xref: /linux/drivers/gpu/drm/xe/xe_exec_queue.c (revision 44343e8b250abb2f6bfd615493ca07a7f11f3cc2)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_exec_queue.h"
7 
8 #include <linux/nospec.h>
9 
10 #include <drm/drm_device.h>
11 #include <drm/drm_drv.h>
12 #include <drm/drm_file.h>
13 #include <uapi/drm/xe_drm.h>
14 
15 #include "xe_dep_scheduler.h"
16 #include "xe_device.h"
17 #include "xe_gt.h"
18 #include "xe_hw_engine_class_sysfs.h"
19 #include "xe_hw_engine_group.h"
20 #include "xe_hw_fence.h"
21 #include "xe_irq.h"
22 #include "xe_lrc.h"
23 #include "xe_macros.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_ring_ops_types.h"
27 #include "xe_trace.h"
28 #include "xe_vm.h"
29 #include "xe_pxp.h"
30 
31 enum xe_exec_queue_sched_prop {
32 	XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
33 	XE_EXEC_QUEUE_TIMESLICE = 1,
34 	XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
35 	XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
36 };
37 
38 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
39 				      u64 extensions, int ext_number);
40 
41 static void __xe_exec_queue_free(struct xe_exec_queue *q)
42 {
43 	int i;
44 
45 	for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i)
46 		if (q->tlb_inval[i].dep_scheduler)
47 			xe_dep_scheduler_fini(q->tlb_inval[i].dep_scheduler);
48 
49 	if (xe_exec_queue_uses_pxp(q))
50 		xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
51 	if (q->vm)
52 		xe_vm_put(q->vm);
53 
54 	if (q->xef)
55 		xe_file_put(q->xef);
56 
57 	kfree(q);
58 }
59 
60 static int alloc_dep_schedulers(struct xe_device *xe, struct xe_exec_queue *q)
61 {
62 	struct xe_tile *tile = gt_to_tile(q->gt);
63 	int i;
64 
65 	for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i) {
66 		struct xe_dep_scheduler *dep_scheduler;
67 		struct xe_gt *gt;
68 		struct workqueue_struct *wq;
69 
70 		if (i == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT)
71 			gt = tile->primary_gt;
72 		else
73 			gt = tile->media_gt;
74 
75 		if (!gt)
76 			continue;
77 
78 		wq = gt->tlb_inval.job_wq;
79 
80 #define MAX_TLB_INVAL_JOBS	16	/* Picking a reasonable value */
81 		dep_scheduler = xe_dep_scheduler_create(xe, wq, q->name,
82 							MAX_TLB_INVAL_JOBS);
83 		if (IS_ERR(dep_scheduler))
84 			return PTR_ERR(dep_scheduler);
85 
86 		q->tlb_inval[i].dep_scheduler = dep_scheduler;
87 	}
88 #undef MAX_TLB_INVAL_JOBS
89 
90 	return 0;
91 }
92 
93 static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
94 						   struct xe_vm *vm,
95 						   u32 logical_mask,
96 						   u16 width, struct xe_hw_engine *hwe,
97 						   u32 flags, u64 extensions)
98 {
99 	struct xe_exec_queue *q;
100 	struct xe_gt *gt = hwe->gt;
101 	int err;
102 
103 	/* only kernel queues can be permanent */
104 	XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
105 
106 	q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
107 	if (!q)
108 		return ERR_PTR(-ENOMEM);
109 
110 	kref_init(&q->refcount);
111 	q->flags = flags;
112 	q->hwe = hwe;
113 	q->gt = gt;
114 	q->class = hwe->class;
115 	q->width = width;
116 	q->msix_vec = XE_IRQ_DEFAULT_MSIX;
117 	q->logical_mask = logical_mask;
118 	q->fence_irq = &gt->fence_irq[hwe->class];
119 	q->ring_ops = gt->ring_ops[hwe->class];
120 	q->ops = gt->exec_queue_ops;
121 	INIT_LIST_HEAD(&q->lr.link);
122 	INIT_LIST_HEAD(&q->multi_gt_link);
123 	INIT_LIST_HEAD(&q->hw_engine_group_link);
124 	INIT_LIST_HEAD(&q->pxp.link);
125 
126 	q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
127 	q->sched_props.preempt_timeout_us =
128 				hwe->eclass->sched_props.preempt_timeout_us;
129 	q->sched_props.job_timeout_ms =
130 				hwe->eclass->sched_props.job_timeout_ms;
131 	if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
132 	    q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
133 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
134 	else
135 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
136 
137 	if (q->flags & (EXEC_QUEUE_FLAG_MIGRATE | EXEC_QUEUE_FLAG_VM)) {
138 		err = alloc_dep_schedulers(xe, q);
139 		if (err) {
140 			__xe_exec_queue_free(q);
141 			return ERR_PTR(err);
142 		}
143 	}
144 
145 	if (vm)
146 		q->vm = xe_vm_get(vm);
147 
148 	if (extensions) {
149 		/*
150 		 * may set q->usm, must come before xe_lrc_create(),
151 		 * may overwrite q->sched_props, must come before q->ops->init()
152 		 */
153 		err = exec_queue_user_extensions(xe, q, extensions, 0);
154 		if (err) {
155 			__xe_exec_queue_free(q);
156 			return ERR_PTR(err);
157 		}
158 	}
159 
160 	return q;
161 }
162 
163 static int __xe_exec_queue_init(struct xe_exec_queue *q)
164 {
165 	int i, err;
166 	u32 flags = 0;
167 
168 	/*
169 	 * PXP workloads executing on RCS or CCS must run in isolation (i.e. no
170 	 * other workload can use the EUs at the same time). On MTL this is done
171 	 * by setting the RUNALONE bit in the LRC, while starting on Xe2 there
172 	 * is a dedicated bit for it.
173 	 */
174 	if (xe_exec_queue_uses_pxp(q) &&
175 	    (q->class == XE_ENGINE_CLASS_RENDER || q->class == XE_ENGINE_CLASS_COMPUTE)) {
176 		if (GRAPHICS_VER(gt_to_xe(q->gt)) >= 20)
177 			flags |= XE_LRC_CREATE_PXP;
178 		else
179 			flags |= XE_LRC_CREATE_RUNALONE;
180 	}
181 
182 	for (i = 0; i < q->width; ++i) {
183 		q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K, q->msix_vec, flags);
184 		if (IS_ERR(q->lrc[i])) {
185 			err = PTR_ERR(q->lrc[i]);
186 			goto err_lrc;
187 		}
188 	}
189 
190 	err = q->ops->init(q);
191 	if (err)
192 		goto err_lrc;
193 
194 	return 0;
195 
196 err_lrc:
197 	for (i = i - 1; i >= 0; --i)
198 		xe_lrc_put(q->lrc[i]);
199 	return err;
200 }
201 
202 struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
203 					   u32 logical_mask, u16 width,
204 					   struct xe_hw_engine *hwe, u32 flags,
205 					   u64 extensions)
206 {
207 	struct xe_exec_queue *q;
208 	int err;
209 
210 	/* VMs for GSCCS queues (and only those) must have the XE_VM_FLAG_GSC flag */
211 	xe_assert(xe, !vm || (!!(vm->flags & XE_VM_FLAG_GSC) == !!(hwe->engine_id == XE_HW_ENGINE_GSCCS0)));
212 
213 	q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
214 				  extensions);
215 	if (IS_ERR(q))
216 		return q;
217 
218 	err = __xe_exec_queue_init(q);
219 	if (err)
220 		goto err_post_alloc;
221 
222 	/*
223 	 * We can only add the queue to the PXP list after the init is complete,
224 	 * because the PXP termination can call exec_queue_kill and that will
225 	 * go bad if the queue is only half-initialized. This means that we
226 	 * can't do it when we handle the PXP extension in __xe_exec_queue_alloc
227 	 * and we need to do it here instead.
228 	 */
229 	if (xe_exec_queue_uses_pxp(q)) {
230 		err = xe_pxp_exec_queue_add(xe->pxp, q);
231 		if (err)
232 			goto err_post_alloc;
233 	}
234 
235 	return q;
236 
237 err_post_alloc:
238 	__xe_exec_queue_free(q);
239 	return ERR_PTR(err);
240 }
241 ALLOW_ERROR_INJECTION(xe_exec_queue_create, ERRNO);
242 
243 struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
244 						 struct xe_vm *vm,
245 						 enum xe_engine_class class,
246 						 u32 flags, u64 extensions)
247 {
248 	struct xe_hw_engine *hwe, *hwe0 = NULL;
249 	enum xe_hw_engine_id id;
250 	u32 logical_mask = 0;
251 
252 	for_each_hw_engine(hwe, gt, id) {
253 		if (xe_hw_engine_is_reserved(hwe))
254 			continue;
255 
256 		if (hwe->class == class) {
257 			logical_mask |= BIT(hwe->logical_instance);
258 			if (!hwe0)
259 				hwe0 = hwe;
260 		}
261 	}
262 
263 	if (!logical_mask)
264 		return ERR_PTR(-ENODEV);
265 
266 	return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
267 }
268 
269 /**
270  * xe_exec_queue_create_bind() - Create bind exec queue.
271  * @xe: Xe device.
272  * @tile: tile which bind exec queue belongs to.
273  * @flags: exec queue creation flags
274  * @extensions: exec queue creation extensions
275  *
276  * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
277  * for access to physical memory required for page table programming. On a
278  * faulting devices the reserved copy engine instance must be used to avoid
279  * deadlocking (user binds cannot get stuck behind faults as kernel binds which
280  * resolve faults depend on user binds). On non-faulting devices any copy engine
281  * can be used.
282  *
283  * Returns exec queue on success, ERR_PTR on failure
284  */
285 struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
286 						struct xe_tile *tile,
287 						u32 flags, u64 extensions)
288 {
289 	struct xe_gt *gt = tile->primary_gt;
290 	struct xe_exec_queue *q;
291 	struct xe_vm *migrate_vm;
292 
293 	migrate_vm = xe_migrate_get_vm(tile->migrate);
294 	if (xe->info.has_usm) {
295 		struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
296 							   XE_ENGINE_CLASS_COPY,
297 							   gt->usm.reserved_bcs_instance,
298 							   false);
299 
300 		if (!hwe) {
301 			xe_vm_put(migrate_vm);
302 			return ERR_PTR(-EINVAL);
303 		}
304 
305 		q = xe_exec_queue_create(xe, migrate_vm,
306 					 BIT(hwe->logical_instance), 1, hwe,
307 					 flags, extensions);
308 	} else {
309 		q = xe_exec_queue_create_class(xe, gt, migrate_vm,
310 					       XE_ENGINE_CLASS_COPY, flags,
311 					       extensions);
312 	}
313 	xe_vm_put(migrate_vm);
314 
315 	return q;
316 }
317 ALLOW_ERROR_INJECTION(xe_exec_queue_create_bind, ERRNO);
318 
319 void xe_exec_queue_destroy(struct kref *ref)
320 {
321 	struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
322 	struct xe_exec_queue *eq, *next;
323 
324 	if (xe_exec_queue_uses_pxp(q))
325 		xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
326 
327 	xe_exec_queue_last_fence_put_unlocked(q);
328 	if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
329 		list_for_each_entry_safe(eq, next, &q->multi_gt_list,
330 					 multi_gt_link)
331 			xe_exec_queue_put(eq);
332 	}
333 
334 	q->ops->fini(q);
335 }
336 
337 void xe_exec_queue_fini(struct xe_exec_queue *q)
338 {
339 	int i;
340 
341 	/*
342 	 * Before releasing our ref to lrc and xef, accumulate our run ticks
343 	 * and wakeup any waiters.
344 	 */
345 	xe_exec_queue_update_run_ticks(q);
346 	if (q->xef && atomic_dec_and_test(&q->xef->exec_queue.pending_removal))
347 		wake_up_var(&q->xef->exec_queue.pending_removal);
348 
349 	for (i = 0; i < q->width; ++i)
350 		xe_lrc_put(q->lrc[i]);
351 
352 	__xe_exec_queue_free(q);
353 }
354 
355 void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
356 {
357 	switch (q->class) {
358 	case XE_ENGINE_CLASS_RENDER:
359 		snprintf(q->name, sizeof(q->name), "rcs%d", instance);
360 		break;
361 	case XE_ENGINE_CLASS_VIDEO_DECODE:
362 		snprintf(q->name, sizeof(q->name), "vcs%d", instance);
363 		break;
364 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
365 		snprintf(q->name, sizeof(q->name), "vecs%d", instance);
366 		break;
367 	case XE_ENGINE_CLASS_COPY:
368 		snprintf(q->name, sizeof(q->name), "bcs%d", instance);
369 		break;
370 	case XE_ENGINE_CLASS_COMPUTE:
371 		snprintf(q->name, sizeof(q->name), "ccs%d", instance);
372 		break;
373 	case XE_ENGINE_CLASS_OTHER:
374 		snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
375 		break;
376 	default:
377 		XE_WARN_ON(q->class);
378 	}
379 }
380 
381 struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
382 {
383 	struct xe_exec_queue *q;
384 
385 	mutex_lock(&xef->exec_queue.lock);
386 	q = xa_load(&xef->exec_queue.xa, id);
387 	if (q)
388 		xe_exec_queue_get(q);
389 	mutex_unlock(&xef->exec_queue.lock);
390 
391 	return q;
392 }
393 
394 enum xe_exec_queue_priority
395 xe_exec_queue_device_get_max_priority(struct xe_device *xe)
396 {
397 	return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
398 				       XE_EXEC_QUEUE_PRIORITY_NORMAL;
399 }
400 
401 static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
402 				   u64 value)
403 {
404 	if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
405 		return -EINVAL;
406 
407 	if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
408 		return -EPERM;
409 
410 	q->sched_props.priority = value;
411 	return 0;
412 }
413 
414 static bool xe_exec_queue_enforce_schedule_limit(void)
415 {
416 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
417 	return true;
418 #else
419 	return !capable(CAP_SYS_NICE);
420 #endif
421 }
422 
423 static void
424 xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
425 			      enum xe_exec_queue_sched_prop prop,
426 			      u32 *min, u32 *max)
427 {
428 	switch (prop) {
429 	case XE_EXEC_QUEUE_JOB_TIMEOUT:
430 		*min = eclass->sched_props.job_timeout_min;
431 		*max = eclass->sched_props.job_timeout_max;
432 		break;
433 	case XE_EXEC_QUEUE_TIMESLICE:
434 		*min = eclass->sched_props.timeslice_min;
435 		*max = eclass->sched_props.timeslice_max;
436 		break;
437 	case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
438 		*min = eclass->sched_props.preempt_timeout_min;
439 		*max = eclass->sched_props.preempt_timeout_max;
440 		break;
441 	default:
442 		break;
443 	}
444 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
445 	if (capable(CAP_SYS_NICE)) {
446 		switch (prop) {
447 		case XE_EXEC_QUEUE_JOB_TIMEOUT:
448 			*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
449 			*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
450 			break;
451 		case XE_EXEC_QUEUE_TIMESLICE:
452 			*min = XE_HW_ENGINE_TIMESLICE_MIN;
453 			*max = XE_HW_ENGINE_TIMESLICE_MAX;
454 			break;
455 		case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
456 			*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
457 			*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
458 			break;
459 		default:
460 			break;
461 		}
462 	}
463 #endif
464 }
465 
466 static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
467 				    u64 value)
468 {
469 	u32 min = 0, max = 0;
470 
471 	xe_exec_queue_get_prop_minmax(q->hwe->eclass,
472 				      XE_EXEC_QUEUE_TIMESLICE, &min, &max);
473 
474 	if (xe_exec_queue_enforce_schedule_limit() &&
475 	    !xe_hw_engine_timeout_in_range(value, min, max))
476 		return -EINVAL;
477 
478 	q->sched_props.timeslice_us = value;
479 	return 0;
480 }
481 
482 static int
483 exec_queue_set_pxp_type(struct xe_device *xe, struct xe_exec_queue *q, u64 value)
484 {
485 	if (value == DRM_XE_PXP_TYPE_NONE)
486 		return 0;
487 
488 	/* we only support HWDRM sessions right now */
489 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
490 		return -EINVAL;
491 
492 	if (!xe_pxp_is_enabled(xe->pxp))
493 		return -ENODEV;
494 
495 	return xe_pxp_exec_queue_set_type(xe->pxp, q, DRM_XE_PXP_TYPE_HWDRM);
496 }
497 
498 typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
499 					     struct xe_exec_queue *q,
500 					     u64 value);
501 
502 static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
503 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
504 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
505 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE] = exec_queue_set_pxp_type,
506 };
507 
508 static int exec_queue_user_ext_set_property(struct xe_device *xe,
509 					    struct xe_exec_queue *q,
510 					    u64 extension)
511 {
512 	u64 __user *address = u64_to_user_ptr(extension);
513 	struct drm_xe_ext_set_property ext;
514 	int err;
515 	u32 idx;
516 
517 	err = copy_from_user(&ext, address, sizeof(ext));
518 	if (XE_IOCTL_DBG(xe, err))
519 		return -EFAULT;
520 
521 	if (XE_IOCTL_DBG(xe, ext.property >=
522 			 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
523 	    XE_IOCTL_DBG(xe, ext.pad) ||
524 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
525 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE &&
526 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE))
527 		return -EINVAL;
528 
529 	idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
530 	if (!exec_queue_set_property_funcs[idx])
531 		return -EINVAL;
532 
533 	return exec_queue_set_property_funcs[idx](xe, q, ext.value);
534 }
535 
536 typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
537 					       struct xe_exec_queue *q,
538 					       u64 extension);
539 
540 static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
541 	[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
542 };
543 
544 #define MAX_USER_EXTENSIONS	16
545 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
546 				      u64 extensions, int ext_number)
547 {
548 	u64 __user *address = u64_to_user_ptr(extensions);
549 	struct drm_xe_user_extension ext;
550 	int err;
551 	u32 idx;
552 
553 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
554 		return -E2BIG;
555 
556 	err = copy_from_user(&ext, address, sizeof(ext));
557 	if (XE_IOCTL_DBG(xe, err))
558 		return -EFAULT;
559 
560 	if (XE_IOCTL_DBG(xe, ext.pad) ||
561 	    XE_IOCTL_DBG(xe, ext.name >=
562 			 ARRAY_SIZE(exec_queue_user_extension_funcs)))
563 		return -EINVAL;
564 
565 	idx = array_index_nospec(ext.name,
566 				 ARRAY_SIZE(exec_queue_user_extension_funcs));
567 	err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
568 	if (XE_IOCTL_DBG(xe, err))
569 		return err;
570 
571 	if (ext.next_extension)
572 		return exec_queue_user_extensions(xe, q, ext.next_extension,
573 						  ++ext_number);
574 
575 	return 0;
576 }
577 
578 static u32 calc_validate_logical_mask(struct xe_device *xe,
579 				      struct drm_xe_engine_class_instance *eci,
580 				      u16 width, u16 num_placements)
581 {
582 	int len = width * num_placements;
583 	int i, j, n;
584 	u16 class;
585 	u16 gt_id;
586 	u32 return_mask = 0, prev_mask;
587 
588 	if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
589 			 len > 1))
590 		return 0;
591 
592 	for (i = 0; i < width; ++i) {
593 		u32 current_mask = 0;
594 
595 		for (j = 0; j < num_placements; ++j) {
596 			struct xe_hw_engine *hwe;
597 
598 			n = j * width + i;
599 
600 			hwe = xe_hw_engine_lookup(xe, eci[n]);
601 			if (XE_IOCTL_DBG(xe, !hwe))
602 				return 0;
603 
604 			if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
605 				return 0;
606 
607 			if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
608 			    XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
609 				return 0;
610 
611 			class = eci[n].engine_class;
612 			gt_id = eci[n].gt_id;
613 
614 			if (width == 1 || !i)
615 				return_mask |= BIT(eci[n].engine_instance);
616 			current_mask |= BIT(eci[n].engine_instance);
617 		}
618 
619 		/* Parallel submissions must be logically contiguous */
620 		if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
621 			return 0;
622 
623 		prev_mask = current_mask;
624 	}
625 
626 	return return_mask;
627 }
628 
629 int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
630 			       struct drm_file *file)
631 {
632 	struct xe_device *xe = to_xe_device(dev);
633 	struct xe_file *xef = to_xe_file(file);
634 	struct drm_xe_exec_queue_create *args = data;
635 	struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
636 	struct drm_xe_engine_class_instance __user *user_eci =
637 		u64_to_user_ptr(args->instances);
638 	struct xe_hw_engine *hwe;
639 	struct xe_vm *vm;
640 	struct xe_tile *tile;
641 	struct xe_exec_queue *q = NULL;
642 	u32 logical_mask;
643 	u32 flags = 0;
644 	u32 id;
645 	u32 len;
646 	int err;
647 
648 	if (XE_IOCTL_DBG(xe, args->flags & ~DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT) ||
649 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
650 		return -EINVAL;
651 
652 	len = args->width * args->num_placements;
653 	if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
654 		return -EINVAL;
655 
656 	err = copy_from_user(eci, user_eci,
657 			     sizeof(struct drm_xe_engine_class_instance) * len);
658 	if (XE_IOCTL_DBG(xe, err))
659 		return -EFAULT;
660 
661 	if (XE_IOCTL_DBG(xe, !xe_device_get_gt(xe, eci[0].gt_id)))
662 		return -EINVAL;
663 
664 	if (args->flags & DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT)
665 		flags |= EXEC_QUEUE_FLAG_LOW_LATENCY;
666 
667 	if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
668 		if (XE_IOCTL_DBG(xe, args->width != 1) ||
669 		    XE_IOCTL_DBG(xe, args->num_placements != 1) ||
670 		    XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
671 			return -EINVAL;
672 
673 		for_each_tile(tile, xe, id) {
674 			struct xe_exec_queue *new;
675 
676 			flags |= EXEC_QUEUE_FLAG_VM;
677 			if (id)
678 				flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
679 
680 			new = xe_exec_queue_create_bind(xe, tile, flags,
681 							args->extensions);
682 			if (IS_ERR(new)) {
683 				err = PTR_ERR(new);
684 				if (q)
685 					goto put_exec_queue;
686 				return err;
687 			}
688 			if (id == 0)
689 				q = new;
690 			else
691 				list_add_tail(&new->multi_gt_list,
692 					      &q->multi_gt_link);
693 		}
694 	} else {
695 		logical_mask = calc_validate_logical_mask(xe, eci,
696 							  args->width,
697 							  args->num_placements);
698 		if (XE_IOCTL_DBG(xe, !logical_mask))
699 			return -EINVAL;
700 
701 		hwe = xe_hw_engine_lookup(xe, eci[0]);
702 		if (XE_IOCTL_DBG(xe, !hwe))
703 			return -EINVAL;
704 
705 		vm = xe_vm_lookup(xef, args->vm_id);
706 		if (XE_IOCTL_DBG(xe, !vm))
707 			return -ENOENT;
708 
709 		err = down_read_interruptible(&vm->lock);
710 		if (err) {
711 			xe_vm_put(vm);
712 			return err;
713 		}
714 
715 		if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
716 			up_read(&vm->lock);
717 			xe_vm_put(vm);
718 			return -ENOENT;
719 		}
720 
721 		q = xe_exec_queue_create(xe, vm, logical_mask,
722 					 args->width, hwe, flags,
723 					 args->extensions);
724 		up_read(&vm->lock);
725 		xe_vm_put(vm);
726 		if (IS_ERR(q))
727 			return PTR_ERR(q);
728 
729 		if (xe_vm_in_preempt_fence_mode(vm)) {
730 			q->lr.context = dma_fence_context_alloc(1);
731 
732 			err = xe_vm_add_compute_exec_queue(vm, q);
733 			if (XE_IOCTL_DBG(xe, err))
734 				goto put_exec_queue;
735 		}
736 
737 		if (q->vm && q->hwe->hw_engine_group) {
738 			err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
739 			if (err)
740 				goto put_exec_queue;
741 		}
742 	}
743 
744 	q->xef = xe_file_get(xef);
745 
746 	/* user id alloc must always be last in ioctl to prevent UAF */
747 	err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
748 	if (err)
749 		goto kill_exec_queue;
750 
751 	args->exec_queue_id = id;
752 
753 	return 0;
754 
755 kill_exec_queue:
756 	xe_exec_queue_kill(q);
757 put_exec_queue:
758 	xe_exec_queue_put(q);
759 	return err;
760 }
761 
762 int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
763 				     struct drm_file *file)
764 {
765 	struct xe_device *xe = to_xe_device(dev);
766 	struct xe_file *xef = to_xe_file(file);
767 	struct drm_xe_exec_queue_get_property *args = data;
768 	struct xe_exec_queue *q;
769 	int ret;
770 
771 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
772 		return -EINVAL;
773 
774 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
775 	if (XE_IOCTL_DBG(xe, !q))
776 		return -ENOENT;
777 
778 	switch (args->property) {
779 	case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
780 		args->value = q->ops->reset_status(q);
781 		ret = 0;
782 		break;
783 	default:
784 		ret = -EINVAL;
785 	}
786 
787 	xe_exec_queue_put(q);
788 
789 	return ret;
790 }
791 
792 /**
793  * xe_exec_queue_lrc() - Get the LRC from exec queue.
794  * @q: The exec_queue.
795  *
796  * Retrieves the primary LRC for the exec queue. Note that this function
797  * returns only the first LRC instance, even when multiple parallel LRCs
798  * are configured.
799  *
800  * Return: Pointer to LRC on success, error on failure
801  */
802 struct xe_lrc *xe_exec_queue_lrc(struct xe_exec_queue *q)
803 {
804 	return q->lrc[0];
805 }
806 
807 /**
808  * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
809  * @q: The exec_queue
810  *
811  * Return: True if the exec_queue is long-running, false otherwise.
812  */
813 bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
814 {
815 	return q->vm && xe_vm_in_lr_mode(q->vm) &&
816 		!(q->flags & EXEC_QUEUE_FLAG_VM);
817 }
818 
819 static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
820 {
821 	return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1;
822 }
823 
824 /**
825  * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
826  * @q: The exec_queue
827  *
828  * Return: True if the exec_queue's ring is full, false otherwise.
829  */
830 bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
831 {
832 	struct xe_lrc *lrc = q->lrc[0];
833 	s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
834 
835 	return xe_exec_queue_num_job_inflight(q) >= max_job;
836 }
837 
838 /**
839  * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
840  * @q: The exec_queue
841  *
842  * FIXME: Need to determine what to use as the short-lived
843  * timeline lock for the exec_queues, so that the return value
844  * of this function becomes more than just an advisory
845  * snapshot in time. The timeline lock must protect the
846  * seqno from racing submissions on the same exec_queue.
847  * Typically vm->resv, but user-created timeline locks use the migrate vm
848  * and never grabs the migrate vm->resv so we have a race there.
849  *
850  * Return: True if the exec_queue is idle, false otherwise.
851  */
852 bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
853 {
854 	if (xe_exec_queue_is_parallel(q)) {
855 		int i;
856 
857 		for (i = 0; i < q->width; ++i) {
858 			if (xe_lrc_seqno(q->lrc[i]) !=
859 			    q->lrc[i]->fence_ctx.next_seqno - 1)
860 				return false;
861 		}
862 
863 		return true;
864 	}
865 
866 	return xe_lrc_seqno(q->lrc[0]) ==
867 		q->lrc[0]->fence_ctx.next_seqno - 1;
868 }
869 
870 /**
871  * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
872  * from hw
873  * @q: The exec queue
874  *
875  * Update the timestamp saved by HW for this exec queue and save run ticks
876  * calculated by using the delta from last update.
877  */
878 void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
879 {
880 	struct xe_device *xe = gt_to_xe(q->gt);
881 	struct xe_lrc *lrc;
882 	u64 old_ts, new_ts;
883 	int idx;
884 
885 	/*
886 	 * Jobs that are executed by kernel doesn't have a corresponding xe_file
887 	 * and thus are not accounted.
888 	 */
889 	if (!q->xef)
890 		return;
891 
892 	/* Synchronize with unbind while holding the xe file open */
893 	if (!drm_dev_enter(&xe->drm, &idx))
894 		return;
895 	/*
896 	 * Only sample the first LRC. For parallel submission, all of them are
897 	 * scheduled together and we compensate that below by multiplying by
898 	 * width - this may introduce errors if that premise is not true and
899 	 * they don't exit 100% aligned. On the other hand, looping through
900 	 * the LRCs and reading them in different time could also introduce
901 	 * errors.
902 	 */
903 	lrc = q->lrc[0];
904 	new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
905 	q->xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
906 
907 	drm_dev_exit(idx);
908 }
909 
910 /**
911  * xe_exec_queue_kill - permanently stop all execution from an exec queue
912  * @q: The exec queue
913  *
914  * This function permanently stops all activity on an exec queue. If the queue
915  * is actively executing on the HW, it will be kicked off the engine; any
916  * pending jobs are discarded and all future submissions are rejected.
917  * This function is safe to call multiple times.
918  */
919 void xe_exec_queue_kill(struct xe_exec_queue *q)
920 {
921 	struct xe_exec_queue *eq = q, *next;
922 
923 	list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
924 				 multi_gt_link) {
925 		q->ops->kill(eq);
926 		xe_vm_remove_compute_exec_queue(q->vm, eq);
927 	}
928 
929 	q->ops->kill(q);
930 	xe_vm_remove_compute_exec_queue(q->vm, q);
931 }
932 
933 int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
934 				struct drm_file *file)
935 {
936 	struct xe_device *xe = to_xe_device(dev);
937 	struct xe_file *xef = to_xe_file(file);
938 	struct drm_xe_exec_queue_destroy *args = data;
939 	struct xe_exec_queue *q;
940 
941 	if (XE_IOCTL_DBG(xe, args->pad) ||
942 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
943 		return -EINVAL;
944 
945 	mutex_lock(&xef->exec_queue.lock);
946 	q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
947 	if (q)
948 		atomic_inc(&xef->exec_queue.pending_removal);
949 	mutex_unlock(&xef->exec_queue.lock);
950 
951 	if (XE_IOCTL_DBG(xe, !q))
952 		return -ENOENT;
953 
954 	if (q->vm && q->hwe->hw_engine_group)
955 		xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
956 
957 	xe_exec_queue_kill(q);
958 
959 	trace_xe_exec_queue_close(q);
960 	xe_exec_queue_put(q);
961 
962 	return 0;
963 }
964 
965 static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
966 						    struct xe_vm *vm)
967 {
968 	if (q->flags & EXEC_QUEUE_FLAG_VM) {
969 		lockdep_assert_held(&vm->lock);
970 	} else {
971 		xe_vm_assert_held(vm);
972 		lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
973 	}
974 }
975 
976 /**
977  * xe_exec_queue_last_fence_put() - Drop ref to last fence
978  * @q: The exec queue
979  * @vm: The VM the engine does a bind or exec for
980  */
981 void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
982 {
983 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
984 
985 	xe_exec_queue_last_fence_put_unlocked(q);
986 }
987 
988 /**
989  * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
990  * @q: The exec queue
991  *
992  * Only safe to be called from xe_exec_queue_destroy().
993  */
994 void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
995 {
996 	if (q->last_fence) {
997 		dma_fence_put(q->last_fence);
998 		q->last_fence = NULL;
999 	}
1000 }
1001 
1002 /**
1003  * xe_exec_queue_last_fence_get() - Get last fence
1004  * @q: The exec queue
1005  * @vm: The VM the engine does a bind or exec for
1006  *
1007  * Get last fence, takes a ref
1008  *
1009  * Returns: last fence if not signaled, dma fence stub if signaled
1010  */
1011 struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
1012 					       struct xe_vm *vm)
1013 {
1014 	struct dma_fence *fence;
1015 
1016 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1017 
1018 	if (q->last_fence &&
1019 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
1020 		xe_exec_queue_last_fence_put(q, vm);
1021 
1022 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
1023 	dma_fence_get(fence);
1024 	return fence;
1025 }
1026 
1027 /**
1028  * xe_exec_queue_last_fence_get_for_resume() - Get last fence
1029  * @q: The exec queue
1030  * @vm: The VM the engine does a bind or exec for
1031  *
1032  * Get last fence, takes a ref. Only safe to be called in the context of
1033  * resuming the hw engine group's long-running exec queue, when the group
1034  * semaphore is held.
1035  *
1036  * Returns: last fence if not signaled, dma fence stub if signaled
1037  */
1038 struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
1039 							  struct xe_vm *vm)
1040 {
1041 	struct dma_fence *fence;
1042 
1043 	lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
1044 
1045 	if (q->last_fence &&
1046 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
1047 		xe_exec_queue_last_fence_put_unlocked(q);
1048 
1049 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
1050 	dma_fence_get(fence);
1051 	return fence;
1052 }
1053 
1054 /**
1055  * xe_exec_queue_last_fence_set() - Set last fence
1056  * @q: The exec queue
1057  * @vm: The VM the engine does a bind or exec for
1058  * @fence: The fence
1059  *
1060  * Set the last fence for the engine. Increases reference count for fence, when
1061  * closing engine xe_exec_queue_last_fence_put should be called.
1062  */
1063 void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
1064 				  struct dma_fence *fence)
1065 {
1066 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1067 
1068 	xe_exec_queue_last_fence_put(q, vm);
1069 	q->last_fence = dma_fence_get(fence);
1070 }
1071 
1072 /**
1073  * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue
1074  * @q: The exec queue
1075  * @vm: The VM the engine does a bind or exec for
1076  *
1077  * Returns:
1078  * -ETIME if there exists an unsignalled last fence dependency, zero otherwise.
1079  */
1080 int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm)
1081 {
1082 	struct dma_fence *fence;
1083 	int err = 0;
1084 
1085 	fence = xe_exec_queue_last_fence_get(q, vm);
1086 	if (fence) {
1087 		err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ?
1088 			0 : -ETIME;
1089 		dma_fence_put(fence);
1090 	}
1091 
1092 	return err;
1093 }
1094 
1095 /**
1096  * xe_exec_queue_contexts_hwsp_rebase - Re-compute GGTT references
1097  * within all LRCs of a queue.
1098  * @q: the &xe_exec_queue struct instance containing target LRCs
1099  * @scratch: scratch buffer to be used as temporary storage
1100  *
1101  * Returns: zero on success, negative error code on failure
1102  */
1103 int xe_exec_queue_contexts_hwsp_rebase(struct xe_exec_queue *q, void *scratch)
1104 {
1105 	int i;
1106 	int err = 0;
1107 
1108 	for (i = 0; i < q->width; ++i) {
1109 		xe_lrc_update_memirq_regs_with_address(q->lrc[i], q->hwe, scratch);
1110 		xe_lrc_update_hwctx_regs_with_address(q->lrc[i]);
1111 		err = xe_lrc_setup_wa_bb_with_scratch(q->lrc[i], q->hwe, scratch);
1112 		if (err)
1113 			break;
1114 	}
1115 
1116 	return err;
1117 }
1118 
1119 /**
1120  * xe_exec_queue_jobs_ring_restore - Re-emit ring commands of requests pending on given queue.
1121  * @q: the &xe_exec_queue struct instance
1122  */
1123 void xe_exec_queue_jobs_ring_restore(struct xe_exec_queue *q)
1124 {
1125 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1126 	struct xe_sched_job *job;
1127 
1128 	/*
1129 	 * This routine is used within VF migration recovery. This means
1130 	 * using the lock here introduces a restriction: we cannot wait
1131 	 * for any GFX HW response while the lock is taken.
1132 	 */
1133 	spin_lock(&sched->base.job_list_lock);
1134 	list_for_each_entry(job, &sched->base.pending_list, drm.list) {
1135 		if (xe_sched_job_is_error(job))
1136 			continue;
1137 
1138 		q->ring_ops->emit_job(job);
1139 	}
1140 	spin_unlock(&sched->base.job_list_lock);
1141 }
1142