xref: /linux/drivers/gpu/drm/xe/xe_exec_queue.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_exec_queue.h"
7 
8 #include <linux/nospec.h>
9 
10 #include <drm/drm_device.h>
11 #include <drm/drm_file.h>
12 #include <uapi/drm/xe_drm.h>
13 
14 #include "xe_device.h"
15 #include "xe_gt.h"
16 #include "xe_hw_engine_class_sysfs.h"
17 #include "xe_hw_engine_group.h"
18 #include "xe_hw_fence.h"
19 #include "xe_lrc.h"
20 #include "xe_macros.h"
21 #include "xe_migrate.h"
22 #include "xe_pm.h"
23 #include "xe_ring_ops_types.h"
24 #include "xe_trace.h"
25 #include "xe_vm.h"
26 
27 enum xe_exec_queue_sched_prop {
28 	XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
29 	XE_EXEC_QUEUE_TIMESLICE = 1,
30 	XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
31 	XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
32 };
33 
34 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
35 				      u64 extensions, int ext_number);
36 
37 static void __xe_exec_queue_free(struct xe_exec_queue *q)
38 {
39 	if (q->vm)
40 		xe_vm_put(q->vm);
41 
42 	if (q->xef)
43 		xe_file_put(q->xef);
44 
45 	kfree(q);
46 }
47 
48 static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
49 						   struct xe_vm *vm,
50 						   u32 logical_mask,
51 						   u16 width, struct xe_hw_engine *hwe,
52 						   u32 flags, u64 extensions)
53 {
54 	struct xe_exec_queue *q;
55 	struct xe_gt *gt = hwe->gt;
56 	int err;
57 
58 	/* only kernel queues can be permanent */
59 	XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
60 
61 	q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
62 	if (!q)
63 		return ERR_PTR(-ENOMEM);
64 
65 	kref_init(&q->refcount);
66 	q->flags = flags;
67 	q->hwe = hwe;
68 	q->gt = gt;
69 	q->class = hwe->class;
70 	q->width = width;
71 	q->logical_mask = logical_mask;
72 	q->fence_irq = &gt->fence_irq[hwe->class];
73 	q->ring_ops = gt->ring_ops[hwe->class];
74 	q->ops = gt->exec_queue_ops;
75 	INIT_LIST_HEAD(&q->lr.link);
76 	INIT_LIST_HEAD(&q->multi_gt_link);
77 	INIT_LIST_HEAD(&q->hw_engine_group_link);
78 
79 	q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
80 	q->sched_props.preempt_timeout_us =
81 				hwe->eclass->sched_props.preempt_timeout_us;
82 	q->sched_props.job_timeout_ms =
83 				hwe->eclass->sched_props.job_timeout_ms;
84 	if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
85 	    q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
86 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
87 	else
88 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
89 
90 	if (vm)
91 		q->vm = xe_vm_get(vm);
92 
93 	if (extensions) {
94 		/*
95 		 * may set q->usm, must come before xe_lrc_create(),
96 		 * may overwrite q->sched_props, must come before q->ops->init()
97 		 */
98 		err = exec_queue_user_extensions(xe, q, extensions, 0);
99 		if (err) {
100 			__xe_exec_queue_free(q);
101 			return ERR_PTR(err);
102 		}
103 	}
104 
105 	return q;
106 }
107 
108 static int __xe_exec_queue_init(struct xe_exec_queue *q)
109 {
110 	struct xe_vm *vm = q->vm;
111 	int i, err;
112 
113 	if (vm) {
114 		err = xe_vm_lock(vm, true);
115 		if (err)
116 			return err;
117 	}
118 
119 	for (i = 0; i < q->width; ++i) {
120 		q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K);
121 		if (IS_ERR(q->lrc[i])) {
122 			err = PTR_ERR(q->lrc[i]);
123 			goto err_unlock;
124 		}
125 	}
126 
127 	if (vm)
128 		xe_vm_unlock(vm);
129 
130 	err = q->ops->init(q);
131 	if (err)
132 		goto err_lrc;
133 
134 	return 0;
135 
136 err_unlock:
137 	if (vm)
138 		xe_vm_unlock(vm);
139 err_lrc:
140 	for (i = i - 1; i >= 0; --i)
141 		xe_lrc_put(q->lrc[i]);
142 	return err;
143 }
144 
145 struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
146 					   u32 logical_mask, u16 width,
147 					   struct xe_hw_engine *hwe, u32 flags,
148 					   u64 extensions)
149 {
150 	struct xe_exec_queue *q;
151 	int err;
152 
153 	q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
154 				  extensions);
155 	if (IS_ERR(q))
156 		return q;
157 
158 	err = __xe_exec_queue_init(q);
159 	if (err)
160 		goto err_post_alloc;
161 
162 	return q;
163 
164 err_post_alloc:
165 	__xe_exec_queue_free(q);
166 	return ERR_PTR(err);
167 }
168 
169 struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
170 						 struct xe_vm *vm,
171 						 enum xe_engine_class class,
172 						 u32 flags, u64 extensions)
173 {
174 	struct xe_hw_engine *hwe, *hwe0 = NULL;
175 	enum xe_hw_engine_id id;
176 	u32 logical_mask = 0;
177 
178 	for_each_hw_engine(hwe, gt, id) {
179 		if (xe_hw_engine_is_reserved(hwe))
180 			continue;
181 
182 		if (hwe->class == class) {
183 			logical_mask |= BIT(hwe->logical_instance);
184 			if (!hwe0)
185 				hwe0 = hwe;
186 		}
187 	}
188 
189 	if (!logical_mask)
190 		return ERR_PTR(-ENODEV);
191 
192 	return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
193 }
194 
195 /**
196  * xe_exec_queue_create_bind() - Create bind exec queue.
197  * @xe: Xe device.
198  * @tile: tile which bind exec queue belongs to.
199  * @flags: exec queue creation flags
200  * @extensions: exec queue creation extensions
201  *
202  * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
203  * for access to physical memory required for page table programming. On a
204  * faulting devices the reserved copy engine instance must be used to avoid
205  * deadlocking (user binds cannot get stuck behind faults as kernel binds which
206  * resolve faults depend on user binds). On non-faulting devices any copy engine
207  * can be used.
208  *
209  * Returns exec queue on success, ERR_PTR on failure
210  */
211 struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
212 						struct xe_tile *tile,
213 						u32 flags, u64 extensions)
214 {
215 	struct xe_gt *gt = tile->primary_gt;
216 	struct xe_exec_queue *q;
217 	struct xe_vm *migrate_vm;
218 
219 	migrate_vm = xe_migrate_get_vm(tile->migrate);
220 	if (xe->info.has_usm) {
221 		struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
222 							   XE_ENGINE_CLASS_COPY,
223 							   gt->usm.reserved_bcs_instance,
224 							   false);
225 
226 		if (!hwe) {
227 			xe_vm_put(migrate_vm);
228 			return ERR_PTR(-EINVAL);
229 		}
230 
231 		q = xe_exec_queue_create(xe, migrate_vm,
232 					 BIT(hwe->logical_instance), 1, hwe,
233 					 flags, extensions);
234 	} else {
235 		q = xe_exec_queue_create_class(xe, gt, migrate_vm,
236 					       XE_ENGINE_CLASS_COPY, flags,
237 					       extensions);
238 	}
239 	xe_vm_put(migrate_vm);
240 
241 	return q;
242 }
243 
244 void xe_exec_queue_destroy(struct kref *ref)
245 {
246 	struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
247 	struct xe_exec_queue *eq, *next;
248 
249 	xe_exec_queue_last_fence_put_unlocked(q);
250 	if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
251 		list_for_each_entry_safe(eq, next, &q->multi_gt_list,
252 					 multi_gt_link)
253 			xe_exec_queue_put(eq);
254 	}
255 
256 	q->ops->fini(q);
257 }
258 
259 void xe_exec_queue_fini(struct xe_exec_queue *q)
260 {
261 	int i;
262 
263 	/*
264 	 * Before releasing our ref to lrc and xef, accumulate our run ticks
265 	 */
266 	xe_exec_queue_update_run_ticks(q);
267 
268 	for (i = 0; i < q->width; ++i)
269 		xe_lrc_put(q->lrc[i]);
270 
271 	__xe_exec_queue_free(q);
272 }
273 
274 void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
275 {
276 	switch (q->class) {
277 	case XE_ENGINE_CLASS_RENDER:
278 		snprintf(q->name, sizeof(q->name), "rcs%d", instance);
279 		break;
280 	case XE_ENGINE_CLASS_VIDEO_DECODE:
281 		snprintf(q->name, sizeof(q->name), "vcs%d", instance);
282 		break;
283 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
284 		snprintf(q->name, sizeof(q->name), "vecs%d", instance);
285 		break;
286 	case XE_ENGINE_CLASS_COPY:
287 		snprintf(q->name, sizeof(q->name), "bcs%d", instance);
288 		break;
289 	case XE_ENGINE_CLASS_COMPUTE:
290 		snprintf(q->name, sizeof(q->name), "ccs%d", instance);
291 		break;
292 	case XE_ENGINE_CLASS_OTHER:
293 		snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
294 		break;
295 	default:
296 		XE_WARN_ON(q->class);
297 	}
298 }
299 
300 struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
301 {
302 	struct xe_exec_queue *q;
303 
304 	mutex_lock(&xef->exec_queue.lock);
305 	q = xa_load(&xef->exec_queue.xa, id);
306 	if (q)
307 		xe_exec_queue_get(q);
308 	mutex_unlock(&xef->exec_queue.lock);
309 
310 	return q;
311 }
312 
313 enum xe_exec_queue_priority
314 xe_exec_queue_device_get_max_priority(struct xe_device *xe)
315 {
316 	return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
317 				       XE_EXEC_QUEUE_PRIORITY_NORMAL;
318 }
319 
320 static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
321 				   u64 value)
322 {
323 	if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
324 		return -EINVAL;
325 
326 	if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
327 		return -EPERM;
328 
329 	q->sched_props.priority = value;
330 	return 0;
331 }
332 
333 static bool xe_exec_queue_enforce_schedule_limit(void)
334 {
335 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
336 	return true;
337 #else
338 	return !capable(CAP_SYS_NICE);
339 #endif
340 }
341 
342 static void
343 xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
344 			      enum xe_exec_queue_sched_prop prop,
345 			      u32 *min, u32 *max)
346 {
347 	switch (prop) {
348 	case XE_EXEC_QUEUE_JOB_TIMEOUT:
349 		*min = eclass->sched_props.job_timeout_min;
350 		*max = eclass->sched_props.job_timeout_max;
351 		break;
352 	case XE_EXEC_QUEUE_TIMESLICE:
353 		*min = eclass->sched_props.timeslice_min;
354 		*max = eclass->sched_props.timeslice_max;
355 		break;
356 	case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
357 		*min = eclass->sched_props.preempt_timeout_min;
358 		*max = eclass->sched_props.preempt_timeout_max;
359 		break;
360 	default:
361 		break;
362 	}
363 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
364 	if (capable(CAP_SYS_NICE)) {
365 		switch (prop) {
366 		case XE_EXEC_QUEUE_JOB_TIMEOUT:
367 			*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
368 			*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
369 			break;
370 		case XE_EXEC_QUEUE_TIMESLICE:
371 			*min = XE_HW_ENGINE_TIMESLICE_MIN;
372 			*max = XE_HW_ENGINE_TIMESLICE_MAX;
373 			break;
374 		case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
375 			*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
376 			*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
377 			break;
378 		default:
379 			break;
380 		}
381 	}
382 #endif
383 }
384 
385 static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
386 				    u64 value)
387 {
388 	u32 min = 0, max = 0;
389 
390 	xe_exec_queue_get_prop_minmax(q->hwe->eclass,
391 				      XE_EXEC_QUEUE_TIMESLICE, &min, &max);
392 
393 	if (xe_exec_queue_enforce_schedule_limit() &&
394 	    !xe_hw_engine_timeout_in_range(value, min, max))
395 		return -EINVAL;
396 
397 	q->sched_props.timeslice_us = value;
398 	return 0;
399 }
400 
401 typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
402 					     struct xe_exec_queue *q,
403 					     u64 value);
404 
405 static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
406 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
407 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
408 };
409 
410 static int exec_queue_user_ext_set_property(struct xe_device *xe,
411 					    struct xe_exec_queue *q,
412 					    u64 extension)
413 {
414 	u64 __user *address = u64_to_user_ptr(extension);
415 	struct drm_xe_ext_set_property ext;
416 	int err;
417 	u32 idx;
418 
419 	err = __copy_from_user(&ext, address, sizeof(ext));
420 	if (XE_IOCTL_DBG(xe, err))
421 		return -EFAULT;
422 
423 	if (XE_IOCTL_DBG(xe, ext.property >=
424 			 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
425 	    XE_IOCTL_DBG(xe, ext.pad) ||
426 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
427 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE))
428 		return -EINVAL;
429 
430 	idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
431 	if (!exec_queue_set_property_funcs[idx])
432 		return -EINVAL;
433 
434 	return exec_queue_set_property_funcs[idx](xe, q, ext.value);
435 }
436 
437 typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
438 					       struct xe_exec_queue *q,
439 					       u64 extension);
440 
441 static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
442 	[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
443 };
444 
445 #define MAX_USER_EXTENSIONS	16
446 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
447 				      u64 extensions, int ext_number)
448 {
449 	u64 __user *address = u64_to_user_ptr(extensions);
450 	struct drm_xe_user_extension ext;
451 	int err;
452 	u32 idx;
453 
454 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
455 		return -E2BIG;
456 
457 	err = __copy_from_user(&ext, address, sizeof(ext));
458 	if (XE_IOCTL_DBG(xe, err))
459 		return -EFAULT;
460 
461 	if (XE_IOCTL_DBG(xe, ext.pad) ||
462 	    XE_IOCTL_DBG(xe, ext.name >=
463 			 ARRAY_SIZE(exec_queue_user_extension_funcs)))
464 		return -EINVAL;
465 
466 	idx = array_index_nospec(ext.name,
467 				 ARRAY_SIZE(exec_queue_user_extension_funcs));
468 	err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
469 	if (XE_IOCTL_DBG(xe, err))
470 		return err;
471 
472 	if (ext.next_extension)
473 		return exec_queue_user_extensions(xe, q, ext.next_extension,
474 						  ++ext_number);
475 
476 	return 0;
477 }
478 
479 static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt,
480 				      struct drm_xe_engine_class_instance *eci,
481 				      u16 width, u16 num_placements)
482 {
483 	int len = width * num_placements;
484 	int i, j, n;
485 	u16 class;
486 	u16 gt_id;
487 	u32 return_mask = 0, prev_mask;
488 
489 	if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
490 			 len > 1))
491 		return 0;
492 
493 	for (i = 0; i < width; ++i) {
494 		u32 current_mask = 0;
495 
496 		for (j = 0; j < num_placements; ++j) {
497 			struct xe_hw_engine *hwe;
498 
499 			n = j * width + i;
500 
501 			hwe = xe_hw_engine_lookup(xe, eci[n]);
502 			if (XE_IOCTL_DBG(xe, !hwe))
503 				return 0;
504 
505 			if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
506 				return 0;
507 
508 			if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
509 			    XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
510 				return 0;
511 
512 			class = eci[n].engine_class;
513 			gt_id = eci[n].gt_id;
514 
515 			if (width == 1 || !i)
516 				return_mask |= BIT(eci[n].engine_instance);
517 			current_mask |= BIT(eci[n].engine_instance);
518 		}
519 
520 		/* Parallel submissions must be logically contiguous */
521 		if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
522 			return 0;
523 
524 		prev_mask = current_mask;
525 	}
526 
527 	return return_mask;
528 }
529 
530 int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
531 			       struct drm_file *file)
532 {
533 	struct xe_device *xe = to_xe_device(dev);
534 	struct xe_file *xef = to_xe_file(file);
535 	struct drm_xe_exec_queue_create *args = data;
536 	struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
537 	struct drm_xe_engine_class_instance __user *user_eci =
538 		u64_to_user_ptr(args->instances);
539 	struct xe_hw_engine *hwe;
540 	struct xe_vm *vm;
541 	struct xe_gt *gt;
542 	struct xe_tile *tile;
543 	struct xe_exec_queue *q = NULL;
544 	u32 logical_mask;
545 	u32 id;
546 	u32 len;
547 	int err;
548 
549 	if (XE_IOCTL_DBG(xe, args->flags) ||
550 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
551 		return -EINVAL;
552 
553 	len = args->width * args->num_placements;
554 	if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
555 		return -EINVAL;
556 
557 	err = __copy_from_user(eci, user_eci,
558 			       sizeof(struct drm_xe_engine_class_instance) *
559 			       len);
560 	if (XE_IOCTL_DBG(xe, err))
561 		return -EFAULT;
562 
563 	if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count))
564 		return -EINVAL;
565 
566 	if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
567 		if (XE_IOCTL_DBG(xe, args->width != 1) ||
568 		    XE_IOCTL_DBG(xe, args->num_placements != 1) ||
569 		    XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
570 			return -EINVAL;
571 
572 		for_each_tile(tile, xe, id) {
573 			struct xe_exec_queue *new;
574 			u32 flags = EXEC_QUEUE_FLAG_VM;
575 
576 			if (id)
577 				flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
578 
579 			new = xe_exec_queue_create_bind(xe, tile, flags,
580 							args->extensions);
581 			if (IS_ERR(new)) {
582 				err = PTR_ERR(new);
583 				if (q)
584 					goto put_exec_queue;
585 				return err;
586 			}
587 			if (id == 0)
588 				q = new;
589 			else
590 				list_add_tail(&new->multi_gt_list,
591 					      &q->multi_gt_link);
592 		}
593 	} else {
594 		gt = xe_device_get_gt(xe, eci[0].gt_id);
595 		logical_mask = calc_validate_logical_mask(xe, gt, eci,
596 							  args->width,
597 							  args->num_placements);
598 		if (XE_IOCTL_DBG(xe, !logical_mask))
599 			return -EINVAL;
600 
601 		hwe = xe_hw_engine_lookup(xe, eci[0]);
602 		if (XE_IOCTL_DBG(xe, !hwe))
603 			return -EINVAL;
604 
605 		vm = xe_vm_lookup(xef, args->vm_id);
606 		if (XE_IOCTL_DBG(xe, !vm))
607 			return -ENOENT;
608 
609 		err = down_read_interruptible(&vm->lock);
610 		if (err) {
611 			xe_vm_put(vm);
612 			return err;
613 		}
614 
615 		if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
616 			up_read(&vm->lock);
617 			xe_vm_put(vm);
618 			return -ENOENT;
619 		}
620 
621 		q = xe_exec_queue_create(xe, vm, logical_mask,
622 					 args->width, hwe, 0,
623 					 args->extensions);
624 		up_read(&vm->lock);
625 		xe_vm_put(vm);
626 		if (IS_ERR(q))
627 			return PTR_ERR(q);
628 
629 		if (xe_vm_in_preempt_fence_mode(vm)) {
630 			q->lr.context = dma_fence_context_alloc(1);
631 
632 			err = xe_vm_add_compute_exec_queue(vm, q);
633 			if (XE_IOCTL_DBG(xe, err))
634 				goto put_exec_queue;
635 		}
636 
637 		if (q->vm && q->hwe->hw_engine_group) {
638 			err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
639 			if (err)
640 				goto put_exec_queue;
641 		}
642 	}
643 
644 	q->xef = xe_file_get(xef);
645 
646 	/* user id alloc must always be last in ioctl to prevent UAF */
647 	err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
648 	if (err)
649 		goto kill_exec_queue;
650 
651 	args->exec_queue_id = id;
652 
653 	return 0;
654 
655 kill_exec_queue:
656 	xe_exec_queue_kill(q);
657 put_exec_queue:
658 	xe_exec_queue_put(q);
659 	return err;
660 }
661 
662 int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
663 				     struct drm_file *file)
664 {
665 	struct xe_device *xe = to_xe_device(dev);
666 	struct xe_file *xef = to_xe_file(file);
667 	struct drm_xe_exec_queue_get_property *args = data;
668 	struct xe_exec_queue *q;
669 	int ret;
670 
671 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
672 		return -EINVAL;
673 
674 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
675 	if (XE_IOCTL_DBG(xe, !q))
676 		return -ENOENT;
677 
678 	switch (args->property) {
679 	case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
680 		args->value = q->ops->reset_status(q);
681 		ret = 0;
682 		break;
683 	default:
684 		ret = -EINVAL;
685 	}
686 
687 	xe_exec_queue_put(q);
688 
689 	return ret;
690 }
691 
692 /**
693  * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
694  * @q: The exec_queue
695  *
696  * Return: True if the exec_queue is long-running, false otherwise.
697  */
698 bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
699 {
700 	return q->vm && xe_vm_in_lr_mode(q->vm) &&
701 		!(q->flags & EXEC_QUEUE_FLAG_VM);
702 }
703 
704 static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
705 {
706 	return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1;
707 }
708 
709 /**
710  * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
711  * @q: The exec_queue
712  *
713  * Return: True if the exec_queue's ring is full, false otherwise.
714  */
715 bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
716 {
717 	struct xe_lrc *lrc = q->lrc[0];
718 	s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
719 
720 	return xe_exec_queue_num_job_inflight(q) >= max_job;
721 }
722 
723 /**
724  * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
725  * @q: The exec_queue
726  *
727  * FIXME: Need to determine what to use as the short-lived
728  * timeline lock for the exec_queues, so that the return value
729  * of this function becomes more than just an advisory
730  * snapshot in time. The timeline lock must protect the
731  * seqno from racing submissions on the same exec_queue.
732  * Typically vm->resv, but user-created timeline locks use the migrate vm
733  * and never grabs the migrate vm->resv so we have a race there.
734  *
735  * Return: True if the exec_queue is idle, false otherwise.
736  */
737 bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
738 {
739 	if (xe_exec_queue_is_parallel(q)) {
740 		int i;
741 
742 		for (i = 0; i < q->width; ++i) {
743 			if (xe_lrc_seqno(q->lrc[i]) !=
744 			    q->lrc[i]->fence_ctx.next_seqno - 1)
745 				return false;
746 		}
747 
748 		return true;
749 	}
750 
751 	return xe_lrc_seqno(q->lrc[0]) ==
752 		q->lrc[0]->fence_ctx.next_seqno - 1;
753 }
754 
755 /**
756  * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
757  * from hw
758  * @q: The exec queue
759  *
760  * Update the timestamp saved by HW for this exec queue and save run ticks
761  * calculated by using the delta from last update.
762  */
763 void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
764 {
765 	struct xe_file *xef;
766 	struct xe_lrc *lrc;
767 	u32 old_ts, new_ts;
768 
769 	/*
770 	 * Jobs that are run during driver load may use an exec_queue, but are
771 	 * not associated with a user xe file, so avoid accumulating busyness
772 	 * for kernel specific work.
773 	 */
774 	if (!q->vm || !q->vm->xef)
775 		return;
776 
777 	xef = q->vm->xef;
778 
779 	/*
780 	 * Only sample the first LRC. For parallel submission, all of them are
781 	 * scheduled together and we compensate that below by multiplying by
782 	 * width - this may introduce errors if that premise is not true and
783 	 * they don't exit 100% aligned. On the other hand, looping through
784 	 * the LRCs and reading them in different time could also introduce
785 	 * errors.
786 	 */
787 	lrc = q->lrc[0];
788 	new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
789 	xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
790 }
791 
792 /**
793  * xe_exec_queue_kill - permanently stop all execution from an exec queue
794  * @q: The exec queue
795  *
796  * This function permanently stops all activity on an exec queue. If the queue
797  * is actively executing on the HW, it will be kicked off the engine; any
798  * pending jobs are discarded and all future submissions are rejected.
799  * This function is safe to call multiple times.
800  */
801 void xe_exec_queue_kill(struct xe_exec_queue *q)
802 {
803 	struct xe_exec_queue *eq = q, *next;
804 
805 	list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
806 				 multi_gt_link) {
807 		q->ops->kill(eq);
808 		xe_vm_remove_compute_exec_queue(q->vm, eq);
809 	}
810 
811 	q->ops->kill(q);
812 	xe_vm_remove_compute_exec_queue(q->vm, q);
813 }
814 
815 int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
816 				struct drm_file *file)
817 {
818 	struct xe_device *xe = to_xe_device(dev);
819 	struct xe_file *xef = to_xe_file(file);
820 	struct drm_xe_exec_queue_destroy *args = data;
821 	struct xe_exec_queue *q;
822 
823 	if (XE_IOCTL_DBG(xe, args->pad) ||
824 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
825 		return -EINVAL;
826 
827 	mutex_lock(&xef->exec_queue.lock);
828 	q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
829 	mutex_unlock(&xef->exec_queue.lock);
830 	if (XE_IOCTL_DBG(xe, !q))
831 		return -ENOENT;
832 
833 	if (q->vm && q->hwe->hw_engine_group)
834 		xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
835 
836 	xe_exec_queue_kill(q);
837 
838 	trace_xe_exec_queue_close(q);
839 	xe_exec_queue_put(q);
840 
841 	return 0;
842 }
843 
844 static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
845 						    struct xe_vm *vm)
846 {
847 	if (q->flags & EXEC_QUEUE_FLAG_VM) {
848 		lockdep_assert_held(&vm->lock);
849 	} else {
850 		xe_vm_assert_held(vm);
851 		lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
852 	}
853 }
854 
855 /**
856  * xe_exec_queue_last_fence_put() - Drop ref to last fence
857  * @q: The exec queue
858  * @vm: The VM the engine does a bind or exec for
859  */
860 void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
861 {
862 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
863 
864 	xe_exec_queue_last_fence_put_unlocked(q);
865 }
866 
867 /**
868  * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
869  * @q: The exec queue
870  *
871  * Only safe to be called from xe_exec_queue_destroy().
872  */
873 void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
874 {
875 	if (q->last_fence) {
876 		dma_fence_put(q->last_fence);
877 		q->last_fence = NULL;
878 	}
879 }
880 
881 /**
882  * xe_exec_queue_last_fence_get() - Get last fence
883  * @q: The exec queue
884  * @vm: The VM the engine does a bind or exec for
885  *
886  * Get last fence, takes a ref
887  *
888  * Returns: last fence if not signaled, dma fence stub if signaled
889  */
890 struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
891 					       struct xe_vm *vm)
892 {
893 	struct dma_fence *fence;
894 
895 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
896 
897 	if (q->last_fence &&
898 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
899 		xe_exec_queue_last_fence_put(q, vm);
900 
901 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
902 	dma_fence_get(fence);
903 	return fence;
904 }
905 
906 /**
907  * xe_exec_queue_last_fence_get_for_resume() - Get last fence
908  * @q: The exec queue
909  * @vm: The VM the engine does a bind or exec for
910  *
911  * Get last fence, takes a ref. Only safe to be called in the context of
912  * resuming the hw engine group's long-running exec queue, when the group
913  * semaphore is held.
914  *
915  * Returns: last fence if not signaled, dma fence stub if signaled
916  */
917 struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
918 							  struct xe_vm *vm)
919 {
920 	struct dma_fence *fence;
921 
922 	lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
923 
924 	if (q->last_fence &&
925 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
926 		xe_exec_queue_last_fence_put_unlocked(q);
927 
928 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
929 	dma_fence_get(fence);
930 	return fence;
931 }
932 
933 /**
934  * xe_exec_queue_last_fence_set() - Set last fence
935  * @q: The exec queue
936  * @vm: The VM the engine does a bind or exec for
937  * @fence: The fence
938  *
939  * Set the last fence for the engine. Increases reference count for fence, when
940  * closing engine xe_exec_queue_last_fence_put should be called.
941  */
942 void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
943 				  struct dma_fence *fence)
944 {
945 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
946 
947 	xe_exec_queue_last_fence_put(q, vm);
948 	q->last_fence = dma_fence_get(fence);
949 }
950 
951 /**
952  * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue
953  * @q: The exec queue
954  * @vm: The VM the engine does a bind or exec for
955  *
956  * Returns:
957  * -ETIME if there exists an unsignalled last fence dependency, zero otherwise.
958  */
959 int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm)
960 {
961 	struct dma_fence *fence;
962 	int err = 0;
963 
964 	fence = xe_exec_queue_last_fence_get(q, vm);
965 	if (fence) {
966 		err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ?
967 			0 : -ETIME;
968 		dma_fence_put(fence);
969 	}
970 
971 	return err;
972 }
973