1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_bo_evict.h" 27 #include "xe_debugfs.h" 28 #include "xe_devcoredump.h" 29 #include "xe_device_sysfs.h" 30 #include "xe_dma_buf.h" 31 #include "xe_drm_client.h" 32 #include "xe_drv.h" 33 #include "xe_exec.h" 34 #include "xe_exec_queue.h" 35 #include "xe_force_wake.h" 36 #include "xe_ggtt.h" 37 #include "xe_gsc_proxy.h" 38 #include "xe_gt.h" 39 #include "xe_gt_mcr.h" 40 #include "xe_gt_printk.h" 41 #include "xe_gt_sriov_vf.h" 42 #include "xe_guc.h" 43 #include "xe_guc_pc.h" 44 #include "xe_hw_engine_group.h" 45 #include "xe_hwmon.h" 46 #include "xe_irq.h" 47 #include "xe_memirq.h" 48 #include "xe_mmio.h" 49 #include "xe_module.h" 50 #include "xe_nvm.h" 51 #include "xe_oa.h" 52 #include "xe_observation.h" 53 #include "xe_pat.h" 54 #include "xe_pcode.h" 55 #include "xe_pm.h" 56 #include "xe_pmu.h" 57 #include "xe_pxp.h" 58 #include "xe_query.h" 59 #include "xe_shrinker.h" 60 #include "xe_survivability_mode.h" 61 #include "xe_sriov.h" 62 #include "xe_tile.h" 63 #include "xe_ttm_stolen_mgr.h" 64 #include "xe_ttm_sys_mgr.h" 65 #include "xe_vm.h" 66 #include "xe_vram.h" 67 #include "xe_vsec.h" 68 #include "xe_wait_user_fence.h" 69 #include "xe_wa.h" 70 71 #include <generated/xe_wa_oob.h> 72 73 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 74 { 75 struct xe_device *xe = to_xe_device(dev); 76 struct xe_drm_client *client; 77 struct xe_file *xef; 78 int ret = -ENOMEM; 79 struct task_struct *task = NULL; 80 81 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 82 if (!xef) 83 return ret; 84 85 client = xe_drm_client_alloc(); 86 if (!client) { 87 kfree(xef); 88 return ret; 89 } 90 91 xef->drm = file; 92 xef->client = client; 93 xef->xe = xe; 94 95 mutex_init(&xef->vm.lock); 96 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 97 98 mutex_init(&xef->exec_queue.lock); 99 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 100 101 file->driver_priv = xef; 102 kref_init(&xef->refcount); 103 104 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 105 if (task) { 106 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 107 xef->pid = task->pid; 108 put_task_struct(task); 109 } 110 111 return 0; 112 } 113 114 static void xe_file_destroy(struct kref *ref) 115 { 116 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 117 118 xa_destroy(&xef->exec_queue.xa); 119 mutex_destroy(&xef->exec_queue.lock); 120 xa_destroy(&xef->vm.xa); 121 mutex_destroy(&xef->vm.lock); 122 123 xe_drm_client_put(xef->client); 124 kfree(xef->process_name); 125 kfree(xef); 126 } 127 128 /** 129 * xe_file_get() - Take a reference to the xe file object 130 * @xef: Pointer to the xe file 131 * 132 * Anyone with a pointer to xef must take a reference to the xe file 133 * object using this call. 134 * 135 * Return: xe file pointer 136 */ 137 struct xe_file *xe_file_get(struct xe_file *xef) 138 { 139 kref_get(&xef->refcount); 140 return xef; 141 } 142 143 /** 144 * xe_file_put() - Drop a reference to the xe file object 145 * @xef: Pointer to the xe file 146 * 147 * Used to drop reference to the xef object 148 */ 149 void xe_file_put(struct xe_file *xef) 150 { 151 kref_put(&xef->refcount, xe_file_destroy); 152 } 153 154 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 155 { 156 struct xe_device *xe = to_xe_device(dev); 157 struct xe_file *xef = file->driver_priv; 158 struct xe_vm *vm; 159 struct xe_exec_queue *q; 160 unsigned long idx; 161 162 xe_pm_runtime_get(xe); 163 164 /* 165 * No need for exec_queue.lock here as there is no contention for it 166 * when FD is closing as IOCTLs presumably can't be modifying the 167 * xarray. Taking exec_queue.lock here causes undue dependency on 168 * vm->lock taken during xe_exec_queue_kill(). 169 */ 170 xa_for_each(&xef->exec_queue.xa, idx, q) { 171 if (q->vm && q->hwe->hw_engine_group) 172 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 173 xe_exec_queue_kill(q); 174 xe_exec_queue_put(q); 175 } 176 xa_for_each(&xef->vm.xa, idx, vm) 177 xe_vm_close_and_put(vm); 178 179 xe_file_put(xef); 180 181 xe_pm_runtime_put(xe); 182 } 183 184 static const struct drm_ioctl_desc xe_ioctls[] = { 185 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 188 DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 194 DRM_RENDER_ALLOW), 195 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 196 DRM_RENDER_ALLOW), 197 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 198 DRM_RENDER_ALLOW), 199 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 200 DRM_RENDER_ALLOW), 201 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 202 }; 203 204 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 205 { 206 struct drm_file *file_priv = file->private_data; 207 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 208 long ret; 209 210 if (xe_device_wedged(xe)) 211 return -ECANCELED; 212 213 ret = xe_pm_runtime_get_ioctl(xe); 214 if (ret >= 0) 215 ret = drm_ioctl(file, cmd, arg); 216 xe_pm_runtime_put(xe); 217 218 return ret; 219 } 220 221 #ifdef CONFIG_COMPAT 222 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 223 { 224 struct drm_file *file_priv = file->private_data; 225 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 226 long ret; 227 228 if (xe_device_wedged(xe)) 229 return -ECANCELED; 230 231 ret = xe_pm_runtime_get_ioctl(xe); 232 if (ret >= 0) 233 ret = drm_compat_ioctl(file, cmd, arg); 234 xe_pm_runtime_put(xe); 235 236 return ret; 237 } 238 #else 239 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 240 #define xe_drm_compat_ioctl NULL 241 #endif 242 243 static void barrier_open(struct vm_area_struct *vma) 244 { 245 drm_dev_get(vma->vm_private_data); 246 } 247 248 static void barrier_close(struct vm_area_struct *vma) 249 { 250 drm_dev_put(vma->vm_private_data); 251 } 252 253 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 254 { 255 struct page *dummy_page = (struct page *)res; 256 257 __free_page(dummy_page); 258 } 259 260 static vm_fault_t barrier_fault(struct vm_fault *vmf) 261 { 262 struct drm_device *dev = vmf->vma->vm_private_data; 263 struct vm_area_struct *vma = vmf->vma; 264 vm_fault_t ret = VM_FAULT_NOPAGE; 265 pgprot_t prot; 266 int idx; 267 268 prot = vm_get_page_prot(vma->vm_flags); 269 270 if (drm_dev_enter(dev, &idx)) { 271 unsigned long pfn; 272 273 #define LAST_DB_PAGE_OFFSET 0x7ff001 274 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 275 LAST_DB_PAGE_OFFSET); 276 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 277 pgprot_noncached(prot)); 278 drm_dev_exit(idx); 279 } else { 280 struct page *page; 281 282 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 283 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 284 if (!page) 285 return VM_FAULT_OOM; 286 287 /* Set the page to be freed using drmm release action */ 288 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 289 return VM_FAULT_OOM; 290 291 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 292 prot); 293 } 294 295 return ret; 296 } 297 298 static const struct vm_operations_struct vm_ops_barrier = { 299 .open = barrier_open, 300 .close = barrier_close, 301 .fault = barrier_fault, 302 }; 303 304 static int xe_pci_barrier_mmap(struct file *filp, 305 struct vm_area_struct *vma) 306 { 307 struct drm_file *priv = filp->private_data; 308 struct drm_device *dev = priv->minor->dev; 309 struct xe_device *xe = to_xe_device(dev); 310 311 if (!IS_DGFX(xe)) 312 return -EINVAL; 313 314 if (vma->vm_end - vma->vm_start > SZ_4K) 315 return -EINVAL; 316 317 if (is_cow_mapping(vma->vm_flags)) 318 return -EINVAL; 319 320 if (vma->vm_flags & (VM_READ | VM_EXEC)) 321 return -EINVAL; 322 323 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 324 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 325 vma->vm_ops = &vm_ops_barrier; 326 vma->vm_private_data = dev; 327 drm_dev_get(vma->vm_private_data); 328 329 return 0; 330 } 331 332 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 333 { 334 struct drm_file *priv = filp->private_data; 335 struct drm_device *dev = priv->minor->dev; 336 337 if (drm_dev_is_unplugged(dev)) 338 return -ENODEV; 339 340 switch (vma->vm_pgoff) { 341 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 342 return xe_pci_barrier_mmap(filp, vma); 343 } 344 345 return drm_gem_mmap(filp, vma); 346 } 347 348 static const struct file_operations xe_driver_fops = { 349 .owner = THIS_MODULE, 350 .open = drm_open, 351 .release = drm_release_noglobal, 352 .unlocked_ioctl = xe_drm_ioctl, 353 .mmap = xe_mmap, 354 .poll = drm_poll, 355 .read = drm_read, 356 .compat_ioctl = xe_drm_compat_ioctl, 357 .llseek = noop_llseek, 358 #ifdef CONFIG_PROC_FS 359 .show_fdinfo = drm_show_fdinfo, 360 #endif 361 .fop_flags = FOP_UNSIGNED_OFFSET, 362 }; 363 364 static struct drm_driver driver = { 365 /* Don't use MTRRs here; the Xserver or userspace app should 366 * deal with them for Intel hardware. 367 */ 368 .driver_features = 369 DRIVER_GEM | 370 DRIVER_RENDER | DRIVER_SYNCOBJ | 371 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 372 .open = xe_file_open, 373 .postclose = xe_file_close, 374 375 .gem_prime_import = xe_gem_prime_import, 376 377 .dumb_create = xe_bo_dumb_create, 378 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 379 #ifdef CONFIG_PROC_FS 380 .show_fdinfo = xe_drm_client_fdinfo, 381 #endif 382 .ioctls = xe_ioctls, 383 .num_ioctls = ARRAY_SIZE(xe_ioctls), 384 .fops = &xe_driver_fops, 385 .name = DRIVER_NAME, 386 .desc = DRIVER_DESC, 387 .major = DRIVER_MAJOR, 388 .minor = DRIVER_MINOR, 389 .patchlevel = DRIVER_PATCHLEVEL, 390 }; 391 392 static void xe_device_destroy(struct drm_device *dev, void *dummy) 393 { 394 struct xe_device *xe = to_xe_device(dev); 395 396 xe_bo_dev_fini(&xe->bo_device); 397 398 if (xe->preempt_fence_wq) 399 destroy_workqueue(xe->preempt_fence_wq); 400 401 if (xe->ordered_wq) 402 destroy_workqueue(xe->ordered_wq); 403 404 if (xe->unordered_wq) 405 destroy_workqueue(xe->unordered_wq); 406 407 if (xe->destroy_wq) 408 destroy_workqueue(xe->destroy_wq); 409 410 ttm_device_fini(&xe->ttm); 411 } 412 413 struct xe_device *xe_device_create(struct pci_dev *pdev, 414 const struct pci_device_id *ent) 415 { 416 struct xe_device *xe; 417 int err; 418 419 xe_display_driver_set_hooks(&driver); 420 421 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 422 if (err) 423 return ERR_PTR(err); 424 425 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 426 if (IS_ERR(xe)) 427 return xe; 428 429 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 430 xe->drm.anon_inode->i_mapping, 431 xe->drm.vma_offset_manager, false, false); 432 if (WARN_ON(err)) 433 goto err; 434 435 xe_bo_dev_init(&xe->bo_device); 436 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 437 if (err) 438 goto err; 439 440 err = xe_shrinker_create(xe); 441 if (err) 442 goto err; 443 444 xe->info.devid = pdev->device; 445 xe->info.revid = pdev->revision; 446 xe->info.force_execlist = xe_modparam.force_execlist; 447 xe->atomic_svm_timeslice_ms = 5; 448 449 err = xe_irq_init(xe); 450 if (err) 451 goto err; 452 453 init_waitqueue_head(&xe->ufence_wq); 454 455 init_rwsem(&xe->usm.lock); 456 457 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 458 459 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 460 /* Trigger a large asid and an early asid wrap. */ 461 u32 asid; 462 463 BUILD_BUG_ON(XE_MAX_ASID < 2); 464 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 465 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 466 &xe->usm.next_asid, GFP_KERNEL); 467 drm_WARN_ON(&xe->drm, err); 468 if (err >= 0) 469 xa_erase(&xe->usm.asid_to_vm, asid); 470 } 471 472 err = xe_bo_pinned_init(xe); 473 if (err) 474 goto err; 475 476 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 477 WQ_MEM_RECLAIM); 478 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 479 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 480 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 481 if (!xe->ordered_wq || !xe->unordered_wq || 482 !xe->preempt_fence_wq || !xe->destroy_wq) { 483 /* 484 * Cleanup done in xe_device_destroy via 485 * drmm_add_action_or_reset register above 486 */ 487 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 488 err = -ENOMEM; 489 goto err; 490 } 491 492 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 493 if (err) 494 goto err; 495 496 return xe; 497 498 err: 499 return ERR_PTR(err); 500 } 501 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 502 503 static bool xe_driver_flr_disabled(struct xe_device *xe) 504 { 505 if (IS_SRIOV_VF(xe)) 506 return true; 507 508 if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 509 drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n"); 510 return true; 511 } 512 513 return false; 514 } 515 516 /* 517 * The driver-initiated FLR is the highest level of reset that we can trigger 518 * from within the driver. It is different from the PCI FLR in that it doesn't 519 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 520 * it doesn't require a re-enumeration of the PCI BARs. However, the 521 * driver-initiated FLR does still cause a reset of both GT and display and a 522 * memory wipe of local and stolen memory, so recovery would require a full HW 523 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 524 * perform the FLR as the very last action before releasing access to the HW 525 * during the driver release flow, we don't attempt recovery at all, because 526 * if/when a new instance of i915 is bound to the device it will do a full 527 * re-init anyway. 528 */ 529 static void __xe_driver_flr(struct xe_device *xe) 530 { 531 const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */ 532 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 533 int ret; 534 535 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 536 537 /* 538 * Make sure any pending FLR requests have cleared by waiting for the 539 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 540 * to make sure it's not still set from a prior attempt (it's a write to 541 * clear bit). 542 * Note that we should never be in a situation where a previous attempt 543 * is still pending (unless the HW is totally dead), but better to be 544 * safe in case something unexpected happens 545 */ 546 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 547 if (ret) { 548 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 549 return; 550 } 551 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 552 553 /* Trigger the actual Driver-FLR */ 554 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 555 556 /* Wait for hardware teardown to complete */ 557 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 558 if (ret) { 559 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 560 return; 561 } 562 563 /* Wait for hardware/firmware re-init to complete */ 564 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 565 flr_timeout, NULL, false); 566 if (ret) { 567 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 568 return; 569 } 570 571 /* Clear sticky completion status */ 572 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 573 } 574 575 static void xe_driver_flr(struct xe_device *xe) 576 { 577 if (xe_driver_flr_disabled(xe)) 578 return; 579 580 __xe_driver_flr(xe); 581 } 582 583 static void xe_driver_flr_fini(void *arg) 584 { 585 struct xe_device *xe = arg; 586 587 if (xe->needs_flr_on_fini) 588 xe_driver_flr(xe); 589 } 590 591 static void xe_device_sanitize(void *arg) 592 { 593 struct xe_device *xe = arg; 594 struct xe_gt *gt; 595 u8 id; 596 597 for_each_gt(gt, xe, id) 598 xe_gt_sanitize(gt); 599 } 600 601 static int xe_set_dma_info(struct xe_device *xe) 602 { 603 unsigned int mask_size = xe->info.dma_mask_size; 604 int err; 605 606 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 607 608 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 609 if (err) 610 goto mask_err; 611 612 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 613 if (err) 614 goto mask_err; 615 616 return 0; 617 618 mask_err: 619 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 620 return err; 621 } 622 623 static bool verify_lmem_ready(struct xe_device *xe) 624 { 625 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 626 627 return !!val; 628 } 629 630 static int wait_for_lmem_ready(struct xe_device *xe) 631 { 632 unsigned long timeout, start; 633 634 if (!IS_DGFX(xe)) 635 return 0; 636 637 if (IS_SRIOV_VF(xe)) 638 return 0; 639 640 if (verify_lmem_ready(xe)) 641 return 0; 642 643 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 644 645 start = jiffies; 646 timeout = start + secs_to_jiffies(60); /* 60 sec! */ 647 648 do { 649 if (signal_pending(current)) 650 return -EINTR; 651 652 /* 653 * The boot firmware initializes local memory and 654 * assesses its health. If memory training fails, 655 * the punit will have been instructed to keep the GT powered 656 * down.we won't be able to communicate with it 657 * 658 * If the status check is done before punit updates the register, 659 * it can lead to the system being unusable. 660 * use a timeout and defer the probe to prevent this. 661 */ 662 if (time_after(jiffies, timeout)) { 663 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 664 return -EPROBE_DEFER; 665 } 666 667 msleep(20); 668 669 } while (!verify_lmem_ready(xe)); 670 671 drm_dbg(&xe->drm, "lmem ready after %ums", 672 jiffies_to_msecs(jiffies - start)); 673 674 return 0; 675 } 676 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 677 678 static void sriov_update_device_info(struct xe_device *xe) 679 { 680 /* disable features that are not available/applicable to VFs */ 681 if (IS_SRIOV_VF(xe)) { 682 xe->info.probe_display = 0; 683 xe->info.has_heci_gscfi = 0; 684 xe->info.skip_guc_pc = 1; 685 xe->info.skip_pcode = 1; 686 } 687 } 688 689 /** 690 * xe_device_probe_early: Device early probe 691 * @xe: xe device instance 692 * 693 * Initialize MMIO resources that don't require any 694 * knowledge about tile count. Also initialize pcode and 695 * check vram initialization on root tile. 696 * 697 * Return: 0 on success, error code on failure 698 */ 699 int xe_device_probe_early(struct xe_device *xe) 700 { 701 int err; 702 703 err = xe_mmio_probe_early(xe); 704 if (err) 705 return err; 706 707 xe_sriov_probe_early(xe); 708 709 sriov_update_device_info(xe); 710 711 err = xe_pcode_probe_early(xe); 712 if (err || xe_survivability_mode_is_requested(xe)) { 713 int save_err = err; 714 715 /* 716 * Try to leave device in survivability mode if device is 717 * possible, but still return the previous error for error 718 * propagation 719 */ 720 err = xe_survivability_mode_enable(xe); 721 if (err) 722 return err; 723 724 return save_err; 725 } 726 727 err = wait_for_lmem_ready(xe); 728 if (err) 729 return err; 730 731 xe->wedged.mode = xe_modparam.wedged_mode; 732 733 return 0; 734 } 735 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */ 736 737 static int probe_has_flat_ccs(struct xe_device *xe) 738 { 739 struct xe_gt *gt; 740 unsigned int fw_ref; 741 u32 reg; 742 743 /* Always enabled/disabled, no runtime check to do */ 744 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 745 return 0; 746 747 gt = xe_root_mmio_gt(xe); 748 749 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 750 if (!fw_ref) 751 return -ETIMEDOUT; 752 753 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 754 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 755 756 if (!xe->info.has_flat_ccs) 757 drm_dbg(&xe->drm, 758 "Flat CCS has been disabled in bios, May lead to performance impact"); 759 760 xe_force_wake_put(gt_to_fw(gt), fw_ref); 761 762 return 0; 763 } 764 765 int xe_device_probe(struct xe_device *xe) 766 { 767 struct xe_tile *tile; 768 struct xe_gt *gt; 769 int err; 770 u8 id; 771 772 xe_pat_init_early(xe); 773 774 err = xe_sriov_init(xe); 775 if (err) 776 return err; 777 778 xe->info.mem_region_mask = 1; 779 780 err = xe_set_dma_info(xe); 781 if (err) 782 return err; 783 784 err = xe_mmio_probe_tiles(xe); 785 if (err) 786 return err; 787 788 err = xe_ttm_sys_mgr_init(xe); 789 if (err) 790 return err; 791 792 for_each_gt(gt, xe, id) { 793 err = xe_gt_init_early(gt); 794 if (err) 795 return err; 796 797 /* 798 * Only after this point can GT-specific MMIO operations 799 * (including things like communication with the GuC) 800 * be performed. 801 */ 802 xe_gt_mmio_init(gt); 803 804 if (IS_SRIOV_VF(xe)) { 805 xe_guc_comm_init_early(>->uc.guc); 806 err = xe_gt_sriov_vf_bootstrap(gt); 807 if (err) 808 return err; 809 err = xe_gt_sriov_vf_query_config(gt); 810 if (err) 811 return err; 812 } 813 } 814 815 for_each_tile(tile, xe, id) { 816 err = xe_ggtt_init_early(tile->mem.ggtt); 817 if (err) 818 return err; 819 err = xe_memirq_init(&tile->memirq); 820 if (err) 821 return err; 822 } 823 824 for_each_gt(gt, xe, id) { 825 err = xe_gt_init_hwconfig(gt); 826 if (err) 827 return err; 828 } 829 830 err = xe_devcoredump_init(xe); 831 if (err) 832 return err; 833 834 /* 835 * From here on, if a step fails, make sure a Driver-FLR is triggereed 836 */ 837 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 838 if (err) 839 return err; 840 841 err = probe_has_flat_ccs(xe); 842 if (err) 843 return err; 844 845 err = xe_vram_probe(xe); 846 if (err) 847 return err; 848 849 for_each_tile(tile, xe, id) { 850 err = xe_tile_init_noalloc(tile); 851 if (err) 852 return err; 853 } 854 855 /* Allocate and map stolen after potential VRAM resize */ 856 err = xe_ttm_stolen_mgr_init(xe); 857 if (err) 858 return err; 859 860 /* 861 * Now that GT is initialized (TTM in particular), 862 * we can try to init display, and inherit the initial fb. 863 * This is the reason the first allocation needs to be done 864 * inside display. 865 */ 866 err = xe_display_init_early(xe); 867 if (err) 868 return err; 869 870 for_each_tile(tile, xe, id) { 871 err = xe_tile_init(tile); 872 if (err) 873 return err; 874 } 875 876 err = xe_irq_install(xe); 877 if (err) 878 return err; 879 880 for_each_gt(gt, xe, id) { 881 err = xe_gt_init(gt); 882 if (err) 883 return err; 884 } 885 886 xe_nvm_init(xe); 887 888 err = xe_heci_gsc_init(xe); 889 if (err) 890 return err; 891 892 err = xe_oa_init(xe); 893 if (err) 894 return err; 895 896 err = xe_display_init(xe); 897 if (err) 898 return err; 899 900 err = xe_pxp_init(xe); 901 if (err) 902 return err; 903 904 err = drm_dev_register(&xe->drm, 0); 905 if (err) 906 return err; 907 908 xe_display_register(xe); 909 910 err = xe_oa_register(xe); 911 if (err) 912 goto err_unregister_display; 913 914 err = xe_pmu_register(&xe->pmu); 915 if (err) 916 goto err_unregister_display; 917 918 err = xe_device_sysfs_init(xe); 919 if (err) 920 goto err_unregister_display; 921 922 xe_debugfs_register(xe); 923 924 err = xe_hwmon_register(xe); 925 if (err) 926 goto err_unregister_display; 927 928 for_each_gt(gt, xe, id) 929 xe_gt_sanitize_freq(gt); 930 931 xe_vsec_init(xe); 932 933 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 934 935 err_unregister_display: 936 xe_display_unregister(xe); 937 938 return err; 939 } 940 941 void xe_device_remove(struct xe_device *xe) 942 { 943 xe_display_unregister(xe); 944 945 xe_nvm_fini(xe); 946 947 drm_dev_unplug(&xe->drm); 948 949 xe_bo_pci_dev_remove_all(xe); 950 } 951 952 void xe_device_shutdown(struct xe_device *xe) 953 { 954 struct xe_gt *gt; 955 u8 id; 956 957 drm_dbg(&xe->drm, "Shutting down device\n"); 958 959 if (xe_driver_flr_disabled(xe)) { 960 xe_display_pm_shutdown(xe); 961 962 xe_irq_suspend(xe); 963 964 for_each_gt(gt, xe, id) 965 xe_gt_shutdown(gt); 966 967 xe_display_pm_shutdown_late(xe); 968 } else { 969 /* BOOM! */ 970 __xe_driver_flr(xe); 971 } 972 } 973 974 /** 975 * xe_device_wmb() - Device specific write memory barrier 976 * @xe: the &xe_device 977 * 978 * While wmb() is sufficient for a barrier if we use system memory, on discrete 979 * platforms with device memory we additionally need to issue a register write. 980 * Since it doesn't matter which register we write to, use the read-only VF_CAP 981 * register that is also marked as accessible by the VFs. 982 */ 983 void xe_device_wmb(struct xe_device *xe) 984 { 985 wmb(); 986 if (IS_DGFX(xe)) 987 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 988 } 989 990 /* 991 * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt. 992 */ 993 static void tdf_request_sync(struct xe_device *xe) 994 { 995 unsigned int fw_ref; 996 struct xe_gt *gt; 997 u8 id; 998 999 for_each_gt(gt, xe, id) { 1000 if (xe_gt_is_media_type(gt)) 1001 continue; 1002 1003 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1004 if (!fw_ref) 1005 return; 1006 1007 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1008 1009 /* 1010 * FIXME: We can likely do better here with our choice of 1011 * timeout. Currently we just assume the worst case, i.e. 150us, 1012 * which is believed to be sufficient to cover the worst case 1013 * scenario on current platforms if all cache entries are 1014 * transient and need to be flushed.. 1015 */ 1016 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1017 150, NULL, false)) 1018 xe_gt_err_once(gt, "TD flush timeout\n"); 1019 1020 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1021 } 1022 } 1023 1024 void xe_device_l2_flush(struct xe_device *xe) 1025 { 1026 struct xe_gt *gt; 1027 unsigned int fw_ref; 1028 1029 gt = xe_root_mmio_gt(xe); 1030 1031 if (!XE_WA(gt, 16023588340)) 1032 return; 1033 1034 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1035 if (!fw_ref) 1036 return; 1037 1038 spin_lock(>->global_invl_lock); 1039 1040 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1041 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1042 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1043 1044 spin_unlock(>->global_invl_lock); 1045 1046 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1047 } 1048 1049 /** 1050 * xe_device_td_flush() - Flush transient L3 cache entries 1051 * @xe: The device 1052 * 1053 * Display engine has direct access to memory and is never coherent with L3/L4 1054 * caches (or CPU caches), however KMD is responsible for specifically flushing 1055 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 1056 * can happen from such a surface without seeing corruption. 1057 * 1058 * Display surfaces can be tagged as transient by mapping it using one of the 1059 * various L3:XD PAT index modes on Xe2. 1060 * 1061 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 1062 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 1063 * Media is not coherent with L3 and we want to support render-vs-media 1064 * usescases. For other engines like copy/blt the HW internally forces uncached 1065 * behaviour, hence why we can skip the TDF on such platforms. 1066 */ 1067 void xe_device_td_flush(struct xe_device *xe) 1068 { 1069 struct xe_gt *root_gt; 1070 1071 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1072 return; 1073 1074 root_gt = xe_root_mmio_gt(xe); 1075 if (XE_WA(root_gt, 16023588340)) { 1076 /* A transient flush is not sufficient: flush the L2 */ 1077 xe_device_l2_flush(xe); 1078 } else { 1079 xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc); 1080 tdf_request_sync(xe); 1081 xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc); 1082 } 1083 } 1084 1085 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1086 { 1087 return xe_device_has_flat_ccs(xe) ? 1088 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1089 } 1090 1091 /** 1092 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1093 * @xe: xe device instance 1094 * 1095 * To be used before any kind of memory access. It will splat a debug warning 1096 * if the device is currently sleeping. But it doesn't guarantee in any way 1097 * that the device is going to remain awake. Xe PM runtime get and put 1098 * functions might be added to the outer bound of the memory access, while 1099 * this check is intended for inner usage to splat some warning if the worst 1100 * case has just happened. 1101 */ 1102 void xe_device_assert_mem_access(struct xe_device *xe) 1103 { 1104 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1105 } 1106 1107 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1108 { 1109 struct xe_gt *gt; 1110 u8 id; 1111 1112 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1113 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1114 1115 for_each_gt(gt, xe, id) { 1116 drm_printf(p, "GT id: %u\n", id); 1117 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1118 drm_printf(p, "\tType: %s\n", 1119 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1120 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1121 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1122 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1123 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1124 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1125 } 1126 } 1127 1128 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1129 { 1130 return sign_extend64(address, xe->info.va_bits - 1); 1131 } 1132 1133 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1134 { 1135 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1136 } 1137 1138 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1139 { 1140 struct xe_device *xe = arg; 1141 1142 xe_pm_runtime_put(xe); 1143 } 1144 1145 /** 1146 * xe_device_declare_wedged - Declare device wedged 1147 * @xe: xe device instance 1148 * 1149 * This is a final state that can only be cleared with a module 1150 * re-probe (unbind + bind). 1151 * In this state every IOCTL will be blocked so the GT cannot be used. 1152 * In general it will be called upon any critical error such as gt reset 1153 * failure or guc loading failure. Userspace will be notified of this state 1154 * through device wedged uevent. 1155 * If xe.wedged module parameter is set to 2, this function will be called 1156 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1157 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1158 * the issue is preserved for further debugging. 1159 */ 1160 void xe_device_declare_wedged(struct xe_device *xe) 1161 { 1162 struct xe_gt *gt; 1163 u8 id; 1164 1165 if (xe->wedged.mode == 0) { 1166 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1167 return; 1168 } 1169 1170 xe_pm_runtime_get_noresume(xe); 1171 1172 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1173 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1174 return; 1175 } 1176 1177 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1178 xe->needs_flr_on_fini = true; 1179 drm_err(&xe->drm, 1180 "CRITICAL: Xe has declared device %s as wedged.\n" 1181 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1182 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1183 dev_name(xe->drm.dev)); 1184 1185 /* Notify userspace of wedged device */ 1186 drm_dev_wedged_event(&xe->drm, 1187 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET, 1188 NULL); 1189 } 1190 1191 for_each_gt(gt, xe, id) 1192 xe_gt_declare_wedged(gt); 1193 } 1194