xref: /linux/drivers/gpu/drm/xe/xe_exec.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_exec.h"
7 
8 #include <drm/drm_device.h>
9 #include <drm/drm_exec.h>
10 #include <drm/drm_file.h>
11 #include <uapi/drm/xe_drm.h>
12 #include <linux/delay.h>
13 
14 #include "xe_bo.h"
15 #include "xe_device.h"
16 #include "xe_exec_queue.h"
17 #include "xe_hw_engine_group.h"
18 #include "xe_macros.h"
19 #include "xe_ring_ops_types.h"
20 #include "xe_sched_job.h"
21 #include "xe_sync.h"
22 #include "xe_vm.h"
23 
24 /**
25  * DOC: Execbuf (User GPU command submission)
26  *
27  * Execs have historically been rather complicated in DRM drivers (at least in
28  * the i915) because a few things:
29  *
30  * - Passing in a list BO which are read / written to creating implicit syncs
31  * - Binding at exec time
32  * - Flow controlling the ring at exec time
33  *
34  * In XE we avoid all of this complication by not allowing a BO list to be
35  * passed into an exec, using the dma-buf implicit sync uAPI, have binds as
36  * seperate operations, and using the DRM scheduler to flow control the ring.
37  * Let's deep dive on each of these.
38  *
39  * We can get away from a BO list by forcing the user to use in / out fences on
40  * every exec rather than the kernel tracking dependencies of BO (e.g. if the
41  * user knows an exec writes to a BO and reads from the BO in the next exec, it
42  * is the user's responsibility to pass in / out fence between the two execs).
43  *
44  * We do not allow a user to trigger a bind at exec time rather we have a VM
45  * bind IOCTL which uses the same in / out fence interface as exec. In that
46  * sense, a VM bind is basically the same operation as an exec from the user
47  * perspective. e.g. If an exec depends on a VM bind use the in / out fence
48  * interface (struct drm_xe_sync) to synchronize like syncing between two
49  * dependent execs.
50  *
51  * Although a user cannot trigger a bind, we still have to rebind userptrs in
52  * the VM that have been invalidated since the last exec, likewise we also have
53  * to rebind BOs that have been evicted by the kernel. We schedule these rebinds
54  * behind any pending kernel operations on any external BOs in VM or any BOs
55  * private to the VM. This is accomplished by the rebinds waiting on BOs
56  * DMA_RESV_USAGE_KERNEL slot (kernel ops) and kernel ops waiting on all BOs
57  * slots (inflight execs are in the DMA_RESV_USAGE_BOOKKEEP for private BOs and
58  * for external BOs).
59  *
60  * Rebinds / dma-resv usage applies to non-compute mode VMs only as for compute
61  * mode VMs we use preempt fences and a rebind worker (TODO: add link).
62  *
63  * There is no need to flow control the ring in the exec as we write the ring at
64  * submission time and set the DRM scheduler max job limit SIZE_OF_RING /
65  * MAX_JOB_SIZE. The DRM scheduler will then hold all jobs until space in the
66  * ring is available.
67  *
68  * All of this results in a rather simple exec implementation.
69  *
70  * Flow
71  * ~~~~
72  *
73  * .. code-block::
74  *
75  *	Parse input arguments
76  *	Wait for any async VM bind passed as in-fences to start
77  *	<----------------------------------------------------------------------|
78  *	Lock global VM lock in read mode                                       |
79  *	Pin userptrs (also finds userptr invalidated since last exec)          |
80  *	Lock exec (VM dma-resv lock, external BOs dma-resv locks)              |
81  *	Validate BOs that have been evicted                                    |
82  *	Create job                                                             |
83  *	Rebind invalidated userptrs + evicted BOs (non-compute-mode)           |
84  *	Add rebind fence dependency to job                                     |
85  *	Add job VM dma-resv bookkeeping slot (non-compute mode)                |
86  *	Add job to external BOs dma-resv write slots (non-compute mode)        |
87  *	Check if any userptrs invalidated since pin ------ Drop locks ---------|
88  *	Install in / out fences for job
89  *	Submit job
90  *	Unlock all
91  */
92 
93 /*
94  * Add validation and rebinding to the drm_exec locking loop, since both can
95  * trigger eviction which may require sleeping dma_resv locks.
96  */
97 static int xe_exec_fn(struct drm_gpuvm_exec *vm_exec)
98 {
99 	struct xe_vm *vm = container_of(vm_exec->vm, struct xe_vm, gpuvm);
100 
101 	/* The fence slot added here is intended for the exec sched job. */
102 	return xe_vm_validate_rebind(vm, &vm_exec->exec, 1);
103 }
104 
105 int xe_exec_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
106 {
107 	struct xe_device *xe = to_xe_device(dev);
108 	struct xe_file *xef = to_xe_file(file);
109 	struct drm_xe_exec *args = data;
110 	struct drm_xe_sync __user *syncs_user = u64_to_user_ptr(args->syncs);
111 	u64 __user *addresses_user = u64_to_user_ptr(args->address);
112 	struct xe_exec_queue *q;
113 	struct xe_sync_entry *syncs = NULL;
114 	u64 addresses[XE_HW_ENGINE_MAX_INSTANCE];
115 	struct drm_gpuvm_exec vm_exec = {.extra.fn = xe_exec_fn};
116 	struct drm_exec *exec = &vm_exec.exec;
117 	u32 i, num_syncs, num_ufence = 0;
118 	struct xe_sched_job *job;
119 	struct xe_vm *vm;
120 	bool write_locked, skip_retry = false;
121 	ktime_t end = 0;
122 	int err = 0;
123 	struct xe_hw_engine_group *group;
124 	enum xe_hw_engine_group_execution_mode mode, previous_mode;
125 
126 	if (XE_IOCTL_DBG(xe, args->extensions) ||
127 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
128 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
129 		return -EINVAL;
130 
131 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
132 	if (XE_IOCTL_DBG(xe, !q))
133 		return -ENOENT;
134 
135 	if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_VM))
136 		return -EINVAL;
137 
138 	if (XE_IOCTL_DBG(xe, args->num_batch_buffer &&
139 			 q->width != args->num_batch_buffer))
140 		return -EINVAL;
141 
142 	if (XE_IOCTL_DBG(xe, q->ops->reset_status(q))) {
143 		err = -ECANCELED;
144 		goto err_exec_queue;
145 	}
146 
147 	if (args->num_syncs) {
148 		syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
149 		if (!syncs) {
150 			err = -ENOMEM;
151 			goto err_exec_queue;
152 		}
153 	}
154 
155 	vm = q->vm;
156 
157 	for (num_syncs = 0; num_syncs < args->num_syncs; num_syncs++) {
158 		err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs],
159 					  &syncs_user[num_syncs], SYNC_PARSE_FLAG_EXEC |
160 					  (xe_vm_in_lr_mode(vm) ?
161 					   SYNC_PARSE_FLAG_LR_MODE : 0));
162 		if (err)
163 			goto err_syncs;
164 
165 		if (xe_sync_is_ufence(&syncs[num_syncs]))
166 			num_ufence++;
167 	}
168 
169 	if (XE_IOCTL_DBG(xe, num_ufence > 1)) {
170 		err = -EINVAL;
171 		goto err_syncs;
172 	}
173 
174 	if (xe_exec_queue_is_parallel(q)) {
175 		err = __copy_from_user(addresses, addresses_user, sizeof(u64) *
176 				       q->width);
177 		if (err) {
178 			err = -EFAULT;
179 			goto err_syncs;
180 		}
181 	}
182 
183 	group = q->hwe->hw_engine_group;
184 	mode = xe_hw_engine_group_find_exec_mode(q);
185 
186 	if (mode == EXEC_MODE_DMA_FENCE) {
187 		err = xe_hw_engine_group_get_mode(group, mode, &previous_mode);
188 		if (err)
189 			goto err_syncs;
190 	}
191 
192 retry:
193 	if (!xe_vm_in_lr_mode(vm) && xe_vm_userptr_check_repin(vm)) {
194 		err = down_write_killable(&vm->lock);
195 		write_locked = true;
196 	} else {
197 		/* We don't allow execs while the VM is in error state */
198 		err = down_read_interruptible(&vm->lock);
199 		write_locked = false;
200 	}
201 	if (err)
202 		goto err_syncs;
203 
204 	if (write_locked) {
205 		err = xe_vm_userptr_pin(vm);
206 		downgrade_write(&vm->lock);
207 		write_locked = false;
208 		if (err)
209 			goto err_hw_exec_mode;
210 	}
211 
212 	if (!args->num_batch_buffer) {
213 		err = xe_vm_lock(vm, true);
214 		if (err)
215 			goto err_unlock_list;
216 
217 		if (!xe_vm_in_lr_mode(vm)) {
218 			struct dma_fence *fence;
219 
220 			fence = xe_sync_in_fence_get(syncs, num_syncs, q, vm);
221 			if (IS_ERR(fence)) {
222 				err = PTR_ERR(fence);
223 				goto err_unlock_list;
224 			}
225 			for (i = 0; i < num_syncs; i++)
226 				xe_sync_entry_signal(&syncs[i], fence);
227 			xe_exec_queue_last_fence_set(q, vm, fence);
228 			dma_fence_put(fence);
229 		}
230 
231 		xe_vm_unlock(vm);
232 		goto err_unlock_list;
233 	}
234 
235 	vm_exec.vm = &vm->gpuvm;
236 	vm_exec.flags = DRM_EXEC_INTERRUPTIBLE_WAIT;
237 	if (xe_vm_in_lr_mode(vm)) {
238 		drm_exec_init(exec, vm_exec.flags, 0);
239 	} else {
240 		err = drm_gpuvm_exec_lock(&vm_exec);
241 		if (err) {
242 			if (xe_vm_validate_should_retry(exec, err, &end))
243 				err = -EAGAIN;
244 			goto err_unlock_list;
245 		}
246 	}
247 
248 	if (xe_vm_is_closed_or_banned(q->vm)) {
249 		drm_warn(&xe->drm, "Trying to schedule after vm is closed or banned\n");
250 		err = -ECANCELED;
251 		goto err_exec;
252 	}
253 
254 	if (xe_exec_queue_is_lr(q) && xe_exec_queue_ring_full(q)) {
255 		err = -EWOULDBLOCK;	/* Aliased to -EAGAIN */
256 		skip_retry = true;
257 		goto err_exec;
258 	}
259 
260 	job = xe_sched_job_create(q, xe_exec_queue_is_parallel(q) ?
261 				  addresses : &args->address);
262 	if (IS_ERR(job)) {
263 		err = PTR_ERR(job);
264 		goto err_exec;
265 	}
266 
267 	/* Wait behind rebinds */
268 	if (!xe_vm_in_lr_mode(vm)) {
269 		err = xe_sched_job_add_deps(job,
270 					    xe_vm_resv(vm),
271 					    DMA_RESV_USAGE_KERNEL);
272 		if (err)
273 			goto err_put_job;
274 	}
275 
276 	for (i = 0; i < num_syncs && !err; i++)
277 		err = xe_sync_entry_add_deps(&syncs[i], job);
278 	if (err)
279 		goto err_put_job;
280 
281 	if (!xe_vm_in_lr_mode(vm)) {
282 		err = xe_sched_job_last_fence_add_dep(job, vm);
283 		if (err)
284 			goto err_put_job;
285 
286 		err = down_read_interruptible(&vm->userptr.notifier_lock);
287 		if (err)
288 			goto err_put_job;
289 
290 		err = __xe_vm_userptr_needs_repin(vm);
291 		if (err)
292 			goto err_repin;
293 	}
294 
295 	/*
296 	 * Point of no return, if we error after this point just set an error on
297 	 * the job and let the DRM scheduler / backend clean up the job.
298 	 */
299 	xe_sched_job_arm(job);
300 	if (!xe_vm_in_lr_mode(vm))
301 		drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, &job->drm.s_fence->finished,
302 					 DMA_RESV_USAGE_BOOKKEEP,
303 					 DMA_RESV_USAGE_BOOKKEEP);
304 
305 	for (i = 0; i < num_syncs; i++) {
306 		xe_sync_entry_signal(&syncs[i], &job->drm.s_fence->finished);
307 		xe_sched_job_init_user_fence(job, &syncs[i]);
308 	}
309 
310 	if (xe_exec_queue_is_lr(q))
311 		q->ring_ops->emit_job(job);
312 	if (!xe_vm_in_lr_mode(vm))
313 		xe_exec_queue_last_fence_set(q, vm, &job->drm.s_fence->finished);
314 	xe_sched_job_push(job);
315 	xe_vm_reactivate_rebind(vm);
316 
317 	if (!err && !xe_vm_in_lr_mode(vm)) {
318 		spin_lock(&xe->ttm.lru_lock);
319 		ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
320 		spin_unlock(&xe->ttm.lru_lock);
321 	}
322 
323 	if (mode == EXEC_MODE_LR)
324 		xe_hw_engine_group_resume_faulting_lr_jobs(group);
325 
326 err_repin:
327 	if (!xe_vm_in_lr_mode(vm))
328 		up_read(&vm->userptr.notifier_lock);
329 err_put_job:
330 	if (err)
331 		xe_sched_job_put(job);
332 err_exec:
333 	drm_exec_fini(exec);
334 err_unlock_list:
335 	up_read(&vm->lock);
336 	if (err == -EAGAIN && !skip_retry)
337 		goto retry;
338 err_hw_exec_mode:
339 	if (mode == EXEC_MODE_DMA_FENCE)
340 		xe_hw_engine_group_put(group);
341 err_syncs:
342 	while (num_syncs--)
343 		xe_sync_entry_cleanup(&syncs[num_syncs]);
344 	kfree(syncs);
345 err_exec_queue:
346 	xe_exec_queue_put(q);
347 
348 	return err;
349 }
350