create_bind, ERRNO);
244 
245 void xe_exec_queue_destroy(struct kref *ref)
246 {
247 	struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
248 	struct xe_exec_queue *eq, *next;
249 
250 	xe_exec_queue_last_fence_put_unlocked(q);
251 	if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
252 		list_for_each_entry_safe(eq, next, &q->multi_gt_list,
253 					 multi_gt_link)
254 			xe_exec_queue_put(eq);
255 	}
256 
257 	q->ops->fini(q);
258 }
259 
260 void xe_exec_queue_fini(struct xe_exec_queue *q)
261 {
262 	int i;
263 
264 	/*
265 	 * Before releasing our ref to lrc and xef, accumulate our run ticks
266 	 * and wakeup any waiters.
267 	 */
268 	xe_exec_queue_update_run_ticks(q);
269 	if (q->xef && atomic_dec_and_test(&q->xef->exec_queue.pending_removal))
270 		wake_up_var(&q->xef->exec_queue.pending_removal);
271 
272 	for (i = 0; i < q->width; ++i)
273 		xe_lrc_put(q->lrc[i]);
274 
275 	__xe_exec_queue_free(q);
276 }
277 
278 void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
279 {
280 	switch (q->class) {
281 	case XE_ENGINE_CLASS_RENDER:
282 		snprintf(q->name, sizeof(q->name), "rcs%d", instance);
283 		break;
284 	case XE_ENGINE_CLASS_VIDEO_DECODE:
285 		snprintf(q->name, sizeof(q->name), "vcs%d", instance);
286 		break;
287 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
288 		snprintf(q->name, sizeof(q->name), "vecs%d", instance);
289 		break;
290 	case XE_ENGINE_CLASS_COPY:
291 		snprintf(q->name, sizeof(q->name), "bcs%d", instance);
292 		break;
293 	case XE_ENGINE_CLASS_COMPUTE:
294 		snprintf(q->name, sizeof(q->name), "ccs%d", instance);
295 		break;
296 	case XE_ENGINE_CLASS_OTHER:
297 		snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
298 		break;
299 	default:
300 		XE_WARN_ON(q->class);
301 	}
302 }
303 
304 struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
305 {
306 	struct xe_exec_queue *q;
307 
308 	mutex_lock(&xef->exec_queue.lock);
309 	q = xa_load(&xef->exec_queue.xa, id);
310 	if (q)
311 		xe_exec_queue_get(q);
312 	mutex_unlock(&xef->exec_queue.lock);
313 
314 	return q;
315 }
316 
317 enum xe_exec_queue_priority
318 xe_exec_queue_device_get_max_priority(struct xe_device *xe)
319 {
320 	return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
321 				       XE_EXEC_QUEUE_PRIORITY_NORMAL;
322 }
323 
324 static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
325 				   u64 value)
326 {
327 	if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
328 		return -EINVAL;
329 
330 	if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
331 		return -EPERM;
332 
333 	q->sched_props.priority = value;
334 	return 0;
335 }
336 
337 static bool xe_exec_queue_enforce_schedule_limit(void)
338 {
339 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
340 	return true;
341 #else
342 	return !capable(CAP_SYS_NICE);
343 #endif
344 }
345 
346 static void
347 xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
348 			      enum xe_exec_queue_sched_prop prop,
349 			      u32 *min, u32 *max)
350 {
351 	switch (prop) {
352 	case XE_EXEC_QUEUE_JOB_TIMEOUT:
353 		*min = eclass->sched_props.job_timeout_min;
354 		*max = eclass->sched_props.job_timeout_max;
355 		break;
356 	case XE_EXEC_QUEUE_TIMESLICE:
357 		*min = eclass->sched_props.timeslice_min;
358 		*max = eclass->sched_props.timeslice_max;
359 		break;
360 	case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
361 		*min = eclass->sched_props.preempt_timeout_min;
362 		*max = eclass->sched_props.preempt_timeout_max;
363 		break;
364 	default:
365 		break;
366 	}
367 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
368 	if (capable(CAP_SYS_NICE)) {
369 		switch (prop) {
370 		case XE_EXEC_QUEUE_JOB_TIMEOUT:
371 			*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
372 			*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
373 			break;
374 		case XE_EXEC_QUEUE_TIMESLICE:
375 			*min = XE_HW_ENGINE_TIMESLICE_MIN;
376 			*max = XE_HW_ENGINE_TIMESLICE_MAX;
377 			break;
378 		case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
379 			*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
380 			*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
381 			break;
382 		default:
383 			break;
384 		}
385 	}
386 #endif
387 }
388 
389 static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
390 				    u64 value)
391 {
392 	u32 min = 0, max = 0;
393 
394 	xe_exec_queue_get_prop_minmax(q->hwe->eclass,
395 				      XE_EXEC_QUEUE_TIMESLICE, &min, &max);
396 
397 	if (xe_exec_queue_enforce_schedule_limit() &&
398 	    !xe_hw_engine_timeout_in_range(value, min, max))
399 		return -EINVAL;
400 
401 	q->sched_props.timeslice_us = value;
402 	return 0;
403 }
404 
405 typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
406 					     struct xe_exec_queue *q,
407 					     u64 value);
408 
409 static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
410 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
411 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
412 };
413 
414 static int exec_queue_user_ext_set_property(struct xe_device *xe,
415 					    struct xe_exec_queue *q,
416 					    u64 extension)
417 {
418 	u64 __user *address = u64_to_user_ptr(extension);
419 	struct drm_xe_ext_set_property ext;
420 	int err;
421 	u32 idx;
422 
423 	err = __copy_from_user(&ext, address, sizeof(ext));
424 	if (XE_IOCTL_DBG(xe, err))
425 		return -EFAULT;
426 
427 	if (XE_IOCTL_DBG(xe, ext.property >=
428 			 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
429 	    XE_IOCTL_DBG(xe, ext.pad) ||
430 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
431 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE))
432 		return -EINVAL;
433 
434 	idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
435 	if (!exec_queue_set_property_funcs[idx])
436 		return -EINVAL;
437 
438 	return exec_queue_set_property_funcs[idx](xe, q, ext.value);
439 }
440 
441 typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
442 					       struct xe_exec_queue *q,
443 					       u64 extension);
444 
445 static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
446 	[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
447 };
448 
449 #define MAX_USER_EXTENSIONS	16
450 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
451 				      u64 extensions, int ext_number)
452 {
453 	u64 __user *address = u64_to_user_ptr(extensions);
454 	struct drm_xe_user_extension ext;
455 	int err;
456 	u32 idx;
457 
458 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
459 		return -E2BIG;
460 
461 	err = __copy_from_user(&ext, address, sizeof(ext));
462 	if (XE_IOCTL_DBG(xe, err))
463 		return -EFAULT;
464 
465 	if (XE_IOCTL_DBG(xe, ext.pad) ||
466 	    XE_IOCTL_DBG(xe, ext.name >=
467 			 ARRAY_SIZE(exec_queue_user_extension_funcs)))
468 		return -EINVAL;
469 
470 	idx = array_index_nospec(ext.name,
471 				 ARRAY_SIZE(exec_queue_user_extension_funcs));
472 	err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
473 	if (XE_IOCTL_DBG(xe, err))
474 		return err;
475 
476 	if (ext.next_extension)
477 		return exec_queue_user_extensions(xe, q, ext.next_extension,
478 						  ++ext_number);
479 
480 	return 0;
481 }
482 
483 static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt,
484 				      struct drm_xe_engine_class_instance *eci,
485 				      u16 width, u16 num_placements)
486 {
487 	int len = width * num_placements;
488 	int i, j, n;
489 	u16 class;
490 	u16 gt_id;
491 	u32 return_mask = 0, prev_mask;
492 
493 	if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
494 			 len > 1))
495 		return 0;
496 
497 	for (i = 0; i < width; ++i) {
498 		u32 current_mask = 0;
499 
500 		for (j = 0; j < num_placements; ++j) {
501 			struct xe_hw_engine *hwe;
502 
503 			n = j * width + i;
504 
505 			hwe = xe_hw_engine_lookup(xe, eci[n]);
506 			if (XE_IOCTL_DBG(xe, !hwe))
507 				return 0;
508 
509 			if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
510 				return 0;
511 
512 			if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
513 			    XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
514 				return 0;
515 
516 			class = eci[n].engine_class;
517 			gt_id = eci[n].gt_id;
518 
519 			if (width == 1 || !i)
520 				return_mask |= BIT(eci[n].engine_instance);
521 			current_mask |= BIT(eci[n].engine_instance);
522 		}
523 
524 		/* Parallel submissions must be logically contiguous */
525 		if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
526 			return 0;
527 
528 		prev_mask = current_mask;
529 	}
530 
531 	return return_mask;
532 }
533 
534 int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
535 			       struct drm_file *file)
536 {
537 	struct xe_device *xe = to_xe_device(dev);
538 	struct xe_file *xef = to_xe_file(file);
539 	struct drm_xe_exec_queue_create *args = data;
540 	struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
541 	struct drm_xe_engine_class_instance __user *user_eci =
542 		u64_to_user_ptr(args->instances);
543 	struct xe_hw_engine *hwe;
544 	struct xe_vm *vm;
545 	struct xe_gt *gt;
546 	struct xe_tile *tile;
547 	struct xe_exec_queue *q = NULL;
548 	u32 logical_mask;
549 	u32 id;
550 	u32 len;
551 	int err;
552 
553 	if (XE_IOCTL_DBG(xe, args->flags) ||
554 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
555 		return -EINVAL;
556 
557 	len = args->width * args->num_placements;
558 	if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
559 		return -EINVAL;
560 
561 	err = __copy_from_user(eci, user_eci,
562 			       sizeof(struct drm_xe_engine_class_instance) *
563 			       len);
564 	if (XE_IOCTL_DBG(xe, err))
565 		return -EFAULT;
566 
567 	if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count))
568 		return -EINVAL;
569 
570 	if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
571 		if (XE_IOCTL_DBG(xe, args->width != 1) ||
572 		    XE_IOCTL_DBG(xe, args->num_placements != 1) ||
573 		    XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
574 			return -EINVAL;
575 
576 		for_each_tile(tile, xe, id) {
577 			struct xe_exec_queue *new;
578 			u32 flags = EXEC_QUEUE_FLAG_VM;
579 
580 			if (id)
581 				flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
582 
583 			new = xe_exec_queue_create_bind(xe, tile, flags,
584 							args->extensions);
585 			if (IS_ERR(new)) {
586 				err = PTR_ERR(new);
587 				if (q)
588 					goto put_exec_queue;
589 				return err;
590 			}
591 			if (id == 0)
592 				q = new;
593 			else
594 				list_add_tail(&new->multi_gt_list,
595 					      &q->multi_gt_link);
596 		}
597 	} else {
598 		gt = xe_device_get_gt(xe, eci[0].gt_id);
599 		logical_mask = calc_validate_logical_mask(xe, gt, eci,
600 							  args->width,
601 							  args->num_placements);
602 		if (XE_IOCTL_DBG(xe, !logical_mask))
603 			return -EINVAL;
604 
605 		hwe = xe_hw_engine_lookup(xe, eci[0]);
606 		if (XE_IOCTL_DBG(xe, !hwe))
607 			return -EINVAL;
608 
609 		vm = xe_vm_lookup(xef, args->vm_id);
610 		if (XE_IOCTL_DBG(xe, !vm))
611 			return -ENOENT;
612 
613 		err = down_read_interruptible(&vm->lock);
614 		if (err) {
615 			xe_vm_put(vm);
616 			return err;
617 		}
618 
619 		if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
620 			up_read(&vm->lock);
621 			xe_vm_put(vm);
622 			return -ENOENT;
623 		}
624 
625 		q = xe_exec_queue_create(xe, vm, logical_mask,
626 					 args->width, hwe, 0,
627 					 args->extensions);
628 		up_read(&vm->lock);
629 		xe_vm_put(vm);
630 		if (IS_ERR(q))
631 			return PTR_ERR(q);
632 
633 		if (xe_vm_in_preempt_fence_mode(vm)) {
634 			q->lr.context = dma_fence_context_alloc(1);
635 
636 			err = xe_vm_add_compute_exec_queue(vm, q);
637 			if (XE_IOCTL_DBG(xe, err))
638 				goto put_exec_queue;
639 		}
640 
641 		if (q->vm && q->hwe->hw_engine_group) {
642 			err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
643 			if (err)
644 				goto put_exec_queue;
645 		}
646 	}
647 
648 	q->xef = xe_file_get(xef);
649 
650 	/* user id alloc must always be last in ioctl to prevent UAF */
651 	err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
652 	if (err)
653 		goto kill_exec_queue;
654 
655 	args->exec_queue_id = id;
656 
657 	return 0;
658 
659 kill_exec_queue:
660 	xe_exec_queue_kill(q);
661 put_exec_queue:
662 	xe_exec_queue_put(q);
663 	return err;
664 }
665 
666 int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
667 				     struct drm_file *file)
668 {
669 	struct xe_device *xe = to_xe_device(dev);
670 	struct xe_file *xef = to_xe_file(file);
671 	struct drm_xe_exec_queue_get_property *args = data;
672 	struct xe_exec_queue *q;
673 	int ret;
674 
675 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
676 		return -EINVAL;
677 
678 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
679 	if (XE_IOCTL_DBG(xe, !q))
680 		return -ENOENT;
681 
682 	switch (args->property) {
683 	case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
684 		args->value = q->ops->reset_status(q);
685 		ret = 0;
686 		break;
687 	default:
688 		ret = -EINVAL;
689 	}
690 
691 	xe_exec_queue_put(q);
692 
693 	return ret;
694 }
695 
696 /**
697  * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
698  * @q: The exec_queue
699  *
700  * Return: True if the exec_queue is long-running, false otherwise.
701  */
702 bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
703 {
704 	return q->vm && xe_vm_in_lr_mode(q->vm) &&
705 		!(q->flags & EXEC_QUEUE_FLAG_VM);
706 }
707 
708 static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
709 {
710 	return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1;
711 }
712 
713 /**
714  * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
715  * @q: The exec_queue
716  *
717  * Return: True if the exec_queue's ring is full, false otherwise.
718  */
719 bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
720 {
721 	struct xe_lrc *lrc = q->lrc[0];
722 	s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
723 
724 	return xe_exec_queue_num_job_inflight(q) >= max_job;
725 }
726 
727 /**
728  * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
729  * @q: The exec_queue
730  *
731  * FIXME: Need to determine what to use as the short-lived
732  * timeline lock for the exec_queues, so that the return value
733  * of this function becomes more than just an advisory
734  * snapshot in time. The timeline lock must protect the
735  * seqno from racing submissions on the same exec_queue.
736  * Typically vm->resv, but user-created timeline locks use the migrate vm
737  * and never grabs the migrate vm->resv so we have a race there.
738  *
739  * Return: True if the exec_queue is idle, false otherwise.
740  */
741 bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
742 {
743 	if (xe_exec_queue_is_parallel(q)) {
744 		int i;
745 
746 		for (i = 0; i < q->width; ++i) {
747 			if (xe_lrc_seqno(q->lrc[i]) !=
748 			    q->lrc[i]->fence_ctx.next_seqno - 1)
749 				return false;
750 		}
751 
752 		return true;
753 	}
754 
755 	return xe_lrc_seqno(q->lrc[0]) ==
756 		q->lrc[0]->fence_ctx.next_seqno - 1;
757 }
758 
759 /**
760  * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
761  * from hw
762  * @q: The exec queue
763  *
764  * Update the timestamp saved by HW for this exec queue and save run ticks
765  * calculated by using the delta from last update.
766  */
767 void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
768 {
769 	struct xe_file *xef;
770 	struct xe_lrc *lrc;
771 	u32 old_ts, new_ts;
772 
773 	/*
774 	 * Jobs that are run during driver load may use an exec_queue, but are
775 	 * not associated with a user xe file, so avoid accumulating busyness
776 	 * for kernel specific work.
777 	 */
778 	if (!q->vm || !q->vm->xef)
779 		return;
780 
781 	xef = q->vm->xef;
782 
783 	/*
784 	 * Only sample the first LRC. For parallel submission, all of them are
785 	 * scheduled together and we compensate that below by multiplying by
786 	 * width - this may introduce errors if that premise is not true and
787 	 * they don't exit 100% aligned. On the other hand, looping through
788 	 * the LRCs and reading them in different time could also introduce
789 	 * errors.
790 	 */
791 	lrc = q->lrc[0];
792 	new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
793 	xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
794 }
795 
796 /**
797  * xe_exec_queue_kill - permanently stop all execution from an exec queue
798  * @q: The exec queue
799  *
800  * This function permanently stops all activity on an exec queue. If the queue
801  * is actively executing on the HW, it will be kicked off the engine; any
802  * pending jobs are discarded and all future submissions are rejected.
803  * This function is safe to call multiple times.
804  */
805 void xe_exec_queue_kill(struct xe_exec_queue *q)
806 {
807 	struct xe_exec_queue *eq = q, *next;
808 
809 	list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
810 				 multi_gt_link) {
811 		q->ops->kill(eq);
812 		xe_vm_remove_compute_exec_queue(q->vm, eq);
813 	}
814 
815 	q->ops->kill(q);
816 	xe_vm_remove_compute_exec_queue(q->vm, q);
817 }
818 
819 int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
820 				struct drm_file *file)
821 {
822 	struct xe_device *xe = to_xe_device(dev);
823 	struct xe_file *xef = to_xe_file(file);
824 	struct drm_xe_exec_queue_destroy *args = data;
825 	struct xe_exec_queue *q;
826 
827 	if (XE_IOCTL_DBG(xe, args->pad) ||
828 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
829 		return -EINVAL;
830 
831 	mutex_lock(&xef->exec_queue.lock);
832 	q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
833 	if (q)
834 		atomic_inc(&xef->exec_queue.pending_removal);
835 	mutex_unlock(&xef->exec_queue.lock);
836 
837 	if (XE_IOCTL_DBG(xe, !q))
838 		return -ENOENT;
839 
840 	if (q->vm && q->hwe->hw_engine_group)
841 		xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
842 
843 	xe_exec_queue_kill(q);
844 
845 	trace_xe_exec_queue_close(q);
846 	xe_exec_queue_put(q);
847 
848 	return 0;
849 }
850 
851 static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
852 						    struct xe_vm *vm)
853 {
854 	if (q->flags & EXEC_QUEUE_FLAG_VM) {
855 		lockdep_assert_held(&vm->lock);
856 	} else {
857 		xe_vm_assert_held(vm);
858 		lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
859 	}
860 }
861 
862 /**
863  * xe_exec_queue_last_fence_put() - Drop ref to last fence
864  * @q: The exec queue
865  * @vm: The VM the engine does a bind or exec for
866  */
867 void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
868 {
869 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
870 
871 	xe_exec_queue_last_fence_put_unlocked(q);
872 }
873 
874 /**
875  * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
876  * @q: The exec queue
877  *
878  * Only safe to be called from xe_exec_queue_destroy().
879  */
880 void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
881 {
882 	if (q->last_fence) {
883 		dma_fence_put(q->last_fence);
884 		q->last_fence = NULL;
885 	}
886 }
887 
888 /**
889  * xe_exec_queue_last_fence_get() - Get last fence
890  * @q: The exec queue
891  * @vm: The VM the engine does a bind or exec for
892  *
893  * Get last fence, takes a ref
894  *
895  * Returns: last fence if not signaled, dma fence stub if signaled
896  */
897 struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
898 					       struct xe_vm *vm)
899 {
900 	struct dma_fence *fence;
901 
902 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
903 
904 	if (q->last_fence &&
905 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
906 		xe_exec_queue_last_fence_put(q, vm);
907 
908 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
909 	dma_fence_get(fence);
910 	return fence;
911 }
912 
913 /**
914  * xe_exec_queue_last_fence_get_for_resume() - Get last fence
915  * @q: The exec queue
916  * @vm: The VM the engine does a bind or exec for
917  *
918  * Get last fence, takes a ref. Only safe to be called in the context of
919  * resuming the hw engine group's long-running exec queue, when the group
920  * semaphore is held.
921  *
922  * Returns: last fence if not signaled, dma fence stub if signaled
923  */
924 struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
925 							  struct xe_vm *vm)
926 {
927 	struct dma_fence *fence;
928 
929 	lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
930 
931 	if (q->last_fence &&
932 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
933 		xe_exec_queue_last_fence_put_unlocked(q);
934 
935 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
936 	dma_fence_get(fence);
937 	return fence;
938 }
939 
940 /**
941  * xe_exec_queue_last_fence_set() - Set last fence
942  * @q: The exec queue
943  * @vm: The VM the engine does a bind or exec for
944  * @fence: The fence
945  *
946  * Set the last fence for the engine. Increases reference count for fence, when
947  * closing engine xe_exec_queue_last_fence_put should be called.
948  */
949 void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
950 				  struct dma_fence *fence)
951 {
952 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
953 
954 	xe_exec_queue_last_fence_put(q, vm);
955 	q->last_fence = dma_fence_get(fence);
956 }
957 
958 /**
959  * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue
960  * @q: The exec queue
961  * @vm: The VM the engine does a bind or exec for
962  *
963  * Returns:
964  * -ETIME if there exists an unsignalled last fence dependency, zero otherwise.
965  */
966 int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm)
967 {
968 	struct dma_fence *fence;
969 	int err = 0;
970 
971 	fence = xe_exec_queue_last_fence_get(q, vm);
972 	if (fence) {
973 		err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ?
974 			0 : -ETIME;
975 		dma_fence_put(fence);
976 	}
977 
978 	return err;
979 }
980