xref: /linux/drivers/gpu/drm/xe/xe_exec_queue.c (revision 47cebb740a83682224654a6583a20efd9f3cfeae)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_exec_queue.h"
7 
8 #include <linux/nospec.h>
9 
10 #include <drm/drm_device.h>
11 #include <drm/drm_file.h>
12 #include <drm/xe_drm.h>
13 
14 #include "xe_device.h"
15 #include "xe_gt.h"
16 #include "xe_hw_engine_class_sysfs.h"
17 #include "xe_hw_engine_group.h"
18 #include "xe_hw_fence.h"
19 #include "xe_lrc.h"
20 #include "xe_macros.h"
21 #include "xe_migrate.h"
22 #include "xe_pm.h"
23 #include "xe_ring_ops_types.h"
24 #include "xe_trace.h"
25 #include "xe_vm.h"
26 
27 enum xe_exec_queue_sched_prop {
28 	XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
29 	XE_EXEC_QUEUE_TIMESLICE = 1,
30 	XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
31 	XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
32 };
33 
34 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
35 				      u64 extensions, int ext_number);
36 
37 static void __xe_exec_queue_free(struct xe_exec_queue *q)
38 {
39 	if (q->vm)
40 		xe_vm_put(q->vm);
41 
42 	if (q->xef)
43 		xe_file_put(q->xef);
44 
45 	kfree(q);
46 }
47 
48 static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
49 						   struct xe_vm *vm,
50 						   u32 logical_mask,
51 						   u16 width, struct xe_hw_engine *hwe,
52 						   u32 flags, u64 extensions)
53 {
54 	struct xe_exec_queue *q;
55 	struct xe_gt *gt = hwe->gt;
56 	int err;
57 
58 	/* only kernel queues can be permanent */
59 	XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
60 
61 	q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
62 	if (!q)
63 		return ERR_PTR(-ENOMEM);
64 
65 	kref_init(&q->refcount);
66 	q->flags = flags;
67 	q->hwe = hwe;
68 	q->gt = gt;
69 	q->class = hwe->class;
70 	q->width = width;
71 	q->logical_mask = logical_mask;
72 	q->fence_irq = &gt->fence_irq[hwe->class];
73 	q->ring_ops = gt->ring_ops[hwe->class];
74 	q->ops = gt->exec_queue_ops;
75 	INIT_LIST_HEAD(&q->lr.link);
76 	INIT_LIST_HEAD(&q->multi_gt_link);
77 	INIT_LIST_HEAD(&q->hw_engine_group_link);
78 
79 	q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
80 	q->sched_props.preempt_timeout_us =
81 				hwe->eclass->sched_props.preempt_timeout_us;
82 	q->sched_props.job_timeout_ms =
83 				hwe->eclass->sched_props.job_timeout_ms;
84 	if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
85 	    q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
86 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
87 	else
88 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
89 
90 	if (vm)
91 		q->vm = xe_vm_get(vm);
92 
93 	if (extensions) {
94 		/*
95 		 * may set q->usm, must come before xe_lrc_create(),
96 		 * may overwrite q->sched_props, must come before q->ops->init()
97 		 */
98 		err = exec_queue_user_extensions(xe, q, extensions, 0);
99 		if (err) {
100 			__xe_exec_queue_free(q);
101 			return ERR_PTR(err);
102 		}
103 	}
104 
105 	return q;
106 }
107 
108 static int __xe_exec_queue_init(struct xe_exec_queue *q)
109 {
110 	struct xe_vm *vm = q->vm;
111 	int i, err;
112 
113 	if (vm) {
114 		err = xe_vm_lock(vm, true);
115 		if (err)
116 			return err;
117 	}
118 
119 	for (i = 0; i < q->width; ++i) {
120 		q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K);
121 		if (IS_ERR(q->lrc[i])) {
122 			err = PTR_ERR(q->lrc[i]);
123 			goto err_unlock;
124 		}
125 	}
126 
127 	if (vm)
128 		xe_vm_unlock(vm);
129 
130 	err = q->ops->init(q);
131 	if (err)
132 		goto err_lrc;
133 
134 	return 0;
135 
136 err_unlock:
137 	if (vm)
138 		xe_vm_unlock(vm);
139 err_lrc:
140 	for (i = i - 1; i >= 0; --i)
141 		xe_lrc_put(q->lrc[i]);
142 	return err;
143 }
144 
145 struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
146 					   u32 logical_mask, u16 width,
147 					   struct xe_hw_engine *hwe, u32 flags,
148 					   u64 extensions)
149 {
150 	struct xe_exec_queue *q;
151 	int err;
152 
153 	q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
154 				  extensions);
155 	if (IS_ERR(q))
156 		return q;
157 
158 	err = __xe_exec_queue_init(q);
159 	if (err)
160 		goto err_post_alloc;
161 
162 	return q;
163 
164 err_post_alloc:
165 	__xe_exec_queue_free(q);
166 	return ERR_PTR(err);
167 }
168 
169 struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
170 						 struct xe_vm *vm,
171 						 enum xe_engine_class class,
172 						 u32 flags, u64 extensions)
173 {
174 	struct xe_hw_engine *hwe, *hwe0 = NULL;
175 	enum xe_hw_engine_id id;
176 	u32 logical_mask = 0;
177 
178 	for_each_hw_engine(hwe, gt, id) {
179 		if (xe_hw_engine_is_reserved(hwe))
180 			continue;
181 
182 		if (hwe->class == class) {
183 			logical_mask |= BIT(hwe->logical_instance);
184 			if (!hwe0)
185 				hwe0 = hwe;
186 		}
187 	}
188 
189 	if (!logical_mask)
190 		return ERR_PTR(-ENODEV);
191 
192 	return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
193 }
194 
195 /**
196  * xe_exec_queue_create_bind() - Create bind exec queue.
197  * @xe: Xe device.
198  * @tile: tile which bind exec queue belongs to.
199  * @flags: exec queue creation flags
200  * @extensions: exec queue creation extensions
201  *
202  * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
203  * for access to physical memory required for page table programming. On a
204  * faulting devices the reserved copy engine instance must be used to avoid
205  * deadlocking (user binds cannot get stuck behind faults as kernel binds which
206  * resolve faults depend on user binds). On non-faulting devices any copy engine
207  * can be used.
208  *
209  * Returns exec queue on success, ERR_PTR on failure
210  */
211 struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
212 						struct xe_tile *tile,
213 						u32 flags, u64 extensions)
214 {
215 	struct xe_gt *gt = tile->primary_gt;
216 	struct xe_exec_queue *q;
217 	struct xe_vm *migrate_vm;
218 
219 	migrate_vm = xe_migrate_get_vm(tile->migrate);
220 	if (xe->info.has_usm) {
221 		struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
222 							   XE_ENGINE_CLASS_COPY,
223 							   gt->usm.reserved_bcs_instance,
224 							   false);
225 
226 		if (!hwe)
227 			return ERR_PTR(-EINVAL);
228 
229 		q = xe_exec_queue_create(xe, migrate_vm,
230 					 BIT(hwe->logical_instance), 1, hwe,
231 					 flags, extensions);
232 	} else {
233 		q = xe_exec_queue_create_class(xe, gt, migrate_vm,
234 					       XE_ENGINE_CLASS_COPY, flags,
235 					       extensions);
236 	}
237 	xe_vm_put(migrate_vm);
238 
239 	return q;
240 }
241 
242 void xe_exec_queue_destroy(struct kref *ref)
243 {
244 	struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
245 	struct xe_exec_queue *eq, *next;
246 
247 	xe_exec_queue_last_fence_put_unlocked(q);
248 	if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
249 		list_for_each_entry_safe(eq, next, &q->multi_gt_list,
250 					 multi_gt_link)
251 			xe_exec_queue_put(eq);
252 	}
253 
254 	q->ops->fini(q);
255 }
256 
257 void xe_exec_queue_fini(struct xe_exec_queue *q)
258 {
259 	int i;
260 
261 	for (i = 0; i < q->width; ++i)
262 		xe_lrc_put(q->lrc[i]);
263 	__xe_exec_queue_free(q);
264 }
265 
266 void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
267 {
268 	switch (q->class) {
269 	case XE_ENGINE_CLASS_RENDER:
270 		snprintf(q->name, sizeof(q->name), "rcs%d", instance);
271 		break;
272 	case XE_ENGINE_CLASS_VIDEO_DECODE:
273 		snprintf(q->name, sizeof(q->name), "vcs%d", instance);
274 		break;
275 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
276 		snprintf(q->name, sizeof(q->name), "vecs%d", instance);
277 		break;
278 	case XE_ENGINE_CLASS_COPY:
279 		snprintf(q->name, sizeof(q->name), "bcs%d", instance);
280 		break;
281 	case XE_ENGINE_CLASS_COMPUTE:
282 		snprintf(q->name, sizeof(q->name), "ccs%d", instance);
283 		break;
284 	case XE_ENGINE_CLASS_OTHER:
285 		snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
286 		break;
287 	default:
288 		XE_WARN_ON(q->class);
289 	}
290 }
291 
292 struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
293 {
294 	struct xe_exec_queue *q;
295 
296 	mutex_lock(&xef->exec_queue.lock);
297 	q = xa_load(&xef->exec_queue.xa, id);
298 	if (q)
299 		xe_exec_queue_get(q);
300 	mutex_unlock(&xef->exec_queue.lock);
301 
302 	return q;
303 }
304 
305 enum xe_exec_queue_priority
306 xe_exec_queue_device_get_max_priority(struct xe_device *xe)
307 {
308 	return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
309 				       XE_EXEC_QUEUE_PRIORITY_NORMAL;
310 }
311 
312 static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
313 				   u64 value)
314 {
315 	if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
316 		return -EINVAL;
317 
318 	if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
319 		return -EPERM;
320 
321 	q->sched_props.priority = value;
322 	return 0;
323 }
324 
325 static bool xe_exec_queue_enforce_schedule_limit(void)
326 {
327 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
328 	return true;
329 #else
330 	return !capable(CAP_SYS_NICE);
331 #endif
332 }
333 
334 static void
335 xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
336 			      enum xe_exec_queue_sched_prop prop,
337 			      u32 *min, u32 *max)
338 {
339 	switch (prop) {
340 	case XE_EXEC_QUEUE_JOB_TIMEOUT:
341 		*min = eclass->sched_props.job_timeout_min;
342 		*max = eclass->sched_props.job_timeout_max;
343 		break;
344 	case XE_EXEC_QUEUE_TIMESLICE:
345 		*min = eclass->sched_props.timeslice_min;
346 		*max = eclass->sched_props.timeslice_max;
347 		break;
348 	case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
349 		*min = eclass->sched_props.preempt_timeout_min;
350 		*max = eclass->sched_props.preempt_timeout_max;
351 		break;
352 	default:
353 		break;
354 	}
355 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
356 	if (capable(CAP_SYS_NICE)) {
357 		switch (prop) {
358 		case XE_EXEC_QUEUE_JOB_TIMEOUT:
359 			*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
360 			*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
361 			break;
362 		case XE_EXEC_QUEUE_TIMESLICE:
363 			*min = XE_HW_ENGINE_TIMESLICE_MIN;
364 			*max = XE_HW_ENGINE_TIMESLICE_MAX;
365 			break;
366 		case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
367 			*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
368 			*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
369 			break;
370 		default:
371 			break;
372 		}
373 	}
374 #endif
375 }
376 
377 static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
378 				    u64 value)
379 {
380 	u32 min = 0, max = 0;
381 
382 	xe_exec_queue_get_prop_minmax(q->hwe->eclass,
383 				      XE_EXEC_QUEUE_TIMESLICE, &min, &max);
384 
385 	if (xe_exec_queue_enforce_schedule_limit() &&
386 	    !xe_hw_engine_timeout_in_range(value, min, max))
387 		return -EINVAL;
388 
389 	q->sched_props.timeslice_us = value;
390 	return 0;
391 }
392 
393 typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
394 					     struct xe_exec_queue *q,
395 					     u64 value);
396 
397 static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
398 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
399 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
400 };
401 
402 static int exec_queue_user_ext_set_property(struct xe_device *xe,
403 					    struct xe_exec_queue *q,
404 					    u64 extension)
405 {
406 	u64 __user *address = u64_to_user_ptr(extension);
407 	struct drm_xe_ext_set_property ext;
408 	int err;
409 	u32 idx;
410 
411 	err = __copy_from_user(&ext, address, sizeof(ext));
412 	if (XE_IOCTL_DBG(xe, err))
413 		return -EFAULT;
414 
415 	if (XE_IOCTL_DBG(xe, ext.property >=
416 			 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
417 	    XE_IOCTL_DBG(xe, ext.pad) ||
418 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
419 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE))
420 		return -EINVAL;
421 
422 	idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
423 	if (!exec_queue_set_property_funcs[idx])
424 		return -EINVAL;
425 
426 	return exec_queue_set_property_funcs[idx](xe, q, ext.value);
427 }
428 
429 typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
430 					       struct xe_exec_queue *q,
431 					       u64 extension);
432 
433 static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
434 	[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
435 };
436 
437 #define MAX_USER_EXTENSIONS	16
438 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
439 				      u64 extensions, int ext_number)
440 {
441 	u64 __user *address = u64_to_user_ptr(extensions);
442 	struct drm_xe_user_extension ext;
443 	int err;
444 	u32 idx;
445 
446 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
447 		return -E2BIG;
448 
449 	err = __copy_from_user(&ext, address, sizeof(ext));
450 	if (XE_IOCTL_DBG(xe, err))
451 		return -EFAULT;
452 
453 	if (XE_IOCTL_DBG(xe, ext.pad) ||
454 	    XE_IOCTL_DBG(xe, ext.name >=
455 			 ARRAY_SIZE(exec_queue_user_extension_funcs)))
456 		return -EINVAL;
457 
458 	idx = array_index_nospec(ext.name,
459 				 ARRAY_SIZE(exec_queue_user_extension_funcs));
460 	err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
461 	if (XE_IOCTL_DBG(xe, err))
462 		return err;
463 
464 	if (ext.next_extension)
465 		return exec_queue_user_extensions(xe, q, ext.next_extension,
466 						  ++ext_number);
467 
468 	return 0;
469 }
470 
471 static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt,
472 				      struct drm_xe_engine_class_instance *eci,
473 				      u16 width, u16 num_placements)
474 {
475 	int len = width * num_placements;
476 	int i, j, n;
477 	u16 class;
478 	u16 gt_id;
479 	u32 return_mask = 0, prev_mask;
480 
481 	if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
482 			 len > 1))
483 		return 0;
484 
485 	for (i = 0; i < width; ++i) {
486 		u32 current_mask = 0;
487 
488 		for (j = 0; j < num_placements; ++j) {
489 			struct xe_hw_engine *hwe;
490 
491 			n = j * width + i;
492 
493 			hwe = xe_hw_engine_lookup(xe, eci[n]);
494 			if (XE_IOCTL_DBG(xe, !hwe))
495 				return 0;
496 
497 			if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
498 				return 0;
499 
500 			if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
501 			    XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
502 				return 0;
503 
504 			class = eci[n].engine_class;
505 			gt_id = eci[n].gt_id;
506 
507 			if (width == 1 || !i)
508 				return_mask |= BIT(eci[n].engine_instance);
509 			current_mask |= BIT(eci[n].engine_instance);
510 		}
511 
512 		/* Parallel submissions must be logically contiguous */
513 		if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
514 			return 0;
515 
516 		prev_mask = current_mask;
517 	}
518 
519 	return return_mask;
520 }
521 
522 int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
523 			       struct drm_file *file)
524 {
525 	struct xe_device *xe = to_xe_device(dev);
526 	struct xe_file *xef = to_xe_file(file);
527 	struct drm_xe_exec_queue_create *args = data;
528 	struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
529 	struct drm_xe_engine_class_instance __user *user_eci =
530 		u64_to_user_ptr(args->instances);
531 	struct xe_hw_engine *hwe;
532 	struct xe_vm *vm;
533 	struct xe_gt *gt;
534 	struct xe_tile *tile;
535 	struct xe_exec_queue *q = NULL;
536 	u32 logical_mask;
537 	u32 id;
538 	u32 len;
539 	int err;
540 
541 	if (XE_IOCTL_DBG(xe, args->flags) ||
542 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
543 		return -EINVAL;
544 
545 	len = args->width * args->num_placements;
546 	if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
547 		return -EINVAL;
548 
549 	err = __copy_from_user(eci, user_eci,
550 			       sizeof(struct drm_xe_engine_class_instance) *
551 			       len);
552 	if (XE_IOCTL_DBG(xe, err))
553 		return -EFAULT;
554 
555 	if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count))
556 		return -EINVAL;
557 
558 	if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
559 		if (XE_IOCTL_DBG(xe, args->width != 1) ||
560 		    XE_IOCTL_DBG(xe, args->num_placements != 1) ||
561 		    XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
562 			return -EINVAL;
563 
564 		for_each_tile(tile, xe, id) {
565 			struct xe_exec_queue *new;
566 			u32 flags = EXEC_QUEUE_FLAG_VM;
567 
568 			if (id)
569 				flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
570 
571 			new = xe_exec_queue_create_bind(xe, tile, flags,
572 							args->extensions);
573 			if (IS_ERR(new)) {
574 				err = PTR_ERR(new);
575 				if (q)
576 					goto put_exec_queue;
577 				return err;
578 			}
579 			if (id == 0)
580 				q = new;
581 			else
582 				list_add_tail(&new->multi_gt_list,
583 					      &q->multi_gt_link);
584 		}
585 	} else {
586 		gt = xe_device_get_gt(xe, eci[0].gt_id);
587 		logical_mask = calc_validate_logical_mask(xe, gt, eci,
588 							  args->width,
589 							  args->num_placements);
590 		if (XE_IOCTL_DBG(xe, !logical_mask))
591 			return -EINVAL;
592 
593 		hwe = xe_hw_engine_lookup(xe, eci[0]);
594 		if (XE_IOCTL_DBG(xe, !hwe))
595 			return -EINVAL;
596 
597 		vm = xe_vm_lookup(xef, args->vm_id);
598 		if (XE_IOCTL_DBG(xe, !vm))
599 			return -ENOENT;
600 
601 		err = down_read_interruptible(&vm->lock);
602 		if (err) {
603 			xe_vm_put(vm);
604 			return err;
605 		}
606 
607 		if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
608 			up_read(&vm->lock);
609 			xe_vm_put(vm);
610 			return -ENOENT;
611 		}
612 
613 		q = xe_exec_queue_create(xe, vm, logical_mask,
614 					 args->width, hwe, 0,
615 					 args->extensions);
616 		up_read(&vm->lock);
617 		xe_vm_put(vm);
618 		if (IS_ERR(q))
619 			return PTR_ERR(q);
620 
621 		if (xe_vm_in_preempt_fence_mode(vm)) {
622 			q->lr.context = dma_fence_context_alloc(1);
623 
624 			err = xe_vm_add_compute_exec_queue(vm, q);
625 			if (XE_IOCTL_DBG(xe, err))
626 				goto put_exec_queue;
627 		}
628 
629 		if (q->vm && q->hwe->hw_engine_group) {
630 			err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
631 			if (err)
632 				goto put_exec_queue;
633 		}
634 	}
635 
636 	mutex_lock(&xef->exec_queue.lock);
637 	err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
638 	mutex_unlock(&xef->exec_queue.lock);
639 	if (err)
640 		goto kill_exec_queue;
641 
642 	args->exec_queue_id = id;
643 	q->xef = xe_file_get(xef);
644 
645 	return 0;
646 
647 kill_exec_queue:
648 	xe_exec_queue_kill(q);
649 put_exec_queue:
650 	xe_exec_queue_put(q);
651 	return err;
652 }
653 
654 int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
655 				     struct drm_file *file)
656 {
657 	struct xe_device *xe = to_xe_device(dev);
658 	struct xe_file *xef = to_xe_file(file);
659 	struct drm_xe_exec_queue_get_property *args = data;
660 	struct xe_exec_queue *q;
661 	int ret;
662 
663 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
664 		return -EINVAL;
665 
666 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
667 	if (XE_IOCTL_DBG(xe, !q))
668 		return -ENOENT;
669 
670 	switch (args->property) {
671 	case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
672 		args->value = q->ops->reset_status(q);
673 		ret = 0;
674 		break;
675 	default:
676 		ret = -EINVAL;
677 	}
678 
679 	xe_exec_queue_put(q);
680 
681 	return ret;
682 }
683 
684 /**
685  * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
686  * @q: The exec_queue
687  *
688  * Return: True if the exec_queue is long-running, false otherwise.
689  */
690 bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
691 {
692 	return q->vm && xe_vm_in_lr_mode(q->vm) &&
693 		!(q->flags & EXEC_QUEUE_FLAG_VM);
694 }
695 
696 static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
697 {
698 	return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1;
699 }
700 
701 /**
702  * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
703  * @q: The exec_queue
704  *
705  * Return: True if the exec_queue's ring is full, false otherwise.
706  */
707 bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
708 {
709 	struct xe_lrc *lrc = q->lrc[0];
710 	s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
711 
712 	return xe_exec_queue_num_job_inflight(q) >= max_job;
713 }
714 
715 /**
716  * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
717  * @q: The exec_queue
718  *
719  * FIXME: Need to determine what to use as the short-lived
720  * timeline lock for the exec_queues, so that the return value
721  * of this function becomes more than just an advisory
722  * snapshot in time. The timeline lock must protect the
723  * seqno from racing submissions on the same exec_queue.
724  * Typically vm->resv, but user-created timeline locks use the migrate vm
725  * and never grabs the migrate vm->resv so we have a race there.
726  *
727  * Return: True if the exec_queue is idle, false otherwise.
728  */
729 bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
730 {
731 	if (xe_exec_queue_is_parallel(q)) {
732 		int i;
733 
734 		for (i = 0; i < q->width; ++i) {
735 			if (xe_lrc_seqno(q->lrc[i]) !=
736 			    q->lrc[i]->fence_ctx.next_seqno - 1)
737 				return false;
738 		}
739 
740 		return true;
741 	}
742 
743 	return xe_lrc_seqno(q->lrc[0]) ==
744 		q->lrc[0]->fence_ctx.next_seqno - 1;
745 }
746 
747 /**
748  * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
749  * from hw
750  * @q: The exec queue
751  *
752  * Update the timestamp saved by HW for this exec queue and save run ticks
753  * calculated by using the delta from last update.
754  */
755 void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
756 {
757 	struct xe_file *xef;
758 	struct xe_lrc *lrc;
759 	u32 old_ts, new_ts;
760 
761 	/*
762 	 * Jobs that are run during driver load may use an exec_queue, but are
763 	 * not associated with a user xe file, so avoid accumulating busyness
764 	 * for kernel specific work.
765 	 */
766 	if (!q->vm || !q->vm->xef)
767 		return;
768 
769 	xef = q->vm->xef;
770 
771 	/*
772 	 * Only sample the first LRC. For parallel submission, all of them are
773 	 * scheduled together and we compensate that below by multiplying by
774 	 * width - this may introduce errors if that premise is not true and
775 	 * they don't exit 100% aligned. On the other hand, looping through
776 	 * the LRCs and reading them in different time could also introduce
777 	 * errors.
778 	 */
779 	lrc = q->lrc[0];
780 	new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
781 	xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
782 }
783 
784 /**
785  * xe_exec_queue_kill - permanently stop all execution from an exec queue
786  * @q: The exec queue
787  *
788  * This function permanently stops all activity on an exec queue. If the queue
789  * is actively executing on the HW, it will be kicked off the engine; any
790  * pending jobs are discarded and all future submissions are rejected.
791  * This function is safe to call multiple times.
792  */
793 void xe_exec_queue_kill(struct xe_exec_queue *q)
794 {
795 	struct xe_exec_queue *eq = q, *next;
796 
797 	list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
798 				 multi_gt_link) {
799 		q->ops->kill(eq);
800 		xe_vm_remove_compute_exec_queue(q->vm, eq);
801 	}
802 
803 	q->ops->kill(q);
804 	xe_vm_remove_compute_exec_queue(q->vm, q);
805 }
806 
807 int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
808 				struct drm_file *file)
809 {
810 	struct xe_device *xe = to_xe_device(dev);
811 	struct xe_file *xef = to_xe_file(file);
812 	struct drm_xe_exec_queue_destroy *args = data;
813 	struct xe_exec_queue *q;
814 
815 	if (XE_IOCTL_DBG(xe, args->pad) ||
816 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
817 		return -EINVAL;
818 
819 	mutex_lock(&xef->exec_queue.lock);
820 	q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
821 	mutex_unlock(&xef->exec_queue.lock);
822 	if (XE_IOCTL_DBG(xe, !q))
823 		return -ENOENT;
824 
825 	if (q->vm && q->hwe->hw_engine_group)
826 		xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
827 
828 	xe_exec_queue_kill(q);
829 
830 	trace_xe_exec_queue_close(q);
831 	xe_exec_queue_put(q);
832 
833 	return 0;
834 }
835 
836 static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
837 						    struct xe_vm *vm)
838 {
839 	if (q->flags & EXEC_QUEUE_FLAG_VM) {
840 		lockdep_assert_held(&vm->lock);
841 	} else {
842 		xe_vm_assert_held(vm);
843 		lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
844 	}
845 }
846 
847 /**
848  * xe_exec_queue_last_fence_put() - Drop ref to last fence
849  * @q: The exec queue
850  * @vm: The VM the engine does a bind or exec for
851  */
852 void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
853 {
854 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
855 
856 	xe_exec_queue_last_fence_put_unlocked(q);
857 }
858 
859 /**
860  * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
861  * @q: The exec queue
862  *
863  * Only safe to be called from xe_exec_queue_destroy().
864  */
865 void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
866 {
867 	if (q->last_fence) {
868 		dma_fence_put(q->last_fence);
869 		q->last_fence = NULL;
870 	}
871 }
872 
873 /**
874  * xe_exec_queue_last_fence_get() - Get last fence
875  * @q: The exec queue
876  * @vm: The VM the engine does a bind or exec for
877  *
878  * Get last fence, takes a ref
879  *
880  * Returns: last fence if not signaled, dma fence stub if signaled
881  */
882 struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
883 					       struct xe_vm *vm)
884 {
885 	struct dma_fence *fence;
886 
887 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
888 
889 	if (q->last_fence &&
890 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
891 		xe_exec_queue_last_fence_put(q, vm);
892 
893 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
894 	dma_fence_get(fence);
895 	return fence;
896 }
897 
898 /**
899  * xe_exec_queue_last_fence_get_for_resume() - Get last fence
900  * @q: The exec queue
901  * @vm: The VM the engine does a bind or exec for
902  *
903  * Get last fence, takes a ref. Only safe to be called in the context of
904  * resuming the hw engine group's long-running exec queue, when the group
905  * semaphore is held.
906  *
907  * Returns: last fence if not signaled, dma fence stub if signaled
908  */
909 struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
910 							  struct xe_vm *vm)
911 {
912 	struct dma_fence *fence;
913 
914 	lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
915 
916 	if (q->last_fence &&
917 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
918 		xe_exec_queue_last_fence_put_unlocked(q);
919 
920 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
921 	dma_fence_get(fence);
922 	return fence;
923 }
924 
925 /**
926  * xe_exec_queue_last_fence_set() - Set last fence
927  * @q: The exec queue
928  * @vm: The VM the engine does a bind or exec for
929  * @fence: The fence
930  *
931  * Set the last fence for the engine. Increases reference count for fence, when
932  * closing engine xe_exec_queue_last_fence_put should be called.
933  */
934 void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
935 				  struct dma_fence *fence)
936 {
937 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
938 
939 	xe_exec_queue_last_fence_put(q, vm);
940 	q->last_fence = dma_fence_get(fence);
941 }
942 
943 /**
944  * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue
945  * @q: The exec queue
946  * @vm: The VM the engine does a bind or exec for
947  *
948  * Returns:
949  * -ETIME if there exists an unsignalled last fence dependency, zero otherwise.
950  */
951 int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm)
952 {
953 	struct dma_fence *fence;
954 	int err = 0;
955 
956 	fence = xe_exec_queue_last_fence_get(q, vm);
957 	if (fence) {
958 		err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ?
959 			0 : -ETIME;
960 		dma_fence_put(fence);
961 	}
962 
963 	return err;
964 }
965