xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision f86ad0ed620cb3c91ec7d5468e93ac68d727539d)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_irq.h"
47 #include "xe_memirq.h"
48 #include "xe_mmio.h"
49 #include "xe_module.h"
50 #include "xe_nvm.h"
51 #include "xe_oa.h"
52 #include "xe_observation.h"
53 #include "xe_pat.h"
54 #include "xe_pcode.h"
55 #include "xe_pm.h"
56 #include "xe_pmu.h"
57 #include "xe_pxp.h"
58 #include "xe_query.h"
59 #include "xe_shrinker.h"
60 #include "xe_survivability_mode.h"
61 #include "xe_sriov.h"
62 #include "xe_tile.h"
63 #include "xe_ttm_stolen_mgr.h"
64 #include "xe_ttm_sys_mgr.h"
65 #include "xe_vm.h"
66 #include "xe_vram.h"
67 #include "xe_vsec.h"
68 #include "xe_wait_user_fence.h"
69 #include "xe_wa.h"
70 
71 #include <generated/xe_wa_oob.h>
72 
73 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
74 {
75 	struct xe_device *xe = to_xe_device(dev);
76 	struct xe_drm_client *client;
77 	struct xe_file *xef;
78 	int ret = -ENOMEM;
79 	struct task_struct *task = NULL;
80 
81 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
82 	if (!xef)
83 		return ret;
84 
85 	client = xe_drm_client_alloc();
86 	if (!client) {
87 		kfree(xef);
88 		return ret;
89 	}
90 
91 	xef->drm = file;
92 	xef->client = client;
93 	xef->xe = xe;
94 
95 	mutex_init(&xef->vm.lock);
96 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
97 
98 	mutex_init(&xef->exec_queue.lock);
99 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
100 
101 	file->driver_priv = xef;
102 	kref_init(&xef->refcount);
103 
104 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
105 	if (task) {
106 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
107 		xef->pid = task->pid;
108 		put_task_struct(task);
109 	}
110 
111 	return 0;
112 }
113 
114 static void xe_file_destroy(struct kref *ref)
115 {
116 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
117 
118 	xa_destroy(&xef->exec_queue.xa);
119 	mutex_destroy(&xef->exec_queue.lock);
120 	xa_destroy(&xef->vm.xa);
121 	mutex_destroy(&xef->vm.lock);
122 
123 	xe_drm_client_put(xef->client);
124 	kfree(xef->process_name);
125 	kfree(xef);
126 }
127 
128 /**
129  * xe_file_get() - Take a reference to the xe file object
130  * @xef: Pointer to the xe file
131  *
132  * Anyone with a pointer to xef must take a reference to the xe file
133  * object using this call.
134  *
135  * Return: xe file pointer
136  */
137 struct xe_file *xe_file_get(struct xe_file *xef)
138 {
139 	kref_get(&xef->refcount);
140 	return xef;
141 }
142 
143 /**
144  * xe_file_put() - Drop a reference to the xe file object
145  * @xef: Pointer to the xe file
146  *
147  * Used to drop reference to the xef object
148  */
149 void xe_file_put(struct xe_file *xef)
150 {
151 	kref_put(&xef->refcount, xe_file_destroy);
152 }
153 
154 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
155 {
156 	struct xe_device *xe = to_xe_device(dev);
157 	struct xe_file *xef = file->driver_priv;
158 	struct xe_vm *vm;
159 	struct xe_exec_queue *q;
160 	unsigned long idx;
161 
162 	xe_pm_runtime_get(xe);
163 
164 	/*
165 	 * No need for exec_queue.lock here as there is no contention for it
166 	 * when FD is closing as IOCTLs presumably can't be modifying the
167 	 * xarray. Taking exec_queue.lock here causes undue dependency on
168 	 * vm->lock taken during xe_exec_queue_kill().
169 	 */
170 	xa_for_each(&xef->exec_queue.xa, idx, q) {
171 		if (q->vm && q->hwe->hw_engine_group)
172 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
173 		xe_exec_queue_kill(q);
174 		xe_exec_queue_put(q);
175 	}
176 	xa_for_each(&xef->vm.xa, idx, vm)
177 		xe_vm_close_and_put(vm);
178 
179 	xe_file_put(xef);
180 
181 	xe_pm_runtime_put(xe);
182 }
183 
184 static const struct drm_ioctl_desc xe_ioctls[] = {
185 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
188 			  DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
194 			  DRM_RENDER_ALLOW),
195 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
196 			  DRM_RENDER_ALLOW),
197 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
198 			  DRM_RENDER_ALLOW),
199 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
200 			  DRM_RENDER_ALLOW),
201 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
202 };
203 
204 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
205 {
206 	struct drm_file *file_priv = file->private_data;
207 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
208 	long ret;
209 
210 	if (xe_device_wedged(xe))
211 		return -ECANCELED;
212 
213 	ret = xe_pm_runtime_get_ioctl(xe);
214 	if (ret >= 0)
215 		ret = drm_ioctl(file, cmd, arg);
216 	xe_pm_runtime_put(xe);
217 
218 	return ret;
219 }
220 
221 #ifdef CONFIG_COMPAT
222 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
223 {
224 	struct drm_file *file_priv = file->private_data;
225 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
226 	long ret;
227 
228 	if (xe_device_wedged(xe))
229 		return -ECANCELED;
230 
231 	ret = xe_pm_runtime_get_ioctl(xe);
232 	if (ret >= 0)
233 		ret = drm_compat_ioctl(file, cmd, arg);
234 	xe_pm_runtime_put(xe);
235 
236 	return ret;
237 }
238 #else
239 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
240 #define xe_drm_compat_ioctl NULL
241 #endif
242 
243 static void barrier_open(struct vm_area_struct *vma)
244 {
245 	drm_dev_get(vma->vm_private_data);
246 }
247 
248 static void barrier_close(struct vm_area_struct *vma)
249 {
250 	drm_dev_put(vma->vm_private_data);
251 }
252 
253 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
254 {
255 	struct page *dummy_page = (struct page *)res;
256 
257 	__free_page(dummy_page);
258 }
259 
260 static vm_fault_t barrier_fault(struct vm_fault *vmf)
261 {
262 	struct drm_device *dev = vmf->vma->vm_private_data;
263 	struct vm_area_struct *vma = vmf->vma;
264 	vm_fault_t ret = VM_FAULT_NOPAGE;
265 	pgprot_t prot;
266 	int idx;
267 
268 	prot = vm_get_page_prot(vma->vm_flags);
269 
270 	if (drm_dev_enter(dev, &idx)) {
271 		unsigned long pfn;
272 
273 #define LAST_DB_PAGE_OFFSET 0x7ff001
274 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
275 				LAST_DB_PAGE_OFFSET);
276 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
277 					  pgprot_noncached(prot));
278 		drm_dev_exit(idx);
279 	} else {
280 		struct page *page;
281 
282 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
283 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 		if (!page)
285 			return VM_FAULT_OOM;
286 
287 		/* Set the page to be freed using drmm release action */
288 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
289 			return VM_FAULT_OOM;
290 
291 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
292 					  prot);
293 	}
294 
295 	return ret;
296 }
297 
298 static const struct vm_operations_struct vm_ops_barrier = {
299 	.open = barrier_open,
300 	.close = barrier_close,
301 	.fault = barrier_fault,
302 };
303 
304 static int xe_pci_barrier_mmap(struct file *filp,
305 			       struct vm_area_struct *vma)
306 {
307 	struct drm_file *priv = filp->private_data;
308 	struct drm_device *dev = priv->minor->dev;
309 	struct xe_device *xe = to_xe_device(dev);
310 
311 	if (!IS_DGFX(xe))
312 		return -EINVAL;
313 
314 	if (vma->vm_end - vma->vm_start > SZ_4K)
315 		return -EINVAL;
316 
317 	if (is_cow_mapping(vma->vm_flags))
318 		return -EINVAL;
319 
320 	if (vma->vm_flags & (VM_READ | VM_EXEC))
321 		return -EINVAL;
322 
323 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
324 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
325 	vma->vm_ops = &vm_ops_barrier;
326 	vma->vm_private_data = dev;
327 	drm_dev_get(vma->vm_private_data);
328 
329 	return 0;
330 }
331 
332 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
333 {
334 	struct drm_file *priv = filp->private_data;
335 	struct drm_device *dev = priv->minor->dev;
336 
337 	if (drm_dev_is_unplugged(dev))
338 		return -ENODEV;
339 
340 	switch (vma->vm_pgoff) {
341 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
342 		return xe_pci_barrier_mmap(filp, vma);
343 	}
344 
345 	return drm_gem_mmap(filp, vma);
346 }
347 
348 static const struct file_operations xe_driver_fops = {
349 	.owner = THIS_MODULE,
350 	.open = drm_open,
351 	.release = drm_release_noglobal,
352 	.unlocked_ioctl = xe_drm_ioctl,
353 	.mmap = xe_mmap,
354 	.poll = drm_poll,
355 	.read = drm_read,
356 	.compat_ioctl = xe_drm_compat_ioctl,
357 	.llseek = noop_llseek,
358 #ifdef CONFIG_PROC_FS
359 	.show_fdinfo = drm_show_fdinfo,
360 #endif
361 	.fop_flags = FOP_UNSIGNED_OFFSET,
362 };
363 
364 static struct drm_driver driver = {
365 	/* Don't use MTRRs here; the Xserver or userspace app should
366 	 * deal with them for Intel hardware.
367 	 */
368 	.driver_features =
369 	    DRIVER_GEM |
370 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
371 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
372 	.open = xe_file_open,
373 	.postclose = xe_file_close,
374 
375 	.gem_prime_import = xe_gem_prime_import,
376 
377 	.dumb_create = xe_bo_dumb_create,
378 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
379 #ifdef CONFIG_PROC_FS
380 	.show_fdinfo = xe_drm_client_fdinfo,
381 #endif
382 	.ioctls = xe_ioctls,
383 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
384 	.fops = &xe_driver_fops,
385 	.name = DRIVER_NAME,
386 	.desc = DRIVER_DESC,
387 	.major = DRIVER_MAJOR,
388 	.minor = DRIVER_MINOR,
389 	.patchlevel = DRIVER_PATCHLEVEL,
390 };
391 
392 static void xe_device_destroy(struct drm_device *dev, void *dummy)
393 {
394 	struct xe_device *xe = to_xe_device(dev);
395 
396 	xe_bo_dev_fini(&xe->bo_device);
397 
398 	if (xe->preempt_fence_wq)
399 		destroy_workqueue(xe->preempt_fence_wq);
400 
401 	if (xe->ordered_wq)
402 		destroy_workqueue(xe->ordered_wq);
403 
404 	if (xe->unordered_wq)
405 		destroy_workqueue(xe->unordered_wq);
406 
407 	if (xe->destroy_wq)
408 		destroy_workqueue(xe->destroy_wq);
409 
410 	ttm_device_fini(&xe->ttm);
411 }
412 
413 struct xe_device *xe_device_create(struct pci_dev *pdev,
414 				   const struct pci_device_id *ent)
415 {
416 	struct xe_device *xe;
417 	int err;
418 
419 	xe_display_driver_set_hooks(&driver);
420 
421 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
422 	if (err)
423 		return ERR_PTR(err);
424 
425 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
426 	if (IS_ERR(xe))
427 		return xe;
428 
429 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
430 			      xe->drm.anon_inode->i_mapping,
431 			      xe->drm.vma_offset_manager, false, false);
432 	if (WARN_ON(err))
433 		goto err;
434 
435 	xe_bo_dev_init(&xe->bo_device);
436 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
437 	if (err)
438 		goto err;
439 
440 	err = xe_shrinker_create(xe);
441 	if (err)
442 		goto err;
443 
444 	xe->info.devid = pdev->device;
445 	xe->info.revid = pdev->revision;
446 	xe->info.force_execlist = xe_modparam.force_execlist;
447 	xe->atomic_svm_timeslice_ms = 5;
448 
449 	err = xe_irq_init(xe);
450 	if (err)
451 		goto err;
452 
453 	init_waitqueue_head(&xe->ufence_wq);
454 
455 	init_rwsem(&xe->usm.lock);
456 
457 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
458 
459 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
460 		/* Trigger a large asid and an early asid wrap. */
461 		u32 asid;
462 
463 		BUILD_BUG_ON(XE_MAX_ASID < 2);
464 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
465 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
466 				      &xe->usm.next_asid, GFP_KERNEL);
467 		drm_WARN_ON(&xe->drm, err);
468 		if (err >= 0)
469 			xa_erase(&xe->usm.asid_to_vm, asid);
470 	}
471 
472 	err = xe_bo_pinned_init(xe);
473 	if (err)
474 		goto err;
475 
476 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
477 						       WQ_MEM_RECLAIM);
478 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
479 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
480 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
481 	if (!xe->ordered_wq || !xe->unordered_wq ||
482 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
483 		/*
484 		 * Cleanup done in xe_device_destroy via
485 		 * drmm_add_action_or_reset register above
486 		 */
487 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
488 		err = -ENOMEM;
489 		goto err;
490 	}
491 
492 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
493 	if (err)
494 		goto err;
495 
496 	return xe;
497 
498 err:
499 	return ERR_PTR(err);
500 }
501 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
502 
503 static bool xe_driver_flr_disabled(struct xe_device *xe)
504 {
505 	if (IS_SRIOV_VF(xe))
506 		return true;
507 
508 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
509 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
510 		return true;
511 	}
512 
513 	return false;
514 }
515 
516 /*
517  * The driver-initiated FLR is the highest level of reset that we can trigger
518  * from within the driver. It is different from the PCI FLR in that it doesn't
519  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
520  * it doesn't require a re-enumeration of the PCI BARs. However, the
521  * driver-initiated FLR does still cause a reset of both GT and display and a
522  * memory wipe of local and stolen memory, so recovery would require a full HW
523  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
524  * perform the FLR as the very last action before releasing access to the HW
525  * during the driver release flow, we don't attempt recovery at all, because
526  * if/when a new instance of i915 is bound to the device it will do a full
527  * re-init anyway.
528  */
529 static void __xe_driver_flr(struct xe_device *xe)
530 {
531 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
532 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
533 	int ret;
534 
535 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
536 
537 	/*
538 	 * Make sure any pending FLR requests have cleared by waiting for the
539 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
540 	 * to make sure it's not still set from a prior attempt (it's a write to
541 	 * clear bit).
542 	 * Note that we should never be in a situation where a previous attempt
543 	 * is still pending (unless the HW is totally dead), but better to be
544 	 * safe in case something unexpected happens
545 	 */
546 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
547 	if (ret) {
548 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
549 		return;
550 	}
551 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
552 
553 	/* Trigger the actual Driver-FLR */
554 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
555 
556 	/* Wait for hardware teardown to complete */
557 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
558 	if (ret) {
559 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
560 		return;
561 	}
562 
563 	/* Wait for hardware/firmware re-init to complete */
564 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
565 			     flr_timeout, NULL, false);
566 	if (ret) {
567 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
568 		return;
569 	}
570 
571 	/* Clear sticky completion status */
572 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
573 }
574 
575 static void xe_driver_flr(struct xe_device *xe)
576 {
577 	if (xe_driver_flr_disabled(xe))
578 		return;
579 
580 	__xe_driver_flr(xe);
581 }
582 
583 static void xe_driver_flr_fini(void *arg)
584 {
585 	struct xe_device *xe = arg;
586 
587 	if (xe->needs_flr_on_fini)
588 		xe_driver_flr(xe);
589 }
590 
591 static void xe_device_sanitize(void *arg)
592 {
593 	struct xe_device *xe = arg;
594 	struct xe_gt *gt;
595 	u8 id;
596 
597 	for_each_gt(gt, xe, id)
598 		xe_gt_sanitize(gt);
599 }
600 
601 static int xe_set_dma_info(struct xe_device *xe)
602 {
603 	unsigned int mask_size = xe->info.dma_mask_size;
604 	int err;
605 
606 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
607 
608 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
609 	if (err)
610 		goto mask_err;
611 
612 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
613 	if (err)
614 		goto mask_err;
615 
616 	return 0;
617 
618 mask_err:
619 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
620 	return err;
621 }
622 
623 static bool verify_lmem_ready(struct xe_device *xe)
624 {
625 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
626 
627 	return !!val;
628 }
629 
630 static int wait_for_lmem_ready(struct xe_device *xe)
631 {
632 	unsigned long timeout, start;
633 
634 	if (!IS_DGFX(xe))
635 		return 0;
636 
637 	if (IS_SRIOV_VF(xe))
638 		return 0;
639 
640 	if (verify_lmem_ready(xe))
641 		return 0;
642 
643 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
644 
645 	start = jiffies;
646 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
647 
648 	do {
649 		if (signal_pending(current))
650 			return -EINTR;
651 
652 		/*
653 		 * The boot firmware initializes local memory and
654 		 * assesses its health. If memory training fails,
655 		 * the punit will have been instructed to keep the GT powered
656 		 * down.we won't be able to communicate with it
657 		 *
658 		 * If the status check is done before punit updates the register,
659 		 * it can lead to the system being unusable.
660 		 * use a timeout and defer the probe to prevent this.
661 		 */
662 		if (time_after(jiffies, timeout)) {
663 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
664 			return -EPROBE_DEFER;
665 		}
666 
667 		msleep(20);
668 
669 	} while (!verify_lmem_ready(xe));
670 
671 	drm_dbg(&xe->drm, "lmem ready after %ums",
672 		jiffies_to_msecs(jiffies - start));
673 
674 	return 0;
675 }
676 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
677 
678 static void sriov_update_device_info(struct xe_device *xe)
679 {
680 	/* disable features that are not available/applicable to VFs */
681 	if (IS_SRIOV_VF(xe)) {
682 		xe->info.probe_display = 0;
683 		xe->info.has_heci_gscfi = 0;
684 		xe->info.skip_guc_pc = 1;
685 		xe->info.skip_pcode = 1;
686 	}
687 }
688 
689 /**
690  * xe_device_probe_early: Device early probe
691  * @xe: xe device instance
692  *
693  * Initialize MMIO resources that don't require any
694  * knowledge about tile count. Also initialize pcode and
695  * check vram initialization on root tile.
696  *
697  * Return: 0 on success, error code on failure
698  */
699 int xe_device_probe_early(struct xe_device *xe)
700 {
701 	int err;
702 
703 	err = xe_mmio_probe_early(xe);
704 	if (err)
705 		return err;
706 
707 	xe_sriov_probe_early(xe);
708 
709 	sriov_update_device_info(xe);
710 
711 	err = xe_pcode_probe_early(xe);
712 	if (err || xe_survivability_mode_is_requested(xe)) {
713 		int save_err = err;
714 
715 		/*
716 		 * Try to leave device in survivability mode if device is
717 		 * possible, but still return the previous error for error
718 		 * propagation
719 		 */
720 		err = xe_survivability_mode_enable(xe);
721 		if (err)
722 			return err;
723 
724 		return save_err;
725 	}
726 
727 	err = wait_for_lmem_ready(xe);
728 	if (err)
729 		return err;
730 
731 	xe->wedged.mode = xe_modparam.wedged_mode;
732 
733 	return 0;
734 }
735 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
736 
737 static int probe_has_flat_ccs(struct xe_device *xe)
738 {
739 	struct xe_gt *gt;
740 	unsigned int fw_ref;
741 	u32 reg;
742 
743 	/* Always enabled/disabled, no runtime check to do */
744 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
745 		return 0;
746 
747 	gt = xe_root_mmio_gt(xe);
748 
749 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
750 	if (!fw_ref)
751 		return -ETIMEDOUT;
752 
753 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
754 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
755 
756 	if (!xe->info.has_flat_ccs)
757 		drm_dbg(&xe->drm,
758 			"Flat CCS has been disabled in bios, May lead to performance impact");
759 
760 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
761 
762 	return 0;
763 }
764 
765 int xe_device_probe(struct xe_device *xe)
766 {
767 	struct xe_tile *tile;
768 	struct xe_gt *gt;
769 	int err;
770 	u8 id;
771 
772 	xe_pat_init_early(xe);
773 
774 	err = xe_sriov_init(xe);
775 	if (err)
776 		return err;
777 
778 	xe->info.mem_region_mask = 1;
779 
780 	err = xe_set_dma_info(xe);
781 	if (err)
782 		return err;
783 
784 	err = xe_mmio_probe_tiles(xe);
785 	if (err)
786 		return err;
787 
788 	err = xe_ttm_sys_mgr_init(xe);
789 	if (err)
790 		return err;
791 
792 	for_each_gt(gt, xe, id) {
793 		err = xe_gt_init_early(gt);
794 		if (err)
795 			return err;
796 
797 		/*
798 		 * Only after this point can GT-specific MMIO operations
799 		 * (including things like communication with the GuC)
800 		 * be performed.
801 		 */
802 		xe_gt_mmio_init(gt);
803 
804 		if (IS_SRIOV_VF(xe)) {
805 			xe_guc_comm_init_early(&gt->uc.guc);
806 			err = xe_gt_sriov_vf_bootstrap(gt);
807 			if (err)
808 				return err;
809 			err = xe_gt_sriov_vf_query_config(gt);
810 			if (err)
811 				return err;
812 		}
813 	}
814 
815 	for_each_tile(tile, xe, id) {
816 		err = xe_ggtt_init_early(tile->mem.ggtt);
817 		if (err)
818 			return err;
819 		err = xe_memirq_init(&tile->memirq);
820 		if (err)
821 			return err;
822 	}
823 
824 	for_each_gt(gt, xe, id) {
825 		err = xe_gt_init_hwconfig(gt);
826 		if (err)
827 			return err;
828 	}
829 
830 	err = xe_devcoredump_init(xe);
831 	if (err)
832 		return err;
833 
834 	/*
835 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
836 	 */
837 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
838 	if (err)
839 		return err;
840 
841 	err = probe_has_flat_ccs(xe);
842 	if (err)
843 		return err;
844 
845 	err = xe_vram_probe(xe);
846 	if (err)
847 		return err;
848 
849 	for_each_tile(tile, xe, id) {
850 		err = xe_tile_init_noalloc(tile);
851 		if (err)
852 			return err;
853 	}
854 
855 	/* Allocate and map stolen after potential VRAM resize */
856 	err = xe_ttm_stolen_mgr_init(xe);
857 	if (err)
858 		return err;
859 
860 	/*
861 	 * Now that GT is initialized (TTM in particular),
862 	 * we can try to init display, and inherit the initial fb.
863 	 * This is the reason the first allocation needs to be done
864 	 * inside display.
865 	 */
866 	err = xe_display_init_early(xe);
867 	if (err)
868 		return err;
869 
870 	for_each_tile(tile, xe, id) {
871 		err = xe_tile_init(tile);
872 		if (err)
873 			return err;
874 	}
875 
876 	err = xe_irq_install(xe);
877 	if (err)
878 		return err;
879 
880 	for_each_gt(gt, xe, id) {
881 		err = xe_gt_init(gt);
882 		if (err)
883 			return err;
884 	}
885 
886 	xe_nvm_init(xe);
887 
888 	err = xe_heci_gsc_init(xe);
889 	if (err)
890 		return err;
891 
892 	err = xe_oa_init(xe);
893 	if (err)
894 		return err;
895 
896 	err = xe_display_init(xe);
897 	if (err)
898 		return err;
899 
900 	err = xe_pxp_init(xe);
901 	if (err)
902 		return err;
903 
904 	err = drm_dev_register(&xe->drm, 0);
905 	if (err)
906 		return err;
907 
908 	xe_display_register(xe);
909 
910 	err = xe_oa_register(xe);
911 	if (err)
912 		goto err_unregister_display;
913 
914 	err = xe_pmu_register(&xe->pmu);
915 	if (err)
916 		goto err_unregister_display;
917 
918 	err = xe_device_sysfs_init(xe);
919 	if (err)
920 		goto err_unregister_display;
921 
922 	xe_debugfs_register(xe);
923 
924 	err = xe_hwmon_register(xe);
925 	if (err)
926 		goto err_unregister_display;
927 
928 	for_each_gt(gt, xe, id)
929 		xe_gt_sanitize_freq(gt);
930 
931 	xe_vsec_init(xe);
932 
933 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
934 
935 err_unregister_display:
936 	xe_display_unregister(xe);
937 
938 	return err;
939 }
940 
941 void xe_device_remove(struct xe_device *xe)
942 {
943 	xe_display_unregister(xe);
944 
945 	xe_nvm_fini(xe);
946 
947 	drm_dev_unplug(&xe->drm);
948 
949 	xe_bo_pci_dev_remove_all(xe);
950 }
951 
952 void xe_device_shutdown(struct xe_device *xe)
953 {
954 	struct xe_gt *gt;
955 	u8 id;
956 
957 	drm_dbg(&xe->drm, "Shutting down device\n");
958 
959 	if (xe_driver_flr_disabled(xe)) {
960 		xe_display_pm_shutdown(xe);
961 
962 		xe_irq_suspend(xe);
963 
964 		for_each_gt(gt, xe, id)
965 			xe_gt_shutdown(gt);
966 
967 		xe_display_pm_shutdown_late(xe);
968 	} else {
969 		/* BOOM! */
970 		__xe_driver_flr(xe);
971 	}
972 }
973 
974 /**
975  * xe_device_wmb() - Device specific write memory barrier
976  * @xe: the &xe_device
977  *
978  * While wmb() is sufficient for a barrier if we use system memory, on discrete
979  * platforms with device memory we additionally need to issue a register write.
980  * Since it doesn't matter which register we write to, use the read-only VF_CAP
981  * register that is also marked as accessible by the VFs.
982  */
983 void xe_device_wmb(struct xe_device *xe)
984 {
985 	wmb();
986 	if (IS_DGFX(xe))
987 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
988 }
989 
990 /*
991  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
992  */
993 static void tdf_request_sync(struct xe_device *xe)
994 {
995 	unsigned int fw_ref;
996 	struct xe_gt *gt;
997 	u8 id;
998 
999 	for_each_gt(gt, xe, id) {
1000 		if (xe_gt_is_media_type(gt))
1001 			continue;
1002 
1003 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1004 		if (!fw_ref)
1005 			return;
1006 
1007 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1008 
1009 		/*
1010 		 * FIXME: We can likely do better here with our choice of
1011 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1012 		 * which is believed to be sufficient to cover the worst case
1013 		 * scenario on current platforms if all cache entries are
1014 		 * transient and need to be flushed..
1015 		 */
1016 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1017 				   150, NULL, false))
1018 			xe_gt_err_once(gt, "TD flush timeout\n");
1019 
1020 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1021 	}
1022 }
1023 
1024 void xe_device_l2_flush(struct xe_device *xe)
1025 {
1026 	struct xe_gt *gt;
1027 	unsigned int fw_ref;
1028 
1029 	gt = xe_root_mmio_gt(xe);
1030 
1031 	if (!XE_WA(gt, 16023588340))
1032 		return;
1033 
1034 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1035 	if (!fw_ref)
1036 		return;
1037 
1038 	spin_lock(&gt->global_invl_lock);
1039 
1040 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1041 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1042 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1043 
1044 	spin_unlock(&gt->global_invl_lock);
1045 
1046 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1047 }
1048 
1049 /**
1050  * xe_device_td_flush() - Flush transient L3 cache entries
1051  * @xe: The device
1052  *
1053  * Display engine has direct access to memory and is never coherent with L3/L4
1054  * caches (or CPU caches), however KMD is responsible for specifically flushing
1055  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1056  * can happen from such a surface without seeing corruption.
1057  *
1058  * Display surfaces can be tagged as transient by mapping it using one of the
1059  * various L3:XD PAT index modes on Xe2.
1060  *
1061  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1062  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1063  * Media is not coherent with L3 and we want to support render-vs-media
1064  * usescases. For other engines like copy/blt the HW internally forces uncached
1065  * behaviour, hence why we can skip the TDF on such platforms.
1066  */
1067 void xe_device_td_flush(struct xe_device *xe)
1068 {
1069 	struct xe_gt *root_gt;
1070 
1071 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1072 		return;
1073 
1074 	root_gt = xe_root_mmio_gt(xe);
1075 	if (XE_WA(root_gt, 16023588340)) {
1076 		/* A transient flush is not sufficient: flush the L2 */
1077 		xe_device_l2_flush(xe);
1078 	} else {
1079 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1080 		tdf_request_sync(xe);
1081 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1082 	}
1083 }
1084 
1085 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1086 {
1087 	return xe_device_has_flat_ccs(xe) ?
1088 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1089 }
1090 
1091 /**
1092  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1093  * @xe: xe device instance
1094  *
1095  * To be used before any kind of memory access. It will splat a debug warning
1096  * if the device is currently sleeping. But it doesn't guarantee in any way
1097  * that the device is going to remain awake. Xe PM runtime get and put
1098  * functions might be added to the outer bound of the memory access, while
1099  * this check is intended for inner usage to splat some warning if the worst
1100  * case has just happened.
1101  */
1102 void xe_device_assert_mem_access(struct xe_device *xe)
1103 {
1104 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1105 }
1106 
1107 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1108 {
1109 	struct xe_gt *gt;
1110 	u8 id;
1111 
1112 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1113 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1114 
1115 	for_each_gt(gt, xe, id) {
1116 		drm_printf(p, "GT id: %u\n", id);
1117 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1118 		drm_printf(p, "\tType: %s\n",
1119 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1120 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1121 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1122 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1123 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1124 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1125 	}
1126 }
1127 
1128 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1129 {
1130 	return sign_extend64(address, xe->info.va_bits - 1);
1131 }
1132 
1133 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1134 {
1135 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1136 }
1137 
1138 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1139 {
1140 	struct xe_device *xe = arg;
1141 
1142 	xe_pm_runtime_put(xe);
1143 }
1144 
1145 /**
1146  * xe_device_declare_wedged - Declare device wedged
1147  * @xe: xe device instance
1148  *
1149  * This is a final state that can only be cleared with a module
1150  * re-probe (unbind + bind).
1151  * In this state every IOCTL will be blocked so the GT cannot be used.
1152  * In general it will be called upon any critical error such as gt reset
1153  * failure or guc loading failure. Userspace will be notified of this state
1154  * through device wedged uevent.
1155  * If xe.wedged module parameter is set to 2, this function will be called
1156  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1157  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1158  * the issue is preserved for further debugging.
1159  */
1160 void xe_device_declare_wedged(struct xe_device *xe)
1161 {
1162 	struct xe_gt *gt;
1163 	u8 id;
1164 
1165 	if (xe->wedged.mode == 0) {
1166 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1167 		return;
1168 	}
1169 
1170 	xe_pm_runtime_get_noresume(xe);
1171 
1172 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1173 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1174 		return;
1175 	}
1176 
1177 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1178 		xe->needs_flr_on_fini = true;
1179 		drm_err(&xe->drm,
1180 			"CRITICAL: Xe has declared device %s as wedged.\n"
1181 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1182 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1183 			dev_name(xe->drm.dev));
1184 
1185 		/* Notify userspace of wedged device */
1186 		drm_dev_wedged_event(&xe->drm,
1187 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET,
1188 				     NULL);
1189 	}
1190 
1191 	for_each_gt(gt, xe, id)
1192 		xe_gt_declare_wedged(gt);
1193 }
1194