xref: /linux/drivers/gpu/drm/xe/xe_exec.c (revision c31f4aa8fed048fa70e742c4bb49bb48dc489ab3)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_exec.h"
7 
8 #include <drm/drm_device.h>
9 #include <drm/drm_exec.h>
10 #include <drm/drm_file.h>
11 #include <uapi/drm/xe_drm.h>
12 #include <linux/delay.h>
13 
14 #include "xe_bo.h"
15 #include "xe_device.h"
16 #include "xe_exec_queue.h"
17 #include "xe_hw_engine_group.h"
18 #include "xe_macros.h"
19 #include "xe_pm.h"
20 #include "xe_ring_ops_types.h"
21 #include "xe_sched_job.h"
22 #include "xe_sync.h"
23 #include "xe_svm.h"
24 #include "xe_trace.h"
25 #include "xe_vm.h"
26 
27 /**
28  * DOC: Execbuf (User GPU command submission)
29  *
30  * Execs have historically been rather complicated in DRM drivers (at least in
31  * the i915) because a few things:
32  *
33  * - Passing in a list BO which are read / written to creating implicit syncs
34  * - Binding at exec time
35  * - Flow controlling the ring at exec time
36  *
37  * In Xe we avoid all of this complication by not allowing a BO list to be
38  * passed into an exec, using the dma-buf implicit sync uAPI, have binds as
39  * separate operations, and using the DRM scheduler to flow control the ring.
40  * Let's deep dive on each of these.
41  *
42  * We can get away from a BO list by forcing the user to use in / out fences on
43  * every exec rather than the kernel tracking dependencies of BO (e.g. if the
44  * user knows an exec writes to a BO and reads from the BO in the next exec, it
45  * is the user's responsibility to pass in / out fence between the two execs).
46  *
47  * We do not allow a user to trigger a bind at exec time rather we have a VM
48  * bind IOCTL which uses the same in / out fence interface as exec. In that
49  * sense, a VM bind is basically the same operation as an exec from the user
50  * perspective. e.g. If an exec depends on a VM bind use the in / out fence
51  * interface (struct drm_xe_sync) to synchronize like syncing between two
52  * dependent execs.
53  *
54  * Although a user cannot trigger a bind, we still have to rebind userptrs in
55  * the VM that have been invalidated since the last exec, likewise we also have
56  * to rebind BOs that have been evicted by the kernel. We schedule these rebinds
57  * behind any pending kernel operations on any external BOs in VM or any BOs
58  * private to the VM. This is accomplished by the rebinds waiting on BOs
59  * DMA_RESV_USAGE_KERNEL slot (kernel ops) and kernel ops waiting on all BOs
60  * slots (inflight execs are in the DMA_RESV_USAGE_BOOKKEEP for private BOs and
61  * for external BOs).
62  *
63  * Rebinds / dma-resv usage applies to non-compute mode VMs only as for compute
64  * mode VMs we use preempt fences and a rebind worker (TODO: add link).
65  *
66  * There is no need to flow control the ring in the exec as we write the ring at
67  * submission time and set the DRM scheduler max job limit SIZE_OF_RING /
68  * MAX_JOB_SIZE. The DRM scheduler will then hold all jobs until space in the
69  * ring is available.
70  *
71  * All of this results in a rather simple exec implementation.
72  *
73  * Flow
74  * ~~~~
75  *
76  * .. code-block::
77  *
78  *	Parse input arguments
79  *	Wait for any async VM bind passed as in-fences to start
80  *	<----------------------------------------------------------------------|
81  *	Lock global VM lock in read mode                                       |
82  *	Pin userptrs (also finds userptr invalidated since last exec)          |
83  *	Lock exec (VM dma-resv lock, external BOs dma-resv locks)              |
84  *	Validate BOs that have been evicted                                    |
85  *	Create job                                                             |
86  *	Rebind invalidated userptrs + evicted BOs (non-compute-mode)           |
87  *	Add rebind fence dependency to job                                     |
88  *	Add job VM dma-resv bookkeeping slot (non-compute mode)                |
89  *	Add job to external BOs dma-resv write slots (non-compute mode)        |
90  *	Check if any userptrs invalidated since pin ------ Drop locks ---------|
91  *	Install in / out fences for job
92  *	Submit job
93  *	Unlock all
94  */
95 
96 /*
97  * Add validation and rebinding to the drm_exec locking loop, since both can
98  * trigger eviction which may require sleeping dma_resv locks.
99  */
100 static int xe_exec_fn(struct drm_gpuvm_exec *vm_exec)
101 {
102 	struct xe_vm *vm = container_of(vm_exec->vm, struct xe_vm, gpuvm);
103 	int ret;
104 
105 	/* The fence slot added here is intended for the exec sched job. */
106 	xe_vm_set_validation_exec(vm, &vm_exec->exec);
107 	ret = xe_vm_validate_rebind(vm, &vm_exec->exec, 1);
108 	xe_vm_set_validation_exec(vm, NULL);
109 	return ret;
110 }
111 
112 int xe_exec_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
113 {
114 	struct xe_device *xe = to_xe_device(dev);
115 	struct xe_file *xef = to_xe_file(file);
116 	struct drm_xe_exec *args = data;
117 	struct drm_xe_sync __user *syncs_user = u64_to_user_ptr(args->syncs);
118 	u64 __user *addresses_user = u64_to_user_ptr(args->address);
119 	struct xe_exec_queue *q;
120 	struct xe_sync_entry *syncs = NULL;
121 	u64 addresses[XE_HW_ENGINE_MAX_INSTANCE];
122 	struct drm_gpuvm_exec vm_exec = {.extra.fn = xe_exec_fn};
123 	struct drm_exec *exec = &vm_exec.exec;
124 	u32 i, num_syncs, num_ufence = 0;
125 	struct xe_validation_ctx ctx;
126 	struct xe_sched_job *job;
127 	struct xe_vm *vm;
128 	bool write_locked;
129 	int err = 0;
130 	struct xe_hw_engine_group *group;
131 	enum xe_hw_engine_group_execution_mode mode, previous_mode;
132 
133 	if (XE_IOCTL_DBG(xe, args->extensions) ||
134 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
135 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]) ||
136 	    XE_IOCTL_DBG(xe, args->num_syncs > DRM_XE_MAX_SYNCS))
137 		return -EINVAL;
138 
139 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
140 	if (XE_IOCTL_DBG(xe, !q))
141 		return -ENOENT;
142 
143 	if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_VM)) {
144 		err = -EINVAL;
145 		goto err_exec_queue;
146 	}
147 
148 	if (XE_IOCTL_DBG(xe, args->num_batch_buffer &&
149 			 q->width != args->num_batch_buffer)) {
150 		err = -EINVAL;
151 		goto err_exec_queue;
152 	}
153 
154 	if (XE_IOCTL_DBG(xe, q->ops->reset_status(q))) {
155 		err = -ECANCELED;
156 		goto err_exec_queue;
157 	}
158 
159 	if (atomic_read(&q->job_cnt) >= XE_MAX_JOB_COUNT_PER_EXEC_QUEUE) {
160 		trace_xe_exec_queue_reach_max_job_count(q, XE_MAX_JOB_COUNT_PER_EXEC_QUEUE);
161 		err = -EAGAIN;
162 		goto err_exec_queue;
163 	}
164 
165 	if (args->num_syncs) {
166 		syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
167 		if (!syncs) {
168 			err = -ENOMEM;
169 			goto err_exec_queue;
170 		}
171 	}
172 
173 	vm = q->vm;
174 
175 	for (num_syncs = 0; num_syncs < args->num_syncs; num_syncs++) {
176 		err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs],
177 					  &syncs_user[num_syncs], NULL, 0,
178 					  SYNC_PARSE_FLAG_EXEC |
179 					  (xe_vm_in_lr_mode(vm) ?
180 					   SYNC_PARSE_FLAG_LR_MODE : 0));
181 		if (err)
182 			goto err_syncs;
183 
184 		if (xe_sync_is_ufence(&syncs[num_syncs]))
185 			num_ufence++;
186 	}
187 
188 	if (XE_IOCTL_DBG(xe, num_ufence > 1)) {
189 		err = -EINVAL;
190 		goto err_syncs;
191 	}
192 
193 	if (xe_exec_queue_is_parallel(q)) {
194 		err = copy_from_user(addresses, addresses_user, sizeof(u64) *
195 				     q->width);
196 		if (err) {
197 			err = -EFAULT;
198 			goto err_syncs;
199 		}
200 	}
201 
202 	group = q->hwe->hw_engine_group;
203 	mode = xe_hw_engine_group_find_exec_mode(q);
204 
205 	if (mode == EXEC_MODE_DMA_FENCE) {
206 		err = xe_hw_engine_group_get_mode(group, mode, &previous_mode);
207 		if (err)
208 			goto err_syncs;
209 	}
210 
211 retry:
212 	if (!xe_vm_in_lr_mode(vm) && xe_vm_userptr_check_repin(vm)) {
213 		err = down_write_killable(&vm->lock);
214 		write_locked = true;
215 	} else {
216 		/* We don't allow execs while the VM is in error state */
217 		err = down_read_interruptible(&vm->lock);
218 		write_locked = false;
219 	}
220 	if (err)
221 		goto err_hw_exec_mode;
222 
223 	if (write_locked) {
224 		err = xe_vm_userptr_pin(vm);
225 		downgrade_write(&vm->lock);
226 		write_locked = false;
227 		if (err)
228 			goto err_unlock_list;
229 	}
230 
231 	if (!args->num_batch_buffer) {
232 		err = xe_vm_lock(vm, true);
233 		if (err)
234 			goto err_unlock_list;
235 
236 		if (!xe_vm_in_lr_mode(vm)) {
237 			struct dma_fence *fence;
238 
239 			fence = xe_sync_in_fence_get(syncs, num_syncs, q, vm);
240 			if (IS_ERR(fence)) {
241 				err = PTR_ERR(fence);
242 				xe_vm_unlock(vm);
243 				goto err_unlock_list;
244 			}
245 			for (i = 0; i < num_syncs; i++)
246 				xe_sync_entry_signal(&syncs[i], fence);
247 			xe_exec_queue_last_fence_set(q, vm, fence);
248 			dma_fence_put(fence);
249 		}
250 
251 		xe_vm_unlock(vm);
252 		goto err_unlock_list;
253 	}
254 
255 	/*
256 	 * It's OK to block interruptible here with the vm lock held, since
257 	 * on task freezing during suspend / hibernate, the call will
258 	 * return -ERESTARTSYS and the IOCTL will be rerun.
259 	 */
260 	err = xe_pm_block_on_suspend(xe);
261 	if (err)
262 		goto err_unlock_list;
263 
264 	if (!xe_vm_in_lr_mode(vm)) {
265 		vm_exec.vm = &vm->gpuvm;
266 		vm_exec.flags = DRM_EXEC_INTERRUPTIBLE_WAIT;
267 		err = xe_validation_exec_lock(&ctx, &vm_exec, &xe->val);
268 		if (err)
269 			goto err_unlock_list;
270 	}
271 
272 	if (xe_vm_is_closed_or_banned(q->vm)) {
273 		drm_warn(&xe->drm, "Trying to schedule after vm is closed or banned\n");
274 		err = -ECANCELED;
275 		goto err_exec;
276 	}
277 
278 	if (xe_exec_queue_uses_pxp(q)) {
279 		err = xe_vm_validate_protected(q->vm);
280 		if (err)
281 			goto err_exec;
282 	}
283 
284 	job = xe_sched_job_create(q, xe_exec_queue_is_parallel(q) ?
285 				  addresses : &args->address);
286 	if (IS_ERR(job)) {
287 		err = PTR_ERR(job);
288 		goto err_exec;
289 	}
290 
291 	/* Wait behind rebinds */
292 	if (!xe_vm_in_lr_mode(vm)) {
293 		err = xe_sched_job_add_deps(job,
294 					    xe_vm_resv(vm),
295 					    DMA_RESV_USAGE_KERNEL);
296 		if (err)
297 			goto err_put_job;
298 	}
299 
300 	for (i = 0; i < num_syncs && !err; i++)
301 		err = xe_sync_entry_add_deps(&syncs[i], job);
302 	if (err)
303 		goto err_put_job;
304 
305 	if (!xe_vm_in_lr_mode(vm)) {
306 		err = xe_svm_notifier_lock_interruptible(vm);
307 		if (err)
308 			goto err_put_job;
309 
310 		err = __xe_vm_userptr_needs_repin(vm);
311 		if (err)
312 			goto err_repin;
313 	}
314 
315 	/*
316 	 * Point of no return, if we error after this point just set an error on
317 	 * the job and let the DRM scheduler / backend clean up the job.
318 	 */
319 	xe_sched_job_arm(job);
320 	if (!xe_vm_in_lr_mode(vm))
321 		drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, &job->drm.s_fence->finished,
322 					 DMA_RESV_USAGE_BOOKKEEP,
323 					 DMA_RESV_USAGE_BOOKKEEP);
324 
325 	for (i = 0; i < num_syncs; i++) {
326 		xe_sync_entry_signal(&syncs[i], &job->drm.s_fence->finished);
327 		xe_sched_job_init_user_fence(job, &syncs[i]);
328 	}
329 
330 	if (!xe_vm_in_lr_mode(vm))
331 		xe_exec_queue_last_fence_set(q, vm, &job->drm.s_fence->finished);
332 	xe_sched_job_push(job);
333 	xe_vm_reactivate_rebind(vm);
334 
335 	if (!err && !xe_vm_in_lr_mode(vm)) {
336 		spin_lock(&xe->ttm.lru_lock);
337 		ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
338 		spin_unlock(&xe->ttm.lru_lock);
339 	}
340 
341 	if (mode == EXEC_MODE_LR)
342 		xe_hw_engine_group_resume_faulting_lr_jobs(group);
343 
344 err_repin:
345 	if (!xe_vm_in_lr_mode(vm))
346 		xe_svm_notifier_unlock(vm);
347 err_put_job:
348 	if (err)
349 		xe_sched_job_put(job);
350 err_exec:
351 	if (!xe_vm_in_lr_mode(vm))
352 		xe_validation_ctx_fini(&ctx);
353 err_unlock_list:
354 	up_read(&vm->lock);
355 	if (err == -EAGAIN)
356 		goto retry;
357 err_hw_exec_mode:
358 	if (mode == EXEC_MODE_DMA_FENCE)
359 		xe_hw_engine_group_put(group);
360 err_syncs:
361 	while (num_syncs--)
362 		xe_sync_entry_cleanup(&syncs[num_syncs]);
363 	kfree(syncs);
364 err_exec_queue:
365 	xe_exec_queue_put(q);
366 
367 	return err;
368 }
369