xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision f058b2dd70b1a5503dff899010aeb53b436091e5)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/units.h>
9 
10 #include <drm/drm_aperture.h>
11 #include <drm/drm_atomic_helper.h>
12 #include <drm/drm_gem_ttm_helper.h>
13 #include <drm/drm_ioctl.h>
14 #include <drm/drm_managed.h>
15 #include <drm/drm_print.h>
16 #include <drm/xe_drm.h>
17 
18 #include "regs/xe_gt_regs.h"
19 #include "regs/xe_regs.h"
20 #include "xe_bo.h"
21 #include "xe_debugfs.h"
22 #include "xe_display.h"
23 #include "xe_dma_buf.h"
24 #include "xe_drm_client.h"
25 #include "xe_drv.h"
26 #include "xe_exec_queue.h"
27 #include "xe_exec.h"
28 #include "xe_ggtt.h"
29 #include "xe_gt.h"
30 #include "xe_gt_mcr.h"
31 #include "xe_irq.h"
32 #include "xe_mmio.h"
33 #include "xe_module.h"
34 #include "xe_pat.h"
35 #include "xe_pcode.h"
36 #include "xe_pm.h"
37 #include "xe_query.h"
38 #include "xe_tile.h"
39 #include "xe_ttm_stolen_mgr.h"
40 #include "xe_ttm_sys_mgr.h"
41 #include "xe_vm.h"
42 #include "xe_wait_user_fence.h"
43 #include "xe_hwmon.h"
44 
45 #ifdef CONFIG_LOCKDEP
46 struct lockdep_map xe_device_mem_access_lockdep_map = {
47 	.name = "xe_device_mem_access_lockdep_map"
48 };
49 #endif
50 
51 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
52 {
53 	struct xe_device *xe = to_xe_device(dev);
54 	struct xe_drm_client *client;
55 	struct xe_file *xef;
56 	int ret = -ENOMEM;
57 
58 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
59 	if (!xef)
60 		return ret;
61 
62 	client = xe_drm_client_alloc();
63 	if (!client) {
64 		kfree(xef);
65 		return ret;
66 	}
67 
68 	xef->drm = file;
69 	xef->client = client;
70 	xef->xe = xe;
71 
72 	mutex_init(&xef->vm.lock);
73 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
74 
75 	mutex_init(&xef->exec_queue.lock);
76 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
77 
78 	spin_lock(&xe->clients.lock);
79 	xe->clients.count++;
80 	spin_unlock(&xe->clients.lock);
81 
82 	file->driver_priv = xef;
83 	return 0;
84 }
85 
86 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
87 {
88 	struct xe_device *xe = to_xe_device(dev);
89 	struct xe_file *xef = file->driver_priv;
90 	struct xe_vm *vm;
91 	struct xe_exec_queue *q;
92 	unsigned long idx;
93 
94 	mutex_lock(&xef->exec_queue.lock);
95 	xa_for_each(&xef->exec_queue.xa, idx, q) {
96 		xe_exec_queue_kill(q);
97 		xe_exec_queue_put(q);
98 	}
99 	mutex_unlock(&xef->exec_queue.lock);
100 	xa_destroy(&xef->exec_queue.xa);
101 	mutex_destroy(&xef->exec_queue.lock);
102 	mutex_lock(&xef->vm.lock);
103 	xa_for_each(&xef->vm.xa, idx, vm)
104 		xe_vm_close_and_put(vm);
105 	mutex_unlock(&xef->vm.lock);
106 	xa_destroy(&xef->vm.xa);
107 	mutex_destroy(&xef->vm.lock);
108 
109 	spin_lock(&xe->clients.lock);
110 	xe->clients.count--;
111 	spin_unlock(&xe->clients.lock);
112 
113 	xe_drm_client_put(xef->client);
114 	kfree(xef);
115 }
116 
117 static const struct drm_ioctl_desc xe_ioctls[] = {
118 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
119 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
120 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
121 			  DRM_RENDER_ALLOW),
122 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
123 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
124 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
125 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
126 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
127 			  DRM_RENDER_ALLOW),
128 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
129 			  DRM_RENDER_ALLOW),
130 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
131 			  DRM_RENDER_ALLOW),
132 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
133 			  DRM_RENDER_ALLOW),
134 };
135 
136 static const struct file_operations xe_driver_fops = {
137 	.owner = THIS_MODULE,
138 	.open = drm_open,
139 	.release = drm_release_noglobal,
140 	.unlocked_ioctl = drm_ioctl,
141 	.mmap = drm_gem_mmap,
142 	.poll = drm_poll,
143 	.read = drm_read,
144 	.compat_ioctl = drm_compat_ioctl,
145 	.llseek = noop_llseek,
146 #ifdef CONFIG_PROC_FS
147 	.show_fdinfo = drm_show_fdinfo,
148 #endif
149 };
150 
151 static void xe_driver_release(struct drm_device *dev)
152 {
153 	struct xe_device *xe = to_xe_device(dev);
154 
155 	pci_set_drvdata(to_pci_dev(xe->drm.dev), NULL);
156 }
157 
158 static struct drm_driver driver = {
159 	/* Don't use MTRRs here; the Xserver or userspace app should
160 	 * deal with them for Intel hardware.
161 	 */
162 	.driver_features =
163 	    DRIVER_GEM |
164 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
165 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
166 	.open = xe_file_open,
167 	.postclose = xe_file_close,
168 
169 	.gem_prime_import = xe_gem_prime_import,
170 
171 	.dumb_create = xe_bo_dumb_create,
172 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
173 #ifdef CONFIG_PROC_FS
174 	.show_fdinfo = xe_drm_client_fdinfo,
175 #endif
176 	.release = &xe_driver_release,
177 
178 	.ioctls = xe_ioctls,
179 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
180 	.fops = &xe_driver_fops,
181 	.name = DRIVER_NAME,
182 	.desc = DRIVER_DESC,
183 	.date = DRIVER_DATE,
184 	.major = DRIVER_MAJOR,
185 	.minor = DRIVER_MINOR,
186 	.patchlevel = DRIVER_PATCHLEVEL,
187 };
188 
189 static void xe_device_destroy(struct drm_device *dev, void *dummy)
190 {
191 	struct xe_device *xe = to_xe_device(dev);
192 
193 	if (xe->ordered_wq)
194 		destroy_workqueue(xe->ordered_wq);
195 
196 	if (xe->unordered_wq)
197 		destroy_workqueue(xe->unordered_wq);
198 
199 	ttm_device_fini(&xe->ttm);
200 }
201 
202 struct xe_device *xe_device_create(struct pci_dev *pdev,
203 				   const struct pci_device_id *ent)
204 {
205 	struct xe_device *xe;
206 	int err;
207 
208 	xe_display_driver_set_hooks(&driver);
209 
210 	err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
211 	if (err)
212 		return ERR_PTR(err);
213 
214 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
215 	if (IS_ERR(xe))
216 		return xe;
217 
218 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
219 			      xe->drm.anon_inode->i_mapping,
220 			      xe->drm.vma_offset_manager, false, false);
221 	if (WARN_ON(err))
222 		goto err;
223 
224 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
225 	if (err)
226 		goto err;
227 
228 	xe->info.devid = pdev->device;
229 	xe->info.revid = pdev->revision;
230 	xe->info.force_execlist = xe_modparam.force_execlist;
231 
232 	spin_lock_init(&xe->irq.lock);
233 	spin_lock_init(&xe->clients.lock);
234 
235 	init_waitqueue_head(&xe->ufence_wq);
236 
237 	drmm_mutex_init(&xe->drm, &xe->usm.lock);
238 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
239 
240 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
241 		/* Trigger a large asid and an early asid wrap. */
242 		u32 asid;
243 
244 		BUILD_BUG_ON(XE_MAX_ASID < 2);
245 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
246 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
247 				      &xe->usm.next_asid, GFP_KERNEL);
248 		drm_WARN_ON(&xe->drm, err);
249 		if (err >= 0)
250 			xa_erase(&xe->usm.asid_to_vm, asid);
251 	}
252 
253 	spin_lock_init(&xe->pinned.lock);
254 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
255 	INIT_LIST_HEAD(&xe->pinned.external_vram);
256 	INIT_LIST_HEAD(&xe->pinned.evicted);
257 
258 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
259 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
260 	if (!xe->ordered_wq || !xe->unordered_wq) {
261 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
262 		err = -ENOMEM;
263 		goto err;
264 	}
265 
266 	err = xe_display_create(xe);
267 	if (WARN_ON(err))
268 		goto err;
269 
270 	return xe;
271 
272 err:
273 	return ERR_PTR(err);
274 }
275 
276 /*
277  * The driver-initiated FLR is the highest level of reset that we can trigger
278  * from within the driver. It is different from the PCI FLR in that it doesn't
279  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
280  * it doesn't require a re-enumeration of the PCI BARs. However, the
281  * driver-initiated FLR does still cause a reset of both GT and display and a
282  * memory wipe of local and stolen memory, so recovery would require a full HW
283  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
284  * perform the FLR as the very last action before releasing access to the HW
285  * during the driver release flow, we don't attempt recovery at all, because
286  * if/when a new instance of i915 is bound to the device it will do a full
287  * re-init anyway.
288  */
289 static void xe_driver_flr(struct xe_device *xe)
290 {
291 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
292 	struct xe_gt *gt = xe_root_mmio_gt(xe);
293 	int ret;
294 
295 	if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
296 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
297 		return;
298 	}
299 
300 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
301 
302 	/*
303 	 * Make sure any pending FLR requests have cleared by waiting for the
304 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
305 	 * to make sure it's not still set from a prior attempt (it's a write to
306 	 * clear bit).
307 	 * Note that we should never be in a situation where a previous attempt
308 	 * is still pending (unless the HW is totally dead), but better to be
309 	 * safe in case something unexpected happens
310 	 */
311 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
312 	if (ret) {
313 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
314 		return;
315 	}
316 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
317 
318 	/* Trigger the actual Driver-FLR */
319 	xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
320 
321 	/* Wait for hardware teardown to complete */
322 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
323 	if (ret) {
324 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
325 		return;
326 	}
327 
328 	/* Wait for hardware/firmware re-init to complete */
329 	ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
330 			     flr_timeout, NULL, false);
331 	if (ret) {
332 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
333 		return;
334 	}
335 
336 	/* Clear sticky completion status */
337 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
338 }
339 
340 static void xe_driver_flr_fini(struct drm_device *drm, void *arg)
341 {
342 	struct xe_device *xe = arg;
343 
344 	if (xe->needs_flr_on_fini)
345 		xe_driver_flr(xe);
346 }
347 
348 static void xe_device_sanitize(struct drm_device *drm, void *arg)
349 {
350 	struct xe_device *xe = arg;
351 	struct xe_gt *gt;
352 	u8 id;
353 
354 	for_each_gt(gt, xe, id)
355 		xe_gt_sanitize(gt);
356 }
357 
358 static int xe_set_dma_info(struct xe_device *xe)
359 {
360 	unsigned int mask_size = xe->info.dma_mask_size;
361 	int err;
362 
363 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
364 
365 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
366 	if (err)
367 		goto mask_err;
368 
369 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
370 	if (err)
371 		goto mask_err;
372 
373 	return 0;
374 
375 mask_err:
376 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
377 	return err;
378 }
379 
380 /*
381  * Initialize MMIO resources that don't require any knowledge about tile count.
382  */
383 int xe_device_probe_early(struct xe_device *xe)
384 {
385 	int err;
386 
387 	err = xe_mmio_init(xe);
388 	if (err)
389 		return err;
390 
391 	err = xe_mmio_root_tile_init(xe);
392 	if (err)
393 		return err;
394 
395 	return 0;
396 }
397 
398 static int xe_device_set_has_flat_ccs(struct  xe_device *xe)
399 {
400 	u32 reg;
401 	int err;
402 
403 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
404 		return 0;
405 
406 	struct xe_gt *gt = xe_root_mmio_gt(xe);
407 
408 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
409 	if (err)
410 		return err;
411 
412 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
413 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
414 
415 	if (!xe->info.has_flat_ccs)
416 		drm_dbg(&xe->drm,
417 			"Flat CCS has been disabled in bios, May lead to performance impact");
418 
419 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
420 }
421 
422 int xe_device_probe(struct xe_device *xe)
423 {
424 	struct xe_tile *tile;
425 	struct xe_gt *gt;
426 	int err;
427 	u8 id;
428 
429 	xe_pat_init_early(xe);
430 
431 	xe->info.mem_region_mask = 1;
432 	err = xe_display_init_nommio(xe);
433 	if (err)
434 		return err;
435 
436 	err = xe_set_dma_info(xe);
437 	if (err)
438 		return err;
439 
440 	xe_mmio_probe_tiles(xe);
441 
442 	xe_ttm_sys_mgr_init(xe);
443 
444 	for_each_gt(gt, xe, id)
445 		xe_force_wake_init_gt(gt, gt_to_fw(gt));
446 
447 	for_each_tile(tile, xe, id) {
448 		err = xe_ggtt_init_early(tile->mem.ggtt);
449 		if (err)
450 			return err;
451 	}
452 
453 	err = drmm_add_action_or_reset(&xe->drm, xe_driver_flr_fini, xe);
454 	if (err)
455 		return err;
456 
457 	for_each_gt(gt, xe, id) {
458 		err = xe_pcode_probe(gt);
459 		if (err)
460 			return err;
461 	}
462 
463 	err = xe_display_init_noirq(xe);
464 	if (err)
465 		return err;
466 
467 	err = xe_irq_install(xe);
468 	if (err)
469 		goto err;
470 
471 	for_each_gt(gt, xe, id) {
472 		err = xe_gt_init_early(gt);
473 		if (err)
474 			goto err_irq_shutdown;
475 	}
476 
477 	err = xe_device_set_has_flat_ccs(xe);
478 	if (err)
479 		goto err_irq_shutdown;
480 
481 	err = xe_mmio_probe_vram(xe);
482 	if (err)
483 		goto err_irq_shutdown;
484 
485 	for_each_tile(tile, xe, id) {
486 		err = xe_tile_init_noalloc(tile);
487 		if (err)
488 			goto err_irq_shutdown;
489 	}
490 
491 	/* Allocate and map stolen after potential VRAM resize */
492 	xe_ttm_stolen_mgr_init(xe);
493 
494 	/*
495 	 * Now that GT is initialized (TTM in particular),
496 	 * we can try to init display, and inherit the initial fb.
497 	 * This is the reason the first allocation needs to be done
498 	 * inside display.
499 	 */
500 	err = xe_display_init_noaccel(xe);
501 	if (err)
502 		goto err_irq_shutdown;
503 
504 	for_each_gt(gt, xe, id) {
505 		err = xe_gt_init(gt);
506 		if (err)
507 			goto err_irq_shutdown;
508 	}
509 
510 	xe_heci_gsc_init(xe);
511 
512 	err = xe_display_init(xe);
513 	if (err)
514 		goto err_irq_shutdown;
515 
516 	err = drm_dev_register(&xe->drm, 0);
517 	if (err)
518 		goto err_fini_display;
519 
520 	xe_display_register(xe);
521 
522 	xe_debugfs_register(xe);
523 
524 	xe_hwmon_register(xe);
525 
526 	err = drmm_add_action_or_reset(&xe->drm, xe_device_sanitize, xe);
527 	if (err)
528 		return err;
529 
530 	return 0;
531 
532 err_fini_display:
533 	xe_display_driver_remove(xe);
534 
535 err_irq_shutdown:
536 	xe_irq_shutdown(xe);
537 err:
538 	xe_display_fini(xe);
539 	return err;
540 }
541 
542 static void xe_device_remove_display(struct xe_device *xe)
543 {
544 	xe_display_unregister(xe);
545 
546 	drm_dev_unplug(&xe->drm);
547 	xe_display_driver_remove(xe);
548 }
549 
550 void xe_device_remove(struct xe_device *xe)
551 {
552 	xe_device_remove_display(xe);
553 
554 	xe_display_fini(xe);
555 
556 	xe_heci_gsc_fini(xe);
557 
558 	xe_irq_shutdown(xe);
559 }
560 
561 void xe_device_shutdown(struct xe_device *xe)
562 {
563 }
564 
565 void xe_device_wmb(struct xe_device *xe)
566 {
567 	struct xe_gt *gt = xe_root_mmio_gt(xe);
568 
569 	wmb();
570 	if (IS_DGFX(xe))
571 		xe_mmio_write32(gt, SOFTWARE_FLAGS_SPR33, 0);
572 }
573 
574 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
575 {
576 	return xe_device_has_flat_ccs(xe) ?
577 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
578 }
579 
580 bool xe_device_mem_access_ongoing(struct xe_device *xe)
581 {
582 	if (xe_pm_read_callback_task(xe) != NULL)
583 		return true;
584 
585 	return atomic_read(&xe->mem_access.ref);
586 }
587 
588 void xe_device_assert_mem_access(struct xe_device *xe)
589 {
590 	XE_WARN_ON(!xe_device_mem_access_ongoing(xe));
591 }
592 
593 bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe)
594 {
595 	bool active;
596 
597 	if (xe_pm_read_callback_task(xe) == current)
598 		return true;
599 
600 	active = xe_pm_runtime_get_if_active(xe);
601 	if (active) {
602 		int ref = atomic_inc_return(&xe->mem_access.ref);
603 
604 		xe_assert(xe, ref != S32_MAX);
605 	}
606 
607 	return active;
608 }
609 
610 void xe_device_mem_access_get(struct xe_device *xe)
611 {
612 	int ref;
613 
614 	/*
615 	 * This looks racy, but should be fine since the pm_callback_task only
616 	 * transitions from NULL -> current (and back to NULL again), during the
617 	 * runtime_resume() or runtime_suspend() callbacks, for which there can
618 	 * only be a single one running for our device. We only need to prevent
619 	 * recursively calling the runtime_get or runtime_put from those
620 	 * callbacks, as well as preventing triggering any access_ongoing
621 	 * asserts.
622 	 */
623 	if (xe_pm_read_callback_task(xe) == current)
624 		return;
625 
626 	/*
627 	 * Since the resume here is synchronous it can be quite easy to deadlock
628 	 * if we are not careful. Also in practice it might be quite timing
629 	 * sensitive to ever see the 0 -> 1 transition with the callers locks
630 	 * held, so deadlocks might exist but are hard for lockdep to ever see.
631 	 * With this in mind, help lockdep learn about the potentially scary
632 	 * stuff that can happen inside the runtime_resume callback by acquiring
633 	 * a dummy lock (it doesn't protect anything and gets compiled out on
634 	 * non-debug builds).  Lockdep then only needs to see the
635 	 * mem_access_lockdep_map -> runtime_resume callback once, and then can
636 	 * hopefully validate all the (callers_locks) -> mem_access_lockdep_map.
637 	 * For example if the (callers_locks) are ever grabbed in the
638 	 * runtime_resume callback, lockdep should give us a nice splat.
639 	 */
640 	lock_map_acquire(&xe_device_mem_access_lockdep_map);
641 	lock_map_release(&xe_device_mem_access_lockdep_map);
642 
643 	xe_pm_runtime_get(xe);
644 	ref = atomic_inc_return(&xe->mem_access.ref);
645 
646 	xe_assert(xe, ref != S32_MAX);
647 
648 }
649 
650 void xe_device_mem_access_put(struct xe_device *xe)
651 {
652 	int ref;
653 
654 	if (xe_pm_read_callback_task(xe) == current)
655 		return;
656 
657 	ref = atomic_dec_return(&xe->mem_access.ref);
658 	xe_pm_runtime_put(xe);
659 
660 	xe_assert(xe, ref >= 0);
661 }
662