1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_exec.h" 7 8 #include <drm/drm_device.h> 9 #include <drm/drm_exec.h> 10 #include <drm/drm_file.h> 11 #include <drm/xe_drm.h> 12 #include <linux/delay.h> 13 14 #include "xe_bo.h" 15 #include "xe_device.h" 16 #include "xe_exec_queue.h" 17 #include "xe_macros.h" 18 #include "xe_ring_ops_types.h" 19 #include "xe_sched_job.h" 20 #include "xe_sync.h" 21 #include "xe_vm.h" 22 23 /** 24 * DOC: Execbuf (User GPU command submission) 25 * 26 * Execs have historically been rather complicated in DRM drivers (at least in 27 * the i915) because a few things: 28 * 29 * - Passing in a list BO which are read / written to creating implicit syncs 30 * - Binding at exec time 31 * - Flow controlling the ring at exec time 32 * 33 * In XE we avoid all of this complication by not allowing a BO list to be 34 * passed into an exec, using the dma-buf implicit sync uAPI, have binds as 35 * seperate operations, and using the DRM scheduler to flow control the ring. 36 * Let's deep dive on each of these. 37 * 38 * We can get away from a BO list by forcing the user to use in / out fences on 39 * every exec rather than the kernel tracking dependencies of BO (e.g. if the 40 * user knows an exec writes to a BO and reads from the BO in the next exec, it 41 * is the user's responsibility to pass in / out fence between the two execs). 42 * 43 * Implicit dependencies for external BOs are handled by using the dma-buf 44 * implicit dependency uAPI (TODO: add link). To make this works each exec must 45 * install the job's fence into the DMA_RESV_USAGE_WRITE slot of every external 46 * BO mapped in the VM. 47 * 48 * We do not allow a user to trigger a bind at exec time rather we have a VM 49 * bind IOCTL which uses the same in / out fence interface as exec. In that 50 * sense, a VM bind is basically the same operation as an exec from the user 51 * perspective. e.g. If an exec depends on a VM bind use the in / out fence 52 * interface (struct drm_xe_sync) to synchronize like syncing between two 53 * dependent execs. 54 * 55 * Although a user cannot trigger a bind, we still have to rebind userptrs in 56 * the VM that have been invalidated since the last exec, likewise we also have 57 * to rebind BOs that have been evicted by the kernel. We schedule these rebinds 58 * behind any pending kernel operations on any external BOs in VM or any BOs 59 * private to the VM. This is accomplished by the rebinds waiting on BOs 60 * DMA_RESV_USAGE_KERNEL slot (kernel ops) and kernel ops waiting on all BOs 61 * slots (inflight execs are in the DMA_RESV_USAGE_BOOKING for private BOs and 62 * in DMA_RESV_USAGE_WRITE for external BOs). 63 * 64 * Rebinds / dma-resv usage applies to non-compute mode VMs only as for compute 65 * mode VMs we use preempt fences and a rebind worker (TODO: add link). 66 * 67 * There is no need to flow control the ring in the exec as we write the ring at 68 * submission time and set the DRM scheduler max job limit SIZE_OF_RING / 69 * MAX_JOB_SIZE. The DRM scheduler will then hold all jobs until space in the 70 * ring is available. 71 * 72 * All of this results in a rather simple exec implementation. 73 * 74 * Flow 75 * ~~~~ 76 * 77 * .. code-block:: 78 * 79 * Parse input arguments 80 * Wait for any async VM bind passed as in-fences to start 81 * <----------------------------------------------------------------------| 82 * Lock global VM lock in read mode | 83 * Pin userptrs (also finds userptr invalidated since last exec) | 84 * Lock exec (VM dma-resv lock, external BOs dma-resv locks) | 85 * Validate BOs that have been evicted | 86 * Create job | 87 * Rebind invalidated userptrs + evicted BOs (non-compute-mode) | 88 * Add rebind fence dependency to job | 89 * Add job VM dma-resv bookkeeping slot (non-compute mode) | 90 * Add job to external BOs dma-resv write slots (non-compute mode) | 91 * Check if any userptrs invalidated since pin ------ Drop locks ---------| 92 * Install in / out fences for job 93 * Submit job 94 * Unlock all 95 */ 96 97 static int xe_exec_fn(struct drm_gpuvm_exec *vm_exec) 98 { 99 struct xe_vm *vm = container_of(vm_exec->vm, struct xe_vm, gpuvm); 100 struct drm_gem_object *obj; 101 unsigned long index; 102 int num_fences; 103 int ret; 104 105 ret = drm_gpuvm_validate(vm_exec->vm, &vm_exec->exec); 106 if (ret) 107 return ret; 108 109 /* 110 * 1 fence slot for the final submit, and 1 more for every per-tile for 111 * GPU bind and 1 extra for CPU bind. Note that there are potentially 112 * many vma per object/dma-resv, however the fence slot will just be 113 * re-used, since they are largely the same timeline and the seqno 114 * should be in order. In the case of CPU bind there is dummy fence used 115 * for all CPU binds, so no need to have a per-tile slot for that. 116 */ 117 num_fences = 1 + 1 + vm->xe->info.tile_count; 118 119 /* 120 * We don't know upfront exactly how many fence slots we will need at 121 * the start of the exec, since the TTM bo_validate above can consume 122 * numerous fence slots. Also due to how the dma_resv_reserve_fences() 123 * works it only ensures that at least that many fence slots are 124 * available i.e if there are already 10 slots available and we reserve 125 * two more, it can just noop without reserving anything. With this it 126 * is quite possible that TTM steals some of the fence slots and then 127 * when it comes time to do the vma binding and final exec stage we are 128 * lacking enough fence slots, leading to some nasty BUG_ON() when 129 * adding the fences. Hence just add our own fences here, after the 130 * validate stage. 131 */ 132 drm_exec_for_each_locked_object(&vm_exec->exec, index, obj) { 133 ret = dma_resv_reserve_fences(obj->resv, num_fences); 134 if (ret) 135 return ret; 136 } 137 138 return 0; 139 } 140 141 int xe_exec_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 142 { 143 struct xe_device *xe = to_xe_device(dev); 144 struct xe_file *xef = to_xe_file(file); 145 struct drm_xe_exec *args = data; 146 struct drm_xe_sync __user *syncs_user = u64_to_user_ptr(args->syncs); 147 u64 __user *addresses_user = u64_to_user_ptr(args->address); 148 struct xe_exec_queue *q; 149 struct xe_sync_entry *syncs = NULL; 150 u64 addresses[XE_HW_ENGINE_MAX_INSTANCE]; 151 struct drm_gpuvm_exec vm_exec = {.extra.fn = xe_exec_fn}; 152 struct drm_exec *exec = &vm_exec.exec; 153 u32 i, num_syncs = 0, num_ufence = 0; 154 struct xe_sched_job *job; 155 struct dma_fence *rebind_fence; 156 struct xe_vm *vm; 157 bool write_locked, skip_retry = false; 158 ktime_t end = 0; 159 int err = 0; 160 161 if (XE_IOCTL_DBG(xe, args->extensions) || 162 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 163 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 164 return -EINVAL; 165 166 q = xe_exec_queue_lookup(xef, args->exec_queue_id); 167 if (XE_IOCTL_DBG(xe, !q)) 168 return -ENOENT; 169 170 if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_VM)) 171 return -EINVAL; 172 173 if (XE_IOCTL_DBG(xe, args->num_batch_buffer && 174 q->width != args->num_batch_buffer)) 175 return -EINVAL; 176 177 if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_BANNED)) { 178 err = -ECANCELED; 179 goto err_exec_queue; 180 } 181 182 if (args->num_syncs) { 183 syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL); 184 if (!syncs) { 185 err = -ENOMEM; 186 goto err_exec_queue; 187 } 188 } 189 190 vm = q->vm; 191 192 for (i = 0; i < args->num_syncs; i++) { 193 err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs++], 194 &syncs_user[i], SYNC_PARSE_FLAG_EXEC | 195 (xe_vm_in_lr_mode(vm) ? 196 SYNC_PARSE_FLAG_LR_MODE : 0)); 197 if (err) 198 goto err_syncs; 199 200 if (xe_sync_is_ufence(&syncs[i])) 201 num_ufence++; 202 } 203 204 if (XE_IOCTL_DBG(xe, num_ufence > 1)) { 205 err = -EINVAL; 206 goto err_syncs; 207 } 208 209 if (xe_exec_queue_is_parallel(q)) { 210 err = __copy_from_user(addresses, addresses_user, sizeof(u64) * 211 q->width); 212 if (err) { 213 err = -EFAULT; 214 goto err_syncs; 215 } 216 } 217 218 retry: 219 if (!xe_vm_in_lr_mode(vm) && xe_vm_userptr_check_repin(vm)) { 220 err = down_write_killable(&vm->lock); 221 write_locked = true; 222 } else { 223 /* We don't allow execs while the VM is in error state */ 224 err = down_read_interruptible(&vm->lock); 225 write_locked = false; 226 } 227 if (err) 228 goto err_syncs; 229 230 if (write_locked) { 231 err = xe_vm_userptr_pin(vm); 232 downgrade_write(&vm->lock); 233 write_locked = false; 234 if (err) 235 goto err_unlock_list; 236 } 237 238 if (!args->num_batch_buffer) { 239 err = xe_vm_lock(vm, true); 240 if (err) 241 goto err_unlock_list; 242 243 if (!xe_vm_in_lr_mode(vm)) { 244 struct dma_fence *fence; 245 246 fence = xe_sync_in_fence_get(syncs, num_syncs, q, vm); 247 if (IS_ERR(fence)) { 248 err = PTR_ERR(fence); 249 goto err_unlock_list; 250 } 251 for (i = 0; i < num_syncs; i++) 252 xe_sync_entry_signal(&syncs[i], NULL, fence); 253 xe_exec_queue_last_fence_set(q, vm, fence); 254 dma_fence_put(fence); 255 } 256 257 xe_vm_unlock(vm); 258 goto err_unlock_list; 259 } 260 261 vm_exec.vm = &vm->gpuvm; 262 vm_exec.flags = DRM_EXEC_INTERRUPTIBLE_WAIT; 263 if (xe_vm_in_lr_mode(vm)) { 264 drm_exec_init(exec, vm_exec.flags, 0); 265 } else { 266 err = drm_gpuvm_exec_lock(&vm_exec); 267 if (err) { 268 if (xe_vm_validate_should_retry(exec, err, &end)) 269 err = -EAGAIN; 270 goto err_unlock_list; 271 } 272 } 273 274 if (xe_vm_is_closed_or_banned(q->vm)) { 275 drm_warn(&xe->drm, "Trying to schedule after vm is closed or banned\n"); 276 err = -ECANCELED; 277 goto err_exec; 278 } 279 280 if (xe_exec_queue_is_lr(q) && xe_exec_queue_ring_full(q)) { 281 err = -EWOULDBLOCK; /* Aliased to -EAGAIN */ 282 skip_retry = true; 283 goto err_exec; 284 } 285 286 job = xe_sched_job_create(q, xe_exec_queue_is_parallel(q) ? 287 addresses : &args->address); 288 if (IS_ERR(job)) { 289 err = PTR_ERR(job); 290 goto err_exec; 291 } 292 293 /* 294 * Rebind any invalidated userptr or evicted BOs in the VM, non-compute 295 * VM mode only. 296 */ 297 rebind_fence = xe_vm_rebind(vm, false); 298 if (IS_ERR(rebind_fence)) { 299 err = PTR_ERR(rebind_fence); 300 goto err_put_job; 301 } 302 303 /* 304 * We store the rebind_fence in the VM so subsequent execs don't get 305 * scheduled before the rebinds of userptrs / evicted BOs is complete. 306 */ 307 if (rebind_fence) { 308 dma_fence_put(vm->rebind_fence); 309 vm->rebind_fence = rebind_fence; 310 } 311 if (vm->rebind_fence) { 312 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 313 &vm->rebind_fence->flags)) { 314 dma_fence_put(vm->rebind_fence); 315 vm->rebind_fence = NULL; 316 } else { 317 dma_fence_get(vm->rebind_fence); 318 err = drm_sched_job_add_dependency(&job->drm, 319 vm->rebind_fence); 320 if (err) 321 goto err_put_job; 322 } 323 } 324 325 /* Wait behind munmap style rebinds */ 326 if (!xe_vm_in_lr_mode(vm)) { 327 err = drm_sched_job_add_resv_dependencies(&job->drm, 328 xe_vm_resv(vm), 329 DMA_RESV_USAGE_KERNEL); 330 if (err) 331 goto err_put_job; 332 } 333 334 for (i = 0; i < num_syncs && !err; i++) 335 err = xe_sync_entry_add_deps(&syncs[i], job); 336 if (err) 337 goto err_put_job; 338 339 if (!xe_vm_in_lr_mode(vm)) { 340 err = xe_sched_job_last_fence_add_dep(job, vm); 341 if (err) 342 goto err_put_job; 343 344 err = down_read_interruptible(&vm->userptr.notifier_lock); 345 if (err) 346 goto err_put_job; 347 348 err = __xe_vm_userptr_needs_repin(vm); 349 if (err) 350 goto err_repin; 351 } 352 353 /* 354 * Point of no return, if we error after this point just set an error on 355 * the job and let the DRM scheduler / backend clean up the job. 356 */ 357 xe_sched_job_arm(job); 358 if (!xe_vm_in_lr_mode(vm)) 359 drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, &job->drm.s_fence->finished, 360 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE); 361 362 for (i = 0; i < num_syncs; i++) 363 xe_sync_entry_signal(&syncs[i], job, 364 &job->drm.s_fence->finished); 365 366 if (xe_exec_queue_is_lr(q)) 367 q->ring_ops->emit_job(job); 368 if (!xe_vm_in_lr_mode(vm)) 369 xe_exec_queue_last_fence_set(q, vm, &job->drm.s_fence->finished); 370 xe_sched_job_push(job); 371 xe_vm_reactivate_rebind(vm); 372 373 if (!err && !xe_vm_in_lr_mode(vm)) { 374 spin_lock(&xe->ttm.lru_lock); 375 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 376 spin_unlock(&xe->ttm.lru_lock); 377 } 378 379 err_repin: 380 if (!xe_vm_in_lr_mode(vm)) 381 up_read(&vm->userptr.notifier_lock); 382 err_put_job: 383 if (err) 384 xe_sched_job_put(job); 385 err_exec: 386 drm_exec_fini(exec); 387 err_unlock_list: 388 if (write_locked) 389 up_write(&vm->lock); 390 else 391 up_read(&vm->lock); 392 if (err == -EAGAIN && !skip_retry) 393 goto retry; 394 err_syncs: 395 for (i = 0; i < num_syncs; i++) 396 xe_sync_entry_cleanup(&syncs[i]); 397 kfree(syncs); 398 err_exec_queue: 399 xe_exec_queue_put(q); 400 401 return err; 402 } 403