xref: /linux/drivers/gpu/drm/xe/xe_exec.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_exec.h"
7 
8 #include <drm/drm_device.h>
9 #include <drm/drm_exec.h>
10 #include <drm/drm_file.h>
11 #include <drm/xe_drm.h>
12 #include <linux/delay.h>
13 
14 #include "xe_bo.h"
15 #include "xe_device.h"
16 #include "xe_exec_queue.h"
17 #include "xe_macros.h"
18 #include "xe_ring_ops_types.h"
19 #include "xe_sched_job.h"
20 #include "xe_sync.h"
21 #include "xe_vm.h"
22 
23 /**
24  * DOC: Execbuf (User GPU command submission)
25  *
26  * Execs have historically been rather complicated in DRM drivers (at least in
27  * the i915) because a few things:
28  *
29  * - Passing in a list BO which are read / written to creating implicit syncs
30  * - Binding at exec time
31  * - Flow controlling the ring at exec time
32  *
33  * In XE we avoid all of this complication by not allowing a BO list to be
34  * passed into an exec, using the dma-buf implicit sync uAPI, have binds as
35  * seperate operations, and using the DRM scheduler to flow control the ring.
36  * Let's deep dive on each of these.
37  *
38  * We can get away from a BO list by forcing the user to use in / out fences on
39  * every exec rather than the kernel tracking dependencies of BO (e.g. if the
40  * user knows an exec writes to a BO and reads from the BO in the next exec, it
41  * is the user's responsibility to pass in / out fence between the two execs).
42  *
43  * Implicit dependencies for external BOs are handled by using the dma-buf
44  * implicit dependency uAPI (TODO: add link). To make this works each exec must
45  * install the job's fence into the DMA_RESV_USAGE_WRITE slot of every external
46  * BO mapped in the VM.
47  *
48  * We do not allow a user to trigger a bind at exec time rather we have a VM
49  * bind IOCTL which uses the same in / out fence interface as exec. In that
50  * sense, a VM bind is basically the same operation as an exec from the user
51  * perspective. e.g. If an exec depends on a VM bind use the in / out fence
52  * interface (struct drm_xe_sync) to synchronize like syncing between two
53  * dependent execs.
54  *
55  * Although a user cannot trigger a bind, we still have to rebind userptrs in
56  * the VM that have been invalidated since the last exec, likewise we also have
57  * to rebind BOs that have been evicted by the kernel. We schedule these rebinds
58  * behind any pending kernel operations on any external BOs in VM or any BOs
59  * private to the VM. This is accomplished by the rebinds waiting on BOs
60  * DMA_RESV_USAGE_KERNEL slot (kernel ops) and kernel ops waiting on all BOs
61  * slots (inflight execs are in the DMA_RESV_USAGE_BOOKING for private BOs and
62  * in DMA_RESV_USAGE_WRITE for external BOs).
63  *
64  * Rebinds / dma-resv usage applies to non-compute mode VMs only as for compute
65  * mode VMs we use preempt fences and a rebind worker (TODO: add link).
66  *
67  * There is no need to flow control the ring in the exec as we write the ring at
68  * submission time and set the DRM scheduler max job limit SIZE_OF_RING /
69  * MAX_JOB_SIZE. The DRM scheduler will then hold all jobs until space in the
70  * ring is available.
71  *
72  * All of this results in a rather simple exec implementation.
73  *
74  * Flow
75  * ~~~~
76  *
77  * .. code-block::
78  *
79  *	Parse input arguments
80  *	Wait for any async VM bind passed as in-fences to start
81  *	<----------------------------------------------------------------------|
82  *	Lock global VM lock in read mode                                       |
83  *	Pin userptrs (also finds userptr invalidated since last exec)          |
84  *	Lock exec (VM dma-resv lock, external BOs dma-resv locks)              |
85  *	Validate BOs that have been evicted                                    |
86  *	Create job                                                             |
87  *	Rebind invalidated userptrs + evicted BOs (non-compute-mode)           |
88  *	Add rebind fence dependency to job                                     |
89  *	Add job VM dma-resv bookkeeping slot (non-compute mode)                |
90  *	Add job to external BOs dma-resv write slots (non-compute mode)        |
91  *	Check if any userptrs invalidated since pin ------ Drop locks ---------|
92  *	Install in / out fences for job
93  *	Submit job
94  *	Unlock all
95  */
96 
97 static int xe_exec_fn(struct drm_gpuvm_exec *vm_exec)
98 {
99 	struct xe_vm *vm = container_of(vm_exec->vm, struct xe_vm, gpuvm);
100 	struct drm_gem_object *obj;
101 	unsigned long index;
102 	int num_fences;
103 	int ret;
104 
105 	ret = drm_gpuvm_validate(vm_exec->vm, &vm_exec->exec);
106 	if (ret)
107 		return ret;
108 
109 	/*
110 	 * 1 fence slot for the final submit, and 1 more for every per-tile for
111 	 * GPU bind and 1 extra for CPU bind. Note that there are potentially
112 	 * many vma per object/dma-resv, however the fence slot will just be
113 	 * re-used, since they are largely the same timeline and the seqno
114 	 * should be in order. In the case of CPU bind there is dummy fence used
115 	 * for all CPU binds, so no need to have a per-tile slot for that.
116 	 */
117 	num_fences = 1 + 1 + vm->xe->info.tile_count;
118 
119 	/*
120 	 * We don't know upfront exactly how many fence slots we will need at
121 	 * the start of the exec, since the TTM bo_validate above can consume
122 	 * numerous fence slots. Also due to how the dma_resv_reserve_fences()
123 	 * works it only ensures that at least that many fence slots are
124 	 * available i.e if there are already 10 slots available and we reserve
125 	 * two more, it can just noop without reserving anything.  With this it
126 	 * is quite possible that TTM steals some of the fence slots and then
127 	 * when it comes time to do the vma binding and final exec stage we are
128 	 * lacking enough fence slots, leading to some nasty BUG_ON() when
129 	 * adding the fences. Hence just add our own fences here, after the
130 	 * validate stage.
131 	 */
132 	drm_exec_for_each_locked_object(&vm_exec->exec, index, obj) {
133 		ret = dma_resv_reserve_fences(obj->resv, num_fences);
134 		if (ret)
135 			return ret;
136 	}
137 
138 	return 0;
139 }
140 
141 int xe_exec_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
142 {
143 	struct xe_device *xe = to_xe_device(dev);
144 	struct xe_file *xef = to_xe_file(file);
145 	struct drm_xe_exec *args = data;
146 	struct drm_xe_sync __user *syncs_user = u64_to_user_ptr(args->syncs);
147 	u64 __user *addresses_user = u64_to_user_ptr(args->address);
148 	struct xe_exec_queue *q;
149 	struct xe_sync_entry *syncs = NULL;
150 	u64 addresses[XE_HW_ENGINE_MAX_INSTANCE];
151 	struct drm_gpuvm_exec vm_exec = {.extra.fn = xe_exec_fn};
152 	struct drm_exec *exec = &vm_exec.exec;
153 	u32 i, num_syncs = 0, num_ufence = 0;
154 	struct xe_sched_job *job;
155 	struct dma_fence *rebind_fence;
156 	struct xe_vm *vm;
157 	bool write_locked, skip_retry = false;
158 	ktime_t end = 0;
159 	int err = 0;
160 
161 	if (XE_IOCTL_DBG(xe, args->extensions) ||
162 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
163 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
164 		return -EINVAL;
165 
166 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
167 	if (XE_IOCTL_DBG(xe, !q))
168 		return -ENOENT;
169 
170 	if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_VM))
171 		return -EINVAL;
172 
173 	if (XE_IOCTL_DBG(xe, args->num_batch_buffer &&
174 			 q->width != args->num_batch_buffer))
175 		return -EINVAL;
176 
177 	if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_BANNED)) {
178 		err = -ECANCELED;
179 		goto err_exec_queue;
180 	}
181 
182 	if (args->num_syncs) {
183 		syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
184 		if (!syncs) {
185 			err = -ENOMEM;
186 			goto err_exec_queue;
187 		}
188 	}
189 
190 	vm = q->vm;
191 
192 	for (i = 0; i < args->num_syncs; i++) {
193 		err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs++],
194 					  &syncs_user[i], SYNC_PARSE_FLAG_EXEC |
195 					  (xe_vm_in_lr_mode(vm) ?
196 					   SYNC_PARSE_FLAG_LR_MODE : 0));
197 		if (err)
198 			goto err_syncs;
199 
200 		if (xe_sync_is_ufence(&syncs[i]))
201 			num_ufence++;
202 	}
203 
204 	if (XE_IOCTL_DBG(xe, num_ufence > 1)) {
205 		err = -EINVAL;
206 		goto err_syncs;
207 	}
208 
209 	if (xe_exec_queue_is_parallel(q)) {
210 		err = __copy_from_user(addresses, addresses_user, sizeof(u64) *
211 				       q->width);
212 		if (err) {
213 			err = -EFAULT;
214 			goto err_syncs;
215 		}
216 	}
217 
218 retry:
219 	if (!xe_vm_in_lr_mode(vm) && xe_vm_userptr_check_repin(vm)) {
220 		err = down_write_killable(&vm->lock);
221 		write_locked = true;
222 	} else {
223 		/* We don't allow execs while the VM is in error state */
224 		err = down_read_interruptible(&vm->lock);
225 		write_locked = false;
226 	}
227 	if (err)
228 		goto err_syncs;
229 
230 	if (write_locked) {
231 		err = xe_vm_userptr_pin(vm);
232 		downgrade_write(&vm->lock);
233 		write_locked = false;
234 		if (err)
235 			goto err_unlock_list;
236 	}
237 
238 	if (!args->num_batch_buffer) {
239 		err = xe_vm_lock(vm, true);
240 		if (err)
241 			goto err_unlock_list;
242 
243 		if (!xe_vm_in_lr_mode(vm)) {
244 			struct dma_fence *fence;
245 
246 			fence = xe_sync_in_fence_get(syncs, num_syncs, q, vm);
247 			if (IS_ERR(fence)) {
248 				err = PTR_ERR(fence);
249 				goto err_unlock_list;
250 			}
251 			for (i = 0; i < num_syncs; i++)
252 				xe_sync_entry_signal(&syncs[i], NULL, fence);
253 			xe_exec_queue_last_fence_set(q, vm, fence);
254 			dma_fence_put(fence);
255 		}
256 
257 		xe_vm_unlock(vm);
258 		goto err_unlock_list;
259 	}
260 
261 	vm_exec.vm = &vm->gpuvm;
262 	vm_exec.flags = DRM_EXEC_INTERRUPTIBLE_WAIT;
263 	if (xe_vm_in_lr_mode(vm)) {
264 		drm_exec_init(exec, vm_exec.flags, 0);
265 	} else {
266 		err = drm_gpuvm_exec_lock(&vm_exec);
267 		if (err) {
268 			if (xe_vm_validate_should_retry(exec, err, &end))
269 				err = -EAGAIN;
270 			goto err_unlock_list;
271 		}
272 	}
273 
274 	if (xe_vm_is_closed_or_banned(q->vm)) {
275 		drm_warn(&xe->drm, "Trying to schedule after vm is closed or banned\n");
276 		err = -ECANCELED;
277 		goto err_exec;
278 	}
279 
280 	if (xe_exec_queue_is_lr(q) && xe_exec_queue_ring_full(q)) {
281 		err = -EWOULDBLOCK;	/* Aliased to -EAGAIN */
282 		skip_retry = true;
283 		goto err_exec;
284 	}
285 
286 	job = xe_sched_job_create(q, xe_exec_queue_is_parallel(q) ?
287 				  addresses : &args->address);
288 	if (IS_ERR(job)) {
289 		err = PTR_ERR(job);
290 		goto err_exec;
291 	}
292 
293 	/*
294 	 * Rebind any invalidated userptr or evicted BOs in the VM, non-compute
295 	 * VM mode only.
296 	 */
297 	rebind_fence = xe_vm_rebind(vm, false);
298 	if (IS_ERR(rebind_fence)) {
299 		err = PTR_ERR(rebind_fence);
300 		goto err_put_job;
301 	}
302 
303 	/*
304 	 * We store the rebind_fence in the VM so subsequent execs don't get
305 	 * scheduled before the rebinds of userptrs / evicted BOs is complete.
306 	 */
307 	if (rebind_fence) {
308 		dma_fence_put(vm->rebind_fence);
309 		vm->rebind_fence = rebind_fence;
310 	}
311 	if (vm->rebind_fence) {
312 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
313 			     &vm->rebind_fence->flags)) {
314 			dma_fence_put(vm->rebind_fence);
315 			vm->rebind_fence = NULL;
316 		} else {
317 			dma_fence_get(vm->rebind_fence);
318 			err = drm_sched_job_add_dependency(&job->drm,
319 							   vm->rebind_fence);
320 			if (err)
321 				goto err_put_job;
322 		}
323 	}
324 
325 	/* Wait behind munmap style rebinds */
326 	if (!xe_vm_in_lr_mode(vm)) {
327 		err = drm_sched_job_add_resv_dependencies(&job->drm,
328 							  xe_vm_resv(vm),
329 							  DMA_RESV_USAGE_KERNEL);
330 		if (err)
331 			goto err_put_job;
332 	}
333 
334 	for (i = 0; i < num_syncs && !err; i++)
335 		err = xe_sync_entry_add_deps(&syncs[i], job);
336 	if (err)
337 		goto err_put_job;
338 
339 	if (!xe_vm_in_lr_mode(vm)) {
340 		err = xe_sched_job_last_fence_add_dep(job, vm);
341 		if (err)
342 			goto err_put_job;
343 
344 		err = down_read_interruptible(&vm->userptr.notifier_lock);
345 		if (err)
346 			goto err_put_job;
347 
348 		err = __xe_vm_userptr_needs_repin(vm);
349 		if (err)
350 			goto err_repin;
351 	}
352 
353 	/*
354 	 * Point of no return, if we error after this point just set an error on
355 	 * the job and let the DRM scheduler / backend clean up the job.
356 	 */
357 	xe_sched_job_arm(job);
358 	if (!xe_vm_in_lr_mode(vm))
359 		drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, &job->drm.s_fence->finished,
360 					 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE);
361 
362 	for (i = 0; i < num_syncs; i++)
363 		xe_sync_entry_signal(&syncs[i], job,
364 				     &job->drm.s_fence->finished);
365 
366 	if (xe_exec_queue_is_lr(q))
367 		q->ring_ops->emit_job(job);
368 	if (!xe_vm_in_lr_mode(vm))
369 		xe_exec_queue_last_fence_set(q, vm, &job->drm.s_fence->finished);
370 	xe_sched_job_push(job);
371 	xe_vm_reactivate_rebind(vm);
372 
373 	if (!err && !xe_vm_in_lr_mode(vm)) {
374 		spin_lock(&xe->ttm.lru_lock);
375 		ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
376 		spin_unlock(&xe->ttm.lru_lock);
377 	}
378 
379 err_repin:
380 	if (!xe_vm_in_lr_mode(vm))
381 		up_read(&vm->userptr.notifier_lock);
382 err_put_job:
383 	if (err)
384 		xe_sched_job_put(job);
385 err_exec:
386 	drm_exec_fini(exec);
387 err_unlock_list:
388 	if (write_locked)
389 		up_write(&vm->lock);
390 	else
391 		up_read(&vm->lock);
392 	if (err == -EAGAIN && !skip_retry)
393 		goto retry;
394 err_syncs:
395 	for (i = 0; i < num_syncs; i++)
396 		xe_sync_entry_cleanup(&syncs[i]);
397 	kfree(syncs);
398 err_exec_queue:
399 	xe_exec_queue_put(q);
400 
401 	return err;
402 }
403